
A New d-DNNF-Based Bound Computation Algorithm for Functional E-MAJSAT

Knot Pipatsrisawat and Adnan Darwiche

Computer Science Department

University of California, Los Angeles

{thammakn,darwiche}@cs.ucla.edu

Abstract

We present a new algorithm for computing up-
per bounds for an optimization version of the E-
MAJSAT problem called functional E-MAJSAT.
The algorithm utilizes the compilation language d-
DNNF which underlies several state-of-the-art al-
gorithms for solving related problems. This bound
computation can be used in a branch-and-bound
solver for solving functional E-MAJSAT. We then
present a technique for pruning values from the
branch-and-bound search tree based on the infor-
mation available after each bound computation. We
evaluated the proposed techniques in a MAP solver
and a probabilistic conformant planner. In both
cases, our experiments showed that the new tech-
niques improved the efficiency of state-of-the-art
solvers by orders of magnitude.

1 Introduction

E-MAJSAT [Littman et al., 1998] is an extension of the
boolean satisfiability problem that can be used to model real-
world problems involving uncertainty. E-MAJSAT is also
a special case of a more general class of problems called
stochastic satisfiability (SSAT) [Littman et al., 2001]. Given
a CNF ∆ over variables E ∪ R, E-MAJSAT asks whether
there exists an assignment e to the variables in E such that the
majority of complete assignments to R satisfy the formula ∆
conditioned on e. This problem is NPPP-complete [Littman
et al., 1998; Park, 2002], as we need to search in an expo-
nential search space (the NP part) while checking whether a
candidate constitutes a solution requires solving a counting
problem (the PP part).

E-MAJSAT is an important problem in AI as it can be
used to model many problems such as probabilistic confor-
mant planning [Drummond and Bresina, 1990; Hanks, 1990;
Kushmerick et al., 1995], finding maximum a posteriori hy-
pothesis (MAP) [Park and Darwiche, 2004], and solving for
maximum expected utility (MEU) [Dechter, 1996]. Many
exact algorithms for solving E-MAJSAT and related prob-
lems have been proposed. For example, in [Littman, 1999;
Littman et al., 2001], the authors proposed a modified version
of the DPLL algorithm [Davis et al., 1962] for solving SSAT,
Dechter used bucket elimination for solving MAP [1996],

while recursive conditioning was used for solving the same
problem in [Darwiche, 2000].

In this work, we investigate an optimization version of E-
MAJSAT called functional E-MAJSAT. We propose an algo-
rithm for computing upper bounds on the solution of this
problem. The proposed algorithm can be viewed as an im-
provement of those used in [Huang et al., 2006; Huang,
2006], which take advantage of a compilation language called
d-DNNF for computing upper bounds. In this work, we point
out the cause of bound looseness in these existing algorithms
and propose a method for reducing the inaccuracy in bound
values. We then discuss an integration of the algorithm into a
branch-and-bound solver for solving functional E-MAJSAT.
Next, we describe a technique of using information avail-
able from the new bound computation to dynamically prune
branches of the search tree to speed up the search. For eval-
uation, we integrate our techniques into branch-and-bound
solvers for finding maximum a posteriori hypothesis and for
solving probabilistic conformant planning problems. These
solvers are, by themselves, state-of-the-art solvers for the re-
spective problems. Our results show that the proposed tech-
niques improve these solvers by orders of magnitude.

The rest of the paper is organized as follows. We first dis-
cuss basic notations and definitions in Section 2. Then, in
Section 3, we review existing techniques for solving and com-
puting bounds of functional E-MAJSAT based on d-DNNF.
In Section 4, we present a new algorithm for computing
tighter bounds and discuss some of its properties. Section 5
discusses its integration with a branch-and-bound solver and
presents a pruning technique based on our new bound com-
putation. Experimental results are presented in Section 6 and
we conclude in Section 7.

2 Basic Notations and Definitions

Given a literal ℓ, which is either a variable or the negation of
a variable, we use var(ℓ) to refer to its variable. An assign-
ment is simply a consistent set of literals (interpreted as their
conjunction). If ∆ is a propositional sentence and s is an as-
signment, we write s |= ∆ iff s satisfies ∆. Moreover, we
use ∆|s to denote the formula obtained from ∆ by substitut-
ing every literal ℓ ∈ s with true and every literal ℓ such that
¬ℓ ∈ s with false.

Unless stated otherwise, in this paper, we will assume that
every variable of a given formula has been designated as ei-



ther a choice variable or a chance variable. Intuitively, choice
variables are the ones we get to assign, while chance variables
will be assigned by the nature. We assume that the probabili-
ties θ of the literals of the chance variables are given. We use
θ(ℓ) to denote the probability of a chance literal ℓ. If Ψ is a
formula containing only chance variables, then we define the
probability of Ψ to be

Pr(Ψ) =
∑

r|=Ψ

(

∏

ℓ∈r

θ(ℓ)

)

.

The summation above is over all complete assignments r of
the chance variables that satisfy Ψ. The probability of Ψ is
essentially the weighted model count of Ψ, where the weight
of each model is simply the product of the probabilities of its
chance literals.1

Given a CNF Γ, the functional E-MAJSAT problem on Γ
is to compute

M = max
e

Pr(Γ|e),

where e is a complete assignment over the choice variables.
Notice that Γ|e is a formula containing only chance variables.
We will refer to M as the maximum probability of the func-
tional E-MAJSAT problem on Γ.

3 Functional E-MAJSAT Bound

Computation with d-DNNF

Our approach to bound computation is based on knowledge
compilation. In particular, given a functional E-MAJSAT
problem on CNF Γ, we compile Γ into a d-DNNF and com-
pute bounds from it. In this section, we will discuss an exist-
ing approach for computing upper bounds based on d-DNNF.
We begin by talking briefly about d-DNNF.

3.1 Deterministic Decomposable Negation Normal
Form (d-DNNF)

A negation normal form (NNF) is a rooted DAG whose leaves
are truth constants or literals and whose internal nodes are
either AND nodes or OR nodes. A deterministic decompos-
able negation normal form (d-DNNF) [Darwiche and Mar-
quis, 2002] is simply an NNF which satisfies the following
properties: (1) decomposability: children of each AND node
do not share a variable (2) determinism: children of each OR
node do not share a model. These properties allow many op-
erations such as consistency checking and model counting to
be performed efficiently [Darwiche and Marquis, 2002]. Fig-
ure 1 shows two d-DNNFs (letters and numbers will be ex-
plained later).

In this work, we use C2D to compile CNF into d-DNNF.2

The output d-DNNFs produced by C2D satisfy the following
key property: every OR node is of the form α = (x ∧ β) ∨
(¬x ∧ γ). Here, x is called the decision variable of α, de-
noted dec(α), and is made available in the output of C2D.

1Note that this definition does not require Ψ to be in any partic-
ular form.

2Available at http://reasoning.cs.ucla.edu/c2d.

We will assume that every d-DNNF discussed here has this
special form. Moreover, since every variable in a functional
E-MAJSAT problem is either choice or chance, we will say
that an OR node is a choice (chance) OR node if its decision
variable is a choice (chance) variable. Decision variables of
OR nodes in Figure 1 are shown in brackets.

Given a d-DNNF compiled from a functional E-MAJSAT
problem, the relative positions of the choice and chance vari-
ables in the d-DNNF affect the quality of bounds computed
from the d-DNNF. A d-DNNF is said to be constrained if no
choice variable appears below any chance OR node. It is un-
constrained otherwise. If x, y are the choice variables, then
the d-DNNF in Figure 1 (a) is constrained (i.e., no choice
literal appears below any chance OR node) while the one in
Figure 1 (b) is unconstrained (i.e., x, y appear below the root,
which is a chance OR node).

3.2 Functional E-MAJSAT Bound Computation
Using d-DNNF

Given a functional E-MAJSAT problem, if the corresponding
d-DNNF is constrained, we can easily compute the maximum
probability of the problem with a linear-time traversal of the
d-DNNF [Huang et al., 2006]. More generally, given a con-
strained d-DNNF ∆ and a (not necessarily complete) assign-
ment s of the choice variables, we can compute the maximum
probability of the respective functional E-MAJSAT problem
as follows. We perform a bottom-up traversal of ∆ and, for
each node α, we compute its value valα

s
, defined as



















































θ(α), if α is a chance literal

0, if α is a literal falsified by s

1, if α is a literal not falsified by s
∏

i val
αi

s
, if α =

∧

i αi

valα1

s
+ valα2

s
, if α = α1 ∨ α2 and

dec(α) is a chance variable.

max(valα1

s
, valα2

s
), if α = α1 ∨ α2 and

dec(α) is a choice variable.

The maximum probability of the problem is simply the value
at the root, as stated by the following result.3

Proposition 1 Given a CNF Γ and an equivalent constrained
d-DNNF ∆, val∆

true
is the maximum probability of the func-

tional E-MAJSAT problem on Γ.

When the d-DNNF is constrained, it is not hard to see
that maximization always comes after summation and that the
above algorithm computes the values according to the defini-
tion of the problem given in Section 2.

Consider the d-DNNF in in Figure 1 (a) again. We set
θ(a) = 0.8, θ(b) = 0.6, θ(c) = 0.8, θ(e) = 0.5. Using the
above algorithm, we get the value of the root val∆

true
= 0.34,

which is the solution to this problem. The value of each node
according to this algorithm is shown inside parentheses.

Requiring the compilation output to be a constrained d-
DNNF is, however, often impractical as the complexity is

3A similar claim was made in [Huang et al., 2006] without a
proof.



OR[x]

(0.34)

AND

(0.34)

AND

(0.30)

OR[y]

(0.34)

x

(1)

OR[y]

(0.30)

¬ x

(1)

AND

(0.22)

AND

(0.34)

AND

(0.30)

AND

(0.30)

OR[e]

(0.22)

y

(1)

OR[e]

(0.34)

¬ y

(1)

OR[e]

(0.30)

OR[e]

(0.30)

AND

(0.16)

AND

(0.06)

AND

(0.32)

AND

(0.02)

AND

(0.12)

AND

(0.18)

AND

(0.24)

AND

(0.06)

a

(0.8)

c

(0.4)

e

(0.5)

¬ a

(0.2)

¬ c

(0.6)

¬ e

(0.5)

d

(0.8)

¬ d

(0.2)

b

(0.6)

(a)

OR[e]

(0.5)

AND

(0.32)

AND

(0.18)

e

(0.5)

OR[x]

(0.8)

OR[y]

(0.8)

¬ e

(0.5)

OR[x]

(0.6)

OR[y]

(0.6)

AND

(0.8)

A

AND

(0.6)

AND

(0.4)

AND

(0.8)

B

AND

(0.2)

AND

(0.6)

AND

(0.2)

x

(1)

a

(0.8)

¬ x

(1)

b

(0.6)

y

(1)

c

(0.4)

¬ y

(1)

d

(0.8)

¬ a

(0.2)

¬ c

(0.6)

¬ d

(0.2)

(b)

Figure 1: (a) a constrained d-DNNF in which x and y are choice variables. (b) an unconstrained d-DNNF. Every node is labeled
with a valα

true
and each OR node is also labeled with its decision variable.

exponential in the constrained treewidth of the CNF [Park
and Darwiche, 2003].4 Unconstrained d-DNNF offers a more
practical solution in this case, as the compilation will only be
exponential in the treewidth [Darwiche, 2001], which could
be significantly smaller than the constrained treewidth ac-
cording to [Park and Darwiche, 2003]. However, the trade-
off here is that the value of the root node (given by the above
algorithm) will no longer be the exact solution of the prob-
lem. Instead, it becomes an upper bound [Huang et al., 2006].
Nevertheless, such a bound could still be very useful for
branch-and-bound solvers as demonstrated in [Huang, 2006]

and [Huang et al., 2006]. Figure 1 (b) shows the computation
of an upper bound of the same functional E-MAJSAT prob-
lem as the previous example. In this case, the root’s value is
0.5, which is larger than the actual solution.

3.3 The Cause of Bound Looseness

Roughly speaking, the more unconstrained the d-DNNF is,
the looser the bounds tend to become. Let us now illustrate
the cause of bound looseness with an example. Consider
again the bound computation performed on the d-DNNF in
Figure 1 (b). There are two AND nodes at depth 1 (whose
values are 0.32 and 0.18 respectively). The value of the left
AND node is partially attributed to the part of the formula that
assigns x = true (indicated by the edge labeled with A). On
the other hand the value of the right AND node is partially
due to the part of the formula that assigns x = false (in-
dicated by the edge labeled with B). Eventually, the values
of these two AND nodes are combined at the root, because
it is a chance OR node. Therefore, the value 0.5 at the root
does not correspond to a valid assignment, because x cannot
be assigned to both true and false. Note that the situation
described here could only arise in unconstrained d-DNNFs.

4The constrained treewidth is the minimal treewidth induced by
any variable order in which the choice variables are eliminated last.

4 Computing Tighter Bounds Using Option

Pairs

In this section, we present an algorithm for computing
tighter bounds for functional E-MAJSAT. Operating on un-
constrained d-DNNF, our solution reduces the extent to which
invalid assignments affect the bound values. The key idea is
to compute bound values that are conditioned on the values of
choice variables. To do so, we will need to make more infor-
mation available at each node of the d-DNNF. The following
definition is needed in the discussion of our algorithm.

Definition 1 (Option Pair) Given a d-DNNF node α, a par-
tial instantiation of the choice variables s and a choice
variable x not mentioned by s, ψ = (x, op+, op−) is an
option pair of α if

• op+ is an upper bound of valαx∧s
and

• op− is an upper bound of valα¬x∧s
.

In this case, x is called the option variable, denoted v(ψ). We

will also call op+ the positive option (p(ψ)) and call op− the

negative option (n(ψ)) of ψ. The best option of ψ is simply

max(op+, op−).

An option pair contains bounds on the node’s values con-
ditioned on the values of a choice variable. In the new bound
computation, instead of computing a value for each d-DNNF
node, we compute option pairs on all free choice variables
that appears below the node (if they exist). Thus, it is possi-
ble for a node to have zero or multiple option pairs. Before
we describe an algorithm for computing option pairs, we need
some definitions for the value of an option pair and the value
of a node, under an assignment. Given an assignment s to
some choice variables, the contribution of an option pair ψ
is the largest option value it can contribute under the assign-
ment. This is defined formally as

κ(ψ, s) =

{

p(ψ), if s |= v(ψ)
n(ψ), if s |= ¬v(ψ)
max(p(ψ), n(ψ)), otherwise.



In light of this definition, we can tighten the value of each
node. If a node α has at least one option pair, we define its
new value ovalα

s
to be the smallest contribution from any op-

tion pair of the node. This is the tightest bound we can obtain
from the available information, because any complete assign-
ment must set every choice variable to a value. If the node
does not have an option pair, its value is defined to be valα

s

(as defined in Section 3). Formally, we have

ovalα
s

=

{

minψ κ(ψ, s), α has some option pairs
valα

s
, otherwise.

Given an assignment s and a node α that mentions a free
choice variable v, we compute its option pair on v as follows.

1. If α is a literal of v, its option pair on v is (v, θ(α), 0) if
α is positive, and (v, 0, θ(α)) if α is negative.

2. If α =
∧n

i=1
αi, its option pair on v is

(v,
n
∏

i=1

ovalαi

s∧v,

n
∏

i=1

ovalαi

s∧¬v).

3. If α = α1 ∨ α2 is a choice OR, its option pair on v is

(v,max(ovalα1

s∧v, oval
α2

s∧v),max(ovalα1

s∧¬v, oval
α2

s∧¬v)).

4. If α = α1 ∨ α2 is a chance OR, its option pair on v is

(v, ovalα1

s∧v + ovalα2

s∧v, oval
α1

s∧¬v + ovalα2

s∧¬v).

This algorithm can be repeated at each node on every free
choice variable to compute all option pairs. The bound value
produced by this algorithm is then the value of the root
node (oval∆

s
). The time complexity of this computation is

O(|E||∆|), where |E| is the number of choice variables and
|∆| is the size of the d-DNNF. In practice, we may choose
not to compute all option pairs at each node. In this case, a
heuristic is needed to select which pairs should be computed.

The source of improvement of this new bound algorithm
lies in Step 4 above. In this case, instead of simply adding
the highest values that each child may produce together, we
only add values that agree on the assignment of the given op-
tion variable together. The value of such an OR node under
the new bound algorithm will be lower than the one com-
puted the previous algorithm (without option pairs) whenever
the best options of the children correspond to conflicting as-
signments of the option variable. Therefore, the quality of the
bounds generated by option pairs is more sensitive to changes
in the parameters of the problems (i.e., the probabilities of the
chance literals). In any case, we have the following result re-
garding the bounds computed this way.

Proposition 2 Given a d-DNNF ∆ and an instantiation (pos-
sibly partial) s of choice variables, we have

val∆
s

≥ oval∆
s

≥ max
x

Pr(∆|(s ∧ x)),

where x is a complete assignment of the remaining choice
variables.

OR(e)

(x,0.38,0.42)

(y,0.34,0.38)

AND

(x,0.32,0.24)

(y,0.16,0.32)

AND

(x,0.06,0.18)

(y,0.18,0.06)

e

(0.5)

OR(x)

(x,0.8,0.6)

OR(y)

(y,0.4,0.8)

¬ e

(0.5)

OR(x)

(x,0.2,0.6)

OR(y)

(y,0.6,0.2)

AND

(x,0.8,0)

AND

(x,0,0.6)

AND

(y,0.4,0)

AND

(y,0,0.8)

AND

(x,0.2,0)

AND

(y,0.6,0)

AND

(y,0,0.2)

x

(x,1,0)

a

(0.8)

¬ x

(x,0,1)

b

(0.6)

y

(y,1,0)

c

(0.4)

¬ y

(y,0,1)

d

(0.8)

¬ a

(0.2)

¬ c

(0.6)

¬ d

(0.2)

Figure 2: Bound computation using option pairs.

This result shows that the values computed using option pairs
are correct upper bounds that are at least as tight as those com-
puted using the basic algorithm given in Section 3. Note that
both the existing and our proposed algorithms return the ex-
act solution if the input assignment is a complete assignment
to the choice variables.

Let us now illustrate the new bound algorithm with an ex-
ample. Consider the d-DNNF in Figure 2. This d-DNNF is
identical to the one in Figure 1 (b) except the nodes’ values
are now computed with option pairs. In this example, there
are still two choice variables, x, y. We will now explain the
computation of option pairs of some nodes in this d-DNNF.

Each leaf node labeled with a chance variable in this figure
is only annotated with its value, because it has no option pairs.
Other leaves are labeled with option pairs on their choice vari-
ables. Every choice OR node (all at depth 2) mentions only
one choice variable (which is its decision variable). Their op-
tion pairs are obtained by simply combining the best option
from each child. Each of the AND nodes at depth 1 mentions
two choice variables and will have two option pairs. Consider
the left AND node. For the option pair on x, the positive
option is obtained by multiplying the positive option of the
child that mentions x (0.8) with the values of the remaining
children, which do not mention x (0.5 and 0.8). The negative
option and the option pair on y can be computed in a similar
way. To compute the option pair at the root node, which is
a chance OR node, we simply add the compatible options of
the children together. In the case of x, the option pair of the
left child indicates that if x = true, its value is no more than
0.32, while the right child indicates that its value is no more
than 0.06 under the same assignment. As a result, we can
conclude that, if x = true, the root’s value can be no more
than 0.38. The other option values at the root can be com-
puted in a similar way. Finally, from this bound computation,
we can conclude that, no matter what value is assigned to y,
the value of the root cannot be larger than 0.38.5 Hence, we
have obtained a bound value that is tighter than 0.5, the value
computed by the algorithm in the previous section.

5 Utilizing the New Bound Computation in a

Branch-and-Bound Algorithm

One natural application of our new bound computation is in
a branch-and-bound search algorithm for solving functional

5The same analysis on x yields a looser bound of 0.42. We take
the smallest value as the bound.



E-MAJSAT. Many branch-and-bound algorithms for solving
problems related to E-MAJSAT have been proposed previ-
ously [Littman, 1999; Littman et al., 2001; Park and Dar-
wiche, 2003; Huang et al., 2006; Huang, 2006].

Such an algorithm searches in the space of all possible as-
signments to the choice variables. Each leaf of this search tree
corresponds to a complete assignment e of the choice vari-
ables and is associated with the probability Pr(∆|e). Solv-
ing functional E-MAJSAT is equivalent to finding the leaf
with the highest probability. During the search, the algo-
rithm keeps track of the highest probability of any seen leaf
(LB). Then, at each search node, it computes an upper bound
on the probability of any leaf below the node. The cur-
rent search branch can be pruned if the bound is no better
than LB. We refer the reader to [Huang et al., 2006] for a
pseudo code of such a branch-and-bound search algorithm.
The bound computation algorithm proposed here can be uti-
lized in any standard branch-and-bound algorithm for solving
E-MAJSAT-related problems.

5.1 Pruning Using Option Pairs

We will now present a technique for pruning branches of the
branch-and-bound search tree. Consider a situation where
we have the following option pairs at the d-DNNF root:
(x, 0.75, 0.85), (y, 0.9, 0.7), (z, 0.5, 0.88), (w, 0.81, 0.88).
The current bound value is 0.85–the smallest best option.
Let us assume further that the current value of LB is 0.8. At
this point, we cannot prune the search tree yet. However,
we know that if we set x to true, the bound value will
suddenly be smaller than LB. The same can be concluded
about setting y = false, and z = true. Therefore, we
can prune the following values from the current sub-tree:
x = true, y = false, z = true.

In general, after computing a bound using option pairs, we
inspect each option pair ψ of the root node, if p(ψ) ≤ LB,
then the branch v(ψ) = true can be removed. If n(ψ) ≤
LB, then the branch v(ψ) = false can be removed.6 During
this process, the value of each choice variable can be pruned
independently, no matter what values of other variables are
pruned. This process of computing a bound and removing
values can be repeated as long as a new value is removed.

6 Experimental Results

We integrated our techniques into two state-of-the-art solvers
from two different domains derived from functional E-
MAJSAT: MAP and probabilistic conformant planning. The
following subsections discuss the integrations and results. All
of the experiments presented here were conducted on a Pen-
tium 4, 3.8GHz machine with 4GB of RAM.

6.1 Finding Maximum a Posteriori Hypothesis

Given a Bayesian network over variables X, the maximum
a posteriori (MAP) hypothesis over a set of MAP variables
M ⊆ X is an assignment of M with the highest probability.
Solving MAP is NPPP-complete [Park and Darwiche, 2004]

and can be naturally reduced to functional E-MAJSAT; the

6If both values of a variable are pruned, the search algorithm can
backtrack.

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100  120  140

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of MAP variables

Acemap
Acemap+

 1

 10

 100

 1000

 10000

 100000

 0  50  100  150  200  250

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of MAP variables

Acemap
Acemap+

Figure 3: Running time of ACEMAP and ACEMAP+ on
grid-50-12-2 (left) and grid-75-16-2 (right).

MAP variables are choice variables, while the remaining are
chance variables. In our experiment, we integrated our tech-
niques into a state-of-the-art solver called ACEMAP [Huang
et al., 2006]. ACEMAP is a branch-and-bound MAP solver
which computes bounds using d-DNNF. We called the solver
after the integration ACEMAP+.

We experimented with MAP problems used in [Huang et
al., 2006]. For each Bayesian network, we generated 10 MAP
queries by selecting random subsets of variables to be the
MAP variables. For the 42 grid networks (see [Huang et al.,
2006]), ACEMAP used 170,478 seconds to solve all queries,
while ACEMAP+ used only 7,825 seconds (>20x speedup).7

The other non-grid networks (some are used in [Huang et al.,
2006]) are relatively easy as both solvers finished many of
them in seconds.8 In any case, ACEMAP used 2,983 seconds
to solve all queries, while ACEMAP+ used only 636 seconds.

We also evaluated both solvers on MAP queries with dif-
ferent difficulty levels. For this experiment, we used the net-
works grid-50-12-2 and grid-75-16-2, which contain 144 and
256 network variables respectively. For each network, we
generated MAP queries with varied numbers of MAP vari-
ables. Figure 3 shows the running time of the solvers on a log-
scale. The results from both networks show that ACEMAP+
outperformed ACEMAP by up to 2 orders of magnitude.

6.2 Solving Probabilistic Conformant Planning

Probabilistic conformant planning allows uncertainty in both
the initial state and the action outcomes. Given a planning
domain and a horizon N , the objective is to find a linear se-
quence of N actions with the highest probability of reaching
the goal. We integrated our techniques into ComPlan [Huang,
2006] which is a state-of-the-art probabilistic conformant
planner. ComPlan is a branch-and-bound solver that utilizes
d-DNNF for bound computation. We implemented the plan-
ner based on the descriptions in [Huang, 2006]. We refer to
the version of the planner with our techniques ComPlan+.

We compared the performance of ComPlan and ComPlan+
on the planning domains sand-castle [Majercik and Littman,
1998] and slippery-gripper [Kushmerick et al., 1995] (as ex-
tended by [Hyafil and Bacchus, 2003]).9 Figure 4 (left) shows

7As in [Huang et al., 2006], each MAP query for these net-
work contains 100 MAP variables (or all variables if the network
has fewer than 100 variables).

8These include the block map, mastermind, alarm, hailfinder,
students families.

9The variables that represent plans are the choice variables and
those that represent uncertainty are the chance variables.



 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 15  20  25  30  35  40  45

R
u
n
n
in

g
 t
im

e
 (

s
)

Horizon

ComPlan
ComPlan+

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 8  10  12  14  16  18  20  22

R
u
n
n
in

g
 t
im

e
 (

s
)

Horizon

ComPlan
ComPlan+

Figure 4: Running time of ComPlan and ComPlan+ on sand-
castle (left) and modified slippery-gripper (right)

both planners’ running time on sand-castle on a log-scale.
This plot shows that ComPlan+ is exponentially faster than
ComPlan. When the horizon is 44, ComPlan takes 16,152
seconds, while ComPlan+ only takes 104 seconds (155x
speedup). In our experiment (result not shown), ComPlan+
can solve the problem with horizon equals to 50 in less than
700 seconds, while ComPlan does not finish after a day.

We experimented with two versions of the slippery-gripper
domain. The first one is the slippery-gripper problems de-
scribed in [Hyafil and Bacchus, 2003]. According to our re-
sults, ComPlan+ is about 1.8x faster than ComPlan on this
set of problems. The second version differs from the original
one only in the probabilities of success of some actions. In
particular, we changed the probability of DRY being success-
ful from 0.8 to 0.9, changed the probability that PAINT will
make the gripper which is not holding the block dirty from
0.1 down to 0.05, and changed the probability of success of
PICKUP when the gripper is wet from 0.5 to 0.85. These
modifications make the probabilities of the actions more po-
larized. This modification is expected to expose the draw-
backs of the existing bound algorithm more. Figure 4 (right)
shows the running time of the planners on the modified ver-
sion of slippery-gripper on a log-scale. The difference be-
tween ComPlan and ComPlan+ becomes more significant on
this modified domain. According to this plot, when the hori-
zon is 20, ComPlan takes 25,745 seconds, while ComPlan+
uses only 2,992 seconds (8.6x speedup). When the horizon
is 21, ComPlan takes 98,359 seconds, while ComPlan+ takes
6,753 seconds (14.6x speedup).

7 Conclusions

In this paper, we proposed a new bound computation, based
on the use of d-DNNF, for functional E-MAJSAT. The
algorithm can be used in a branch-and-bound solver for
functional E-MAJSAT and related problems. In addition to
yielding tighter bounds, the new algorithm also produces
additional information that can be used to prune search
branches at virtually no cost. We integrated the new tech-
niques into state-of-the-art branch-and-bound solvers for
MAP and probabilistic conformant planning. Our results
show orders of magnitude of improvement.

References

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. Journal of Arti-

ficial Intelligence Research, 17:229–264, 2002.

[Darwiche, 2000] Adnan Darwiche. Any-space probabilistic
inference. In UAI-00, pages 133–142, 2000.

[Darwiche, 2001] Adnan Darwiche. On the tractability of
counting theory models and its application to belief revi-
sion and truth maintenance. JANCL, 11(1-2):11–34, 2001.

[Davis et al., 1962] Martin Davis, George Logemann, and
Donald Loveland. A machine program for theorem-
proving. Comm. of ACM, 5(7):394–397, 1962.

[Dechter, 1996] Rina Dechter. Bucket elimination: a unify-
ing framework for probabilistic inference. In Proceedings
of UAI-96, pages 211–219, 1996.

[Drummond and Bresina, 1990] Mark Drummond and John
Bresina. Anytime synthetic projection: Maximizing the
probability of goal satisfaction. In Proceedings of AAAI-
90, pages 138–144, 1990.

[Hanks, 1990] Steven John Hanks. Projecting plans for un-
certain worlds. PhD thesis, New Haven, CT, USA, 1990.

[Huang et al., 2006] Jinbo Huang, Mark Chavira, and Adnan
Darwiche. Solving map exactly by searching on compiled
arithmetic circuits. In AAAI-06, pages 143–148, 2006.

[Huang, 2006] Jinbo Huang. Combining knowledge compi-
lation and search for conformant probabilistic planning. In
ICAPS-06, pages 253–262, 2006.

[Hyafil and Bacchus, 2003] Nathanael Hyafil and Fahiem
Bacchus. Conformant probabilistic planning via csps. In
ICAPS, pages 205–214, 2003.

[Kushmerick et al., 1995] Nicholas Kushmerick, Steve
Hanks, and Daniel S. Weld. An algorithm for probabilistic
planning. Artificial Intelligence, 76(1-2):239–286, 1995.

[Littman et al., 1998] Michael L. Littman, Judy Goldsmith,
and Martin Mundhenk. The computational complexity of
probabilistic planning. JAIR, 9:1–36, 1998.

[Littman et al., 2001] Michael L. Littman, Stephen M. Ma-
jercik, and Toniann Pitassi. Stochastic boolean satisfiabil-
ity. J. Autom. Reason., 27(3):251–296, 2001.

[Littman, 1999] Michael L. Littman. Initial experiments in
stochastic satisfiability. In AAAI ’99/IAAI ’99, pages 667–
672, 1999.

[Majercik and Littman, 1998] Stephen M. Majercik and
Michael L. Littman. Maxplan: A new approach to proba-
bilistic planning. In AIPS, pages 86–93, 1998.

[Park and Darwiche, 2003] J. Park and A. Darwiche. Solv-
ing map exactly using systematic search. In Proceedings
of UAI-03, pages 459–468, 2003.

[Park and Darwiche, 2004] James Park and Adnan Dar-
wiche. Complexity results and approximation strategies
for map explanations. JAIR, 21:101–133, 2004.

[Park, 2002] J. Park. Map complexity results and approxi-
mation methods. In UAI-02, pages 388–396, 2002.


