
On the Power of Clause-Learning SAT Solvers
with Restarts?

Knot Pipatsrisawat and Adnan Darwiche

University of California, Los Angeles, USA
{thammakn,darwiche}@cs.ucla.edu

Abstract. In this work, we improve on existing work that studied the
relationship between the proof system of modern SAT solvers and general
resolution. Previous contributions such as those by Beame et al (2004),
Hertel et al (2008), and Buss et al (2008) demonstrated that variations
on modern clause-learning SAT solvers were as powerful as general res-
olution. However, the models used in these studies required either extra
degrees of non-determinism or a preprocessing step that are not utilized
by any state-of-the-art SAT solvers in practice. In this paper, we prove
that modern SAT solvers that learn asserting clauses indeed p-simulate
general resolution without the need for any additional techniques.

1 Introduction

It is well-known that modern clause-learning SAT solvers (and their original
ancestor, the DPLL algorithm [7]) can be interpreted as resolution-based proof
systems [4]. For each unsatisfiable formula, these solvers can be viewed as engines
that produce refutation proofs. One central question in this research direction is
whether the proof system implemented by modern SAT solvers still has enough
freedom to generate a short resolution proof (relative to general resolution) for
every unsatisfiable formula. The answer to this theoretical question could have
important practical implications on the efficiency of modern SAT solvers.

There is much previous work on this subject that demonstrates the strength
of variations on modern clause-learning SAT solvers. However, equivalence with
respect to general resolution has yet to be proven for modern clause-learning
SAT solvers as they are practiced today. In [4], Beame et al showed that a
proof system based on a more general variation of modern SAT solvers was as
powerful as general resolution. The proof presented, however, requires the solver
to make decisions on variables that are already implied by unit resolution. This
modification introduces an extra degree of non-determinism “that would be very
hard to exploit in practice” [9]. Hertel et al [9] proved a slightly weaker result that
clause-learning solvers effectively p-simulate general resolution. This approach
allows them to introduce a preprocessing step to transform the CNF into one
(with some new variables) that can be efficiently solved by a more practical
model of solvers (the model used in [9] is based on the one developed by Van
? This is an updated version of the paper that appeared in the proceedings of CP-09.

Gelder in [16]). Buss et al [5] also took a similar approach by modifying the input
CNF (and introduced some new variables) to show that a generalized variation
of clause-learning algorithm, which allows decision making past conflicts, can
effectively p-simulate general resolution.

In this work, we show that modern clause-learning SAT solvers, without any
extra modifications, are indeed as powerful as general resolution. In particular,
we prove that the proof system implemented by modern clause-learning solvers
(which uses unit resolution, asserting clause learning, and restarting) p-simulates
general resolution. We show that this result holds for any asserting-clause learn-
ing scheme. Our proof does not require any preprocessing or making decisions
on implied literal or past a conflict. This result implies that modern SAT solvers
in their current form are capable of producing proofs that are as “short” as any
resolution proof, given appropriate branching heuristic and restart policy.

The proof of our main result is made possible by the help of two important
concepts, namely 1–empowerment [13] and 1–provability. Together, they allow
us to more accurately capture the power of modern clause-learning SAT solvers
and to avoid the need to introduce any technique not present in practice.

The rest of the paper is organized as follows. In the next section, we discuss
basic notations and definitions. In Section 3, we present our model of modern
clause-learning SAT solvers and the proof system associated with it. Then, in
Section 4, we present some interesting key results, which provide some insights
on the power of modern SAT solvers and allow us to prove the main result.
Next, we present our main result in Section 5. Finally, we discuss previous work
in Section 6 and conclude in Section 7.

2 Preliminaries

In this section, we review some basic notations related to propositional logic and
proof systems. If ∆ and α are two boolean formulas and ` is a literal, we write
∆ |= α to mean that ∆ entails α, and write ∆ ` ` to mean that literal ` can be
derived from ∆ using unit resolution. Furthermore, we may treat a clause as the
set of literals in the clause and a CNF formula as the set of clauses it contains.

2.1 Proof Systems

A proof system is a language for expressing proofs that can be verified in time
polynomial in the size of the proof [6]. In this work, we are concerned only with
proof systems based on propositional resolution [14]. The resolution between
clause α ∨ x and β ∨ ¬x is the derivation of clause α ∨ β (i.e., the resolvent).
In this case, x is called the resolved variable. To make our analysis as related to
modern SAT solvers as possible, the weakening rule, which allows introduction
of arbitrary literals into existing clauses, is not permitted here.

Definition 1. A resolution proof (or resolution derivation) of the clause Ck

from the CNF ∆ is a sequence of clauses Π = C1, C2, ..., Ck where each clause
Ci is either in ∆ or is a resolvent of clauses preceding Ci.

We will also treat a resolution proof as the set of clauses in it. The size of a proof
is the number of clauses in it. A resolution proof of the empty clause (i.e., false) is
called a refutation proof. The notion of p-simulation, which was introduced in [6],
is used to compare the power of two proof systems. The definition presented here
is obtained from [9].

Definition 2 (P-Simulation). Proof system S p-simulates proof system T , if,
for every unsatisfiable formula ∆, the shortest refutation proof of ∆ in S is at
most polynomially longer than the shortest refutation proof of ∆ in T .

Intuitively, if proof system S p-simulates proof system T , it means that S is
unrestricted enough to express proofs that are as short as those expressible in
T . As far as resolution proofs are concerned, general resolution, which allows
any resolution operation to be performed, is the most powerful proof system.
Other resolution proof systems that are known to be less powerful (i.e., do not
p-simulate general resolution) include tree-like resolution, linear resolution, and
regular resolution (see Section 2.3 of [4] for a good review).

3 Modern Clause-Learning SAT Solvers as a Proof
System

3.1 Modern Clause-Learning SAT Solvers

In this section, we describe a model of modern clause-learning SAT solvers.
Included in our model are the following techniques: unit resolution [7], clause-
learning [11, 17], restarting [8], and non-chronological backtracking [11, 3] (i.e.,
far-backtracking as termed by [15]). Algorithm 1 shows a pseudo code of a typical
clause-learning SAT solver with restarts, which we will refer to as CLR from now
on. We will first provide a high-level description of the algorithm before giving
formal definitions of its different components.

This algorithm is based on making variable assignments called decisions. It
starts with an empty decision sequence D and an empty set of learned clauses
Γ (Lines 1-2). It then iterates until it either proves the satisfiability or unsat-
isfiability of the input. In each iteration, the conjunction of the input CNF ∆,
learned clauses Γ , and decisions D are checked for inconsistency using unit reso-
lution (Line 4). If unit resolution finds an inconsistency, the algorithm does one
of two things:

– If the decision sequence is empty, the CNF ∆ must be unsatisfiable and the
algorithm terminates (Line 6).

– If the decision sequence is not empty, a clause α is generated and a level m
is computed based on α. The algorithm then erases all decisions made after
level m, adds α to Γ , and moves on to the next iteration (Lines 7-10).1

1 The clause α is known as an asserting clause and m as the assertion level. We will
define them formally later.

Algorithm 1: CLR: Clause-learning SAT solver with restarts.
input : CNF formula ∆
output: A solution of ∆ or unsat if ∆ is not satisfiable

D ← 〈〉 // Decision literals1

Γ ← true // Learned clauses2

while true do3

if S = (∆, Γ, D) is 1–inconsistent then4

// There is a conflict.

if D = 〈〉 then5

return unsat6

α ← an asserting clause of S7

m ← the assertion level of α8

D ← Dm // the first m decisions9

Γ ← Γ ∧ α10

else11

// There is no conflict.

if time to restart then12

D ← 〈〉13

S ← (∆, Γ, D)14

Choose a literal ` such that S 0 ` and S 0 ¬`15

if ` = null then16

return D // satisfiable17

D ← D, `18

If unit resolution detects no inconsistency, the solver has an option of restart-
ing, which amounts to resetting the decision sequence to the empty sequence
(Line 13). After that, the solver makes a decision by selecting a literal ` whose
value is not currently implied or falsified by unit resolution, and adds it to the
decision sequence (Line 18). If no such literal is found, the algorithms termi-
nates having proved satisfiability (Line 17). We will now provide the missing
definitions.

– A decision sequence is an ordered set of literals D = 〈`1, . . . , `k〉. Each literal
`i is called the decision at level i. We write Dm to denote the subsequence
〈`1, . . . , `m〉.

– A SAT state is a tuple (∆,Γ, D), where ∆ and Γ are CNFs such that ∆ |= Γ ,
and D is a decision sequence. We will write Sk to denote the state (∆, Γ, Dk).

– A CNF ∆ is 1–inconsistent iff ∆ ` false. It is 1–consistent otherwise. A SAT
state (∆,Γ, D) is 1–inconsistent (1–consistent) iff ∆∧Γ ∧D is 1–inconsistent
(1–consistent). It is normal for an unsatisfiable CNF to be 1–consistent.

– A literal ` is implied by state S = (∆,Γ, D) at level k, written S `k `, iff k is
the smallest integer for which ∆ ∧ Γ ∧Dk ` `. We say that the implication
level of literals `,¬` is k in this case, write S ` ` to mean S `i ` for some i,
and write S 6` ` to mean S 6`i ` for all i.

– A state S = (∆,Γ, 〈`1, . . . , `k〉) is normal iff for all 1 ≤ i ≤ k, Si−1 is
1–consistent, Si−1 6` `i and Si−1 6` ¬`i.

The notion of normal states prohibits SAT solvers from (1) making a decision
in the presence of a conflict and (2) making a decision on a variable that is already
assigned a value. By construction, the state S on Lines 4 and 14 of Algorithm 1
is always normal. Therefore, from now on, we will assume that every SAT state
is normal.

We are now ready to define the last two notions used in Algorithm 1: asserting
clause and assertion level. An asserting clause is a special type of conflict clause,
so we start first by defining the notion of a conflict clause. Our definition of
conflict clause closely follows the graphical definition in [17].

Definition 3 (Conflict Clause). Let S = (∆,Γ,D) be a 1–inconsistent SAT
state. A clause α = `1 ∨ . . . ∨ `m is a conflict clause of state S iff:

1. ∆ ∧ Γ ∧ ¬α ` false. That is, we can show that α is implied by ∆ ∧ Γ using
just unit resolution.

2. For each literal `i, S ` ¬`i. That is, the literals ¬`i are a subset of the
implications (or decisions) discovered by unit resolution in state S.

In [4], it was shown (in their Proposition 4) that every conflict clause obtained
from a cut on an implication graph (or a conflict graph, to be more precise) can
be derived from the current knowledge base (∆ ∧ Γ) using what is known as
trivial resolution derivation, which captures the kind of resolution performed by
virtually all modern clause-learning SAT solvers [4]. A trivial resolution deriva-
tion is a resolution derivation in which:

1. Every resolution step (except the very first) is performed between the last
resolvent and a clause in the knowledge base.

2. The resolved variables are all distinct.

Our definition of conflict clause is independent of the notion of implication graph
and is slightly more general (for example, it encompasses unconventional clauses
derived in [2]). Nevertheless, we will later show that all of the conflict clauses
that we care to learn can still be “derived” using trivial resolution derivation (to
be proven later in Proposition 3).

In any case, modern SAT solvers, in practice, insist on learning conflict
clauses that contain exactly one literal falsified at the last level.

Definition 4 (Asserting Clause). A conflict clause α of a SAT state S =
(∆,Γ, D) is an asserting clause iff it has exactly one literal ` with implica-
tion level |D|. The literal ` is called the asserted literal of α. Moreover, the
assertion level of clause α is defined as the highest implication level k < |D|
attained by some literal in α. If α contains only one literal, the assertion level
is defined to be zero.

Given a 1–inconsistent state, there always exists an asserting clause for it [13].
This result ensures that the execution of Line 7 of Algorithm 1 will always
succeed. This completes our description of CLR.

3.2 Clause-Learning Schemes

CLR can employ various learning schemes to derive conflict clauses (Line 7). Even
though we insist on deriving asserting clauses in Algorithm 1, in general, non-
asserting clauses may be used.2 In our context, it is sufficient to view a learning
scheme as a function that produces a conflict clause for every 1–inconsistent
SAT state. In this work, we will focus on a certain class of learning schemes
called asserting learning schemes, which always produces asserting clauses. We
will later show (in Proposition 3) that every asserting clause can essentially be
derived from a trivial resolution proof.

Given a learning scheme LS, we use CLRLS to denote the SAT algorithm
obtained by applying LS on Line 7 of Algorithm 1. We use CLR to denote the
algorithm with any learning scheme.

3.3 Non-Determinism in CLR

Given a learning scheme LS, the only sources of non-determinism remaining
in CLRLS are (1) the branching heuristic, (2) the restart policy and (3) the
implementation of unit resolution.3

In this work, we utilize the notion of extended branching sequence (defined
by [4]) to capture (1) and (2). An extended branching sequence is simply a
sequence of literals and special symbol R that is used to control decision making
and restarting in CLR. For example, σ = 〈x,¬y,R,¬x〉 indicates that the first
decision should be x = true, the second decision should be y = false, then
the solver should restart, and set x = false next (unit resolution and conflict
analysis are applied normally between these steps). Given such a sequence σ,
CLR(∆,σ) refers to the SAT state attained after executing CLR on the CNF ∆
according to the decisions and restarting points specified in σ (i.e., the choices on
Lines 12 and 18 should be made based on the next element in the sequence).4 For
simplicity, we will insist that CLR(∆,σ) be a 1–consistent state (unless it contains
the empty clause).5 Moreover, we shall use the notation CLR(∆,σ) to also refer
to the knowledge base (original and learned) of the SAT state CLR(∆, σ).

3.4 CLR as a Proof System

Modern clause-learning SAT solvers can be viewed as a proof system that con-
tains all proofs obtainable by executing the solver according to some decision
heuristic, restart policy, and implementation of unit resolution. If we view each
conflict clause as being derived from a resolution proof, we can combine these
2 Possibly at the expense of completeness.
3 The implementation of unit resolution may affect, for example, the order and deriva-

tions of unit implications, which, in practice, influence which conflict clauses even-
tually get derived.

4 A decision in σ should be skipped if its variable is already assigned a value.
5 This only amounts to letting Algorithm 1 deal with conflicts until it reaches a 1–

consistent state.

sub-derivations into a resolution proof that is produced by the SAT solver. In
particular, if a given execution of CLR on an unsatisfiable problem produces con-
flict clauses C1, ..., Ck, we know that Σ = ∆∧C1∧ ...∧Ck is 1–inconsistent (this
is how the algorithm terminates). Let each clause Ci be derived using resolution
proof πi (from original and previously learned clauses), and τ be the unit reso-
lution derivation of false from Σ, then Π = π1, ..., πk, τ is the refutation proof
generated by this execution. For the purpose of this work, each πi can be viewed
as a trivial resolution derivation, whose size is at most linear in the number of
variables. We will later justify this claim in Proposition 3. In the following defi-
nition, which defines the proof system implemented by Algorithm 1, we overload
the notation CLR to refer to both the SAT algorithm and the proof system.

Definition 5. Given a learning scheme LS, proof system CLRLS consists of all
refutation proofs that can be generated by Algorithm 1 using learning scheme LS.

The main result of this work will show that, for all asserting learning schemes
LS, CLRLS p-simulates general resolution. Note that the size of τ is always at
most linear in the number of variables. Hence, we leave it out from our future
discussion and proofs.

4 Ingredients for the Main Result

In this section, we present three key results that allow us to prove the main
result. These results, some of which are interesting in their own rights, provide
insights on the power of CLR. They are made possible by two important concepts,
called 1–empowerment and 1–provability, which allow us to formalize the ability
of CLR and use it to simulate general resolution. We first give definitions of these
notions before presenting the results. The first notion is called 1–empowerment,
which is the ability of a clause to allow unit resolution to see a new implication.
We present here a slightly modified definition of the one presented in [13].

Definition 6 (1–Empowerment [13]). Let α ⇒ ` be a clause where ` is some
literal in the clause and α is a conjunction of literals. The clause is 1–empowering
with respect to CNF ∆ iff

1. ∆ |= (α ⇒ `): the clause is implied by ∆.
2. ∆ ∧ α is 1–consistent: asserting α does not result in a conflict that is de-

tectable by unit resolution.
3. ∆ ∧ α 6` `: the literal ` cannot be derived from ∆ ∧ α using unit resolution.

In this case, ` is called an empowering literal of the clause. On the other hand,
a clause implied by ∆ that is not 1–empowering is said to be absorbed by ∆.6

A clause implied by ∆ is 1–empowering if it allows unit resolution to derive
a new implication that would be impossible to derive without the clause. For
6 This terminology, “absorbed”, was introduced in [1].

example, consider ∆ = (a ∨ b ∨ c) ∧ (a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ c) ∧ (a ∨ ¬b ∨ ¬c) ∧
(¬c∨ d)∧ (c∨ e). The clause (a∨ b) is 1–empowering with respect to ∆ because
unit resolution cannot derive a from ∆ ∧ ¬b. On the other hand, (d ∨ e), which
is implied by ∆, is not 1–empowering (i.e., is absorbed), because unit resolution
can already derive e from ∆ ∧ ¬d and derive d from ∆ ∧ ¬e. Note that if clause
C subsumes clause C ′ (i.e., C ⊆ C ′), then C absorbes C ′. Moreover, adding
more clauses to the knowledge base may make a 1–empowering clause become
absorbed but can never make an absorbed clause become 1–empowering. Every
asserting clause is 1–empowering with respect to the knowledge base at the time
of its derivation with its asserted literal as an empowering literal [13].

The second key notion, called 1–provability, is related to the difficulty of
deriving a clause from a CNF.

Definition 7 (1–Provability). Given a CNF ∆, clause C is 1–provable with
respect to ∆ iff ∆ ∧ ¬C ` false.

If a clause is 1–provable with respect to a given CNF, then we can show that
it is implied by the CNF using only unit resolution. For example, consider ∆
defined above. The clauses (a∨b) and (a) are both implied by ∆. In this case, the
clause (a∨b) is 1–provable with respect to ∆, because unit resolution is sufficient
to derive a contradiction after we assert the negation of the clause on top of ∆.
However, this is not the case for (a) (thus, it is not 1–provable). Notice that,
according to Definition 3, every conflict clause is 1–provable with respect to the
knowledge base at the time of its derivation. Moreover, a 1–provable clause still
remains 1–provable after any clause is added to the knowledge base.

We are now ready to present the results, whose proofs are in the Appendix.
The first key result states that, in every refutation proof of a 1–consistent CNF,
there is always a clause that is both 1–empowering and 1–provable with respect
to the CNF.

Proposition 1. Let ∆ be an unsatisfiable CNF that is 1–consistent and Π be a
refutation proof of ∆. There exists a clause C ∈ Π such that C is 1–empowering
and 1–provable with respect to ∆.

The set of clauses which are both 1–empowering and 1–provable plays an
important role in our main proof. In the next result, we show that CLR with
any asserting learning scheme can absorb such clauses in a quadratic number
of decisions. This result essentially states that, given any 1–empowering and
1–provable clause C, we can always come up with a (short) sequence of appro-
priate decisions (and restarts) to force CLR with an asserting learning scheme to
efficiently derive clauses that, together with the original knowledge base, allow
unit resolution to see any implication that C may allow us to derive (i.e., render
C useless, as far as unit resolution is concerned).

Proposition 2. Let ∆ be a CNF with n variables and C be a clause that is 1–
empowering and 1–provable with respect to ∆. For any asserting learning scheme

AS, there exists an extended branching sequence σ that allows CLRAS(∆,σ) to
absorb C while producing resolution proof of size O(n4).7

Because of this result, we will call any clause that is both 1–empowering and
1–provable with respect to the given CNF ∆, CLR-derivable with respect to ∆.

The next result states that every 1–empowering conflict clause can always be
derived using a trivial resolution derivation from the original and learned clauses
at the time of the conflict.8

Proposition 3. Let S = (∆,Γ, D) be a 1–inconsistent SAT state and C be a
conflict clause of S that is 1–empowering with respect to ∆ ∧ Γ . There exists a
trivial resolution proof of some C ′ ⊆ C from ∆ ∧ Γ .

Since all resolved variables are distinct in a trivial resolution proof, the size of
the proof has to be in O(n), where n is the number of variables of ∆. This result
is important as it shows that every empowering learning scheme (including any
schemes yet to be conceived) can essentially be “implemented” with the kind of
resolution derivation already employed by modern clause-learning SAT solvers.
Since every asserting clause is 1–empowering, this result applies to all asserting
learning schemes as well.

5 Main Result

In this section, we present our main result, which shows that the proof system
implemented by modern clause-learning SAT solvers is as powerful as general
resolution. We first present our main result in its most general form, then derive
a corollary which is more closely related to modern SAT solvers.

Theorem 1. CLR with any asserting learning scheme p-simulates general reso-
lution.

This result is applicable to a class of clause-learning algorithms that is even
more general than what is used in practice (for example, it applies to any as-
serting learning scheme not yet proposed). By restricting the learning scheme,
we obtain a more concrete result. Let 1stUIP denote the first UIP learning
scheme [12, 17], which is, by far, the most popular scheme in practice.

Corollary 1. CLR1stUIP p-simulates general resolution.

We will give an intuitive proof sketch for the main theorem before presenting
the actual proof. In contrast to the proofs presented in [4], [9], and [5], we do

7 The result given in Proposition 2 of the version that appeared in the proceedings of
CP-09 contained an error on the size of the branching sequence. Here, we correct the
problem and present a more direct result on the size of the proof produced instead.

8 This result can be viewed as a variation on Proposition 4 of [4] for our definition of
conflict clauses and 1–empowering clauses.

not try to simulate the derivation of every clause in the given resolution proof.
Instead, we force CLR to go after CLR-derivable clauses only.

Suppose ∆ has n variables. Let Π be a refutation proof of ∆ and AS be
an asserting learning scheme. If ∆ is already 1–inconsistent the proof is trivial.
Otherwise, we know that we can always find a CLR-derivable clause C in Π. We
know that we can force CLRAS to absorb C while producing a proof whose size
is only polynomial in n. We can keep repeating this process until the knowledge
base becomes 1–inconsistent. Since this can go on for at most |Π| times, the
combined proof is polynomial in |Π| and n.

Proof of Theorem 1 Suppose AS is an asserting learning scheme. Given a
CNF ∆ with n variables and any refutation proof Π of ∆, we will construct
an extended branching sequence σ that will induce CLRAS to derive the empty
clause and generate a proof of size O(n4|Π|).

In each iteration, consider Σ = ∆∧Γ , the current knowledge base of CLRAS .
We may assume that Σ is 1–consistent. From Proposition 1, we can always find
a clause C in Π that is CLR-derivable from Σ. Since we are using an asserting
learning scheme, Proposition 2 tells us that the solver can absorb such a clause
while generating a proof whose size is in O(n4). After absorbing C, we force the
solver to restart. Let Σ now denote the updated knowledge base. Since Π is still
a refutation proof of Σ, we can still find another CLR-derivable clause as long as
Σ is still 1–consistent. We repeat this process until Σ is 1–inconsistent, at which
point CLR terminates on Line 6 of Algorithm 1. In each iteration, we absorb at
least one clause in Π (no absorbed clause can become 1–empowering after we
add more clauses to the knowledge base). Hence, by Proposition 2, we know that
each iteration produces a proof whose length is at most in O(n4). Therefore, we
can use CLRAS to produce a refutation proof of ∆ with size O(n4|Π|). ¤

The next result shows that not only can we construct a CLR refutation proof
with length polynomial in the size of any resolution proof, but the construction
process can be carried out in polytime as well.

Theorem 2. The extended branching sequence required for the simulation in
Theorem 1 can be constructed in time polynomial in the sizes of the given refu-
tation proof and of the given CNF.

It suffices to show that finding a CLR-derivable clause in any given refutation
proof (with respect to any 1–consistent CNF) can be done in polytime. For each
clause Ci in the proof, checking if Ci is 1–provable only requires conditioning and
closing the knowledge base under unit resolution. This can be achieved in time
linear in the size of the CNF. Checking whether a literal is an empowering literal
of a clause can be performed by asserting the negations of the other literals in
the clause and see whether unit resolution can detect a conflict or derive the
remaining literal from the knowledge base or not. This process, whose time
complexity is linear in the size of the CNF, needs to be repeated for each literal
in the clause. Therefore, the overall time complexity for finding a CLR-derivable
clause is still polynomial in the sizes of the proof and of the CNF.

(¬a v e)

(¬a v¬c)

e

(¬c v¬e)

¬e

(¬c v d)

¬a

(a v¬c v d)

a

(¬b v¬c)

d

(b v¬c)

d

(¬b v¬d)

¬d

(¬a v¬b)

c

(¬a v e)

(¬a v c)

e

(c v¬e)

¬e

¬c

(¬a)

¬b

(¬a v b)

b

false

¬a

(b v¬d)

¬d

(a v b)

¬c

(a v c v f)

(a v c)

f

(a v c v¬f)

¬f

c

(a v¬b v f)

(a v¬b)

f

(a v¬b v¬f)

¬f

(a)

¬bb

a

Fig. 1. A refutation proof of ∆. Each resolvent has two incoming edges from its resolved
clauses (original clauses have no incoming edges). Each edge is annotated with the
resolved literal of the corresponding resolved clause.

5.1 Example

We now show an example of the simulation described in the proof of Theorem 1.
Consider the following unsatisfiable CNF:

∆ = (¬a ∨ e), (¬c ∨ ¬e), (a ∨ ¬c ∨ d), (¬b ∨ ¬d), (c ∨ ¬e), (¬a ∨ b),
(a ∨ ¬b), (a ∨ c ∨ f), (a ∨ c ∨ ¬f), (b ∨ ¬d), (a ∨ ¬b ∨ f), (a ∨ ¬b ∨ ¬f).

Figure 1 shows a refutation proof of ∆. Alternatively, we can write this proof as

Π = (¬a ∨ e), (¬c ∨ ¬e), (¬a ∨ ¬c), (a ∨ ¬c ∨ d), (¬c ∨ d),
(¬b ∨ ¬d), (¬b ∨ ¬c), (c ∨ ¬e), (¬a ∨ c), (¬a ∨ ¬b), (¬a ∨ b),
(¬a), (b ∨ ¬d), (b ∨ ¬c), (a ∨ c ∨ f), (a ∨ c ∨ ¬f), (a ∨ c), (b ∨ d),
(a ∨ ¬b ∨ f), (a ∨ ¬b ∨ ¬f), (a ∨ ¬b), (a), false.

Initially, one of the CLR-derivable clauses in Π is (¬b ∨ ¬c) and ¬c is the
empowering literal. If the solver assigns b = true and then c = true, unit resolu-
tion will detect a conflict. In this case, (¬b∨¬c) and (¬c∨ d) are both asserting
clauses. Suppose (¬b ∨ ¬c) is learned. After adding (¬b ∨ ¬c) to the knowledge
base, (¬c ∨ d) and (¬b ∨ ¬c), for example, become absorbed. Next, we force the
solver to restart. Suppose we choose (¬a) as the next CLR-derivable clause to
absorb. We must now force the solver to set a = true, which will immediately

cause a conflict. In this case, (¬a) is derived. Once again, we force the solver to
restart. Suppose we select (a ∨ ¬b) as the next CLR-derivable clause. We must
now force the solver to set a = false, b = true. Since ¬a is already implied by
the last learned clause, the solver can skip the decision on a and only needs to
assert b = true to cause a conflict. From this conflict, assume that the asserting
clause (a∨¬b) is learned. Adding this clause into the knowledge base will actu-
ally cause it to become 1–inconsistent. Hence, the solver can now terminate, as
unit resolution can derive false from the set of original and learned clauses. The
whole extended branching sequence used in this process is 〈b, c,R, a,R,¬a, b〉.

6 Related Work

Early work in this direction was published by Beame et al in [4]. In that work,
the authors showed that a slight variation of modern SAT solvers can simulate
general resolution. However, one key modification required by the proof is to
allow the solvers to make decisions on variables that are already assigned. This
requirement essentially introduces another degree of freedom, which makes it
harder to come up with a good decision heuristic and to actually implement in
practice. It is interesting to note that the proof in [4] also requires the solver to
restart at every conflict.

Van Gelder proposed a different proof system called POOL for studying mod-
ern SAT solvers as resolution engines [16]. In that work, the author focused on
understanding the strength of POOL and using it to model modern SAT solvers.
The author did not directly compare modern SAT solvers against general reso-
lution.

Nevertheless, POOL later became a basis of the work by Hertel et al [9], which
proved that modern SAT solvers can effectively p-simulate general resolution. In
other words, the authors showed that, with an additional preprocessing step,
modern solvers can become as strong as general resolution. While the prepro-
cessing is deterministic and independent of the proof being simulated, it can be
regarded as an extra component not utilized by any solver in practice.

Buss et al [5] also presented a similar argument. The authors showed that
with a preprocessing step (different from the one in [9]), a generalized version of
clause-learning algorithm can p-simulate general resolution. Apart from requiring
an extra preprocessing step, the proof also needed the solver to make decisions
on assigned variables.

7 Conclusions and Discussion

In this paper, we proved that modern clause-learning SAT solvers that utilize
restarts correspond to a proof system that is as powerful as general resolution.
Our work improves on previous results by avoiding the needs for additional
degrees of non-determinism and preprocessing. Our proof is made possible by
the notions of 1–empowerment and 1–provability, which allow us to capture the
power of modern SAT solvers in a more direct and natural way, and to avoid

the need for any special technique. The result presented in this paper essentially
shows that modern SAT solvers, as used in practice, are capable of simulating any
resolution proof (given the right branching and restarting heuristics, of course).

Note that the our proof requires the solver to restart at every conflict. While
no actual solver utilizes this particular restart policy, the proof suggests that a
frequent restart policy might be a key to the efficiency of modern solvers. In our
proof, restarting gives the solver the freedom to go after any clause necessary
for a short refutation. Interestingly, in recent years, there has been a clear trend
towards more and more frequent restarts for modern SAT solvers (e.g., [10], [?]).

In spite of our result, more theoretical work still remains to be done in this
research direction. The construction of our proof requires the solver to backtrack
to the top level upon each conflict (i.e., restart). While it is easy to implement
such a strategy, in practice, state-of-the-art solvers only backtrack to the asser-
tion level at each conflict (this type of backtracking is termed far-backtracking
in [15]). It still remains an open question whether far-backtracking (or even
chronological backtracking) is sufficient to achieve the presented result.

A Proofs

In this appendix, we present proofs of Propositions 1, 2, 3. The proof of Propo-
sition 1 is accomplished with the help of two lemmas.

Lemma 1. Let C1 = α ∨ `, C2 = β ∨ ¬`. Suppose C1 and C2 are not 1–
empowering with respect to ∆. Then, α ∨ β is 1–provable with respect to ∆.

Proof Let C = α ∨ β. Since both C1, C2 are not 1–empowering, we know that
∆∧¬α ` ` and ∆∧¬β ` ¬`.9 Therefore, unit resolution must be able to derive
both ` and ¬` from ∆ ∧ ¬C = ∆ ∧ ¬α ∧ ¬β. Therefore, C is 1–provable with
respect to ∆. ¤

Lemma 2. Let C be a clause that is not 1–provable with respect to ∆ and Π
be a resolution proof of C from ∆. Then, there exists C ′ ∈ Π, such that C ′ is
CLR-derivable from ∆.

Proof Let Π = C1, ..., Cn and Ci be the first clause in Π that is not 1–provable
with respect to ∆ (i may be equal to n). Clearly, Ci must be the resolvent of two
1–provable clauses Cj , Ck for some j, k < i. Assume for the sake of contradiction
that Cj , Ck are both not 1–empowering. Lemma 1 implies that Ci must be
1–provable, which is a contradiction. Hence, either Cj or Ck must be both 1–
provable and 1–empowering. ¤

Proof of Proposition 1 Given a 1–consistent CNF ∆, it is easy to see that
the empty clause (false) is not 1–provable with respect to ∆ (otherwise, ∆ would
be 1–inconsistent by definition). Since every refutation proof contains the empty
9 It is also possible that asserting ¬α or ¬β may result in a 1–inconsistent CNF. We

omit this case as C is trivially 1–provable.

clause, Lemma 2 implies that the proof Π must contain a clause that is both
1–empowering and 1–provable. ¤

Next, we present the proof of Proposition 2.

Proof of Proposition 2 Let C = (α∨`) be the clause under consideration and
` be an empowering literal. Moreover, let δ be an extended branching sequence
consisting of the literals in ¬α in any order. Since C is 1–empowering, the SAT
state right after asserting δ must be 1–consistent (?). Moreover, because C is 1–
empowering and 1–provable, at this point, neither ` nor ¬` can be implied by unit
resolution.10 Hence, CLR can select ¬` as the next decision. The 1–provability of
C ensures that asserting δ together with ¬` will result in a 1–inconsistent state
S (??).

Let D be the asserting clause derived by AS from S. If ∆ ∧ D absorbs C,
we are done. Otherwise, we add D to the knowledge base and let the solver take
care of any conflict until the SAT state on Line 4 of Algorithm 1 becomes 1–
consistent. There are at most n conflicts that the solver may need to go through
here, because the solver has to undo at least one decision every conflict and
we are not making any new decision. Hence, by Proposition 3, the total size of
resolution proof produced is in O(n2). Once the solver is in a 1–consistent state,
we restart, and repeat this whole process. We will now argue that this can only
be repeated O(n) times.

Every asserting clause learned in the process must generate at least one new
implication (i.e., its asserted literal) under a subset of δ. In every iteration, at
least one more literal that was implied at the conflict level will now be implied
by the time that δ is asserted. Because of (?) and (??), which hold in every
iteration, a conflict only happens after ¬` is asserted (thus, after δ is asserted).
This implies that, in our proof, once a literal becomes an asserted literal of some
asserting clause, it will never be assigned at any future conflict level again. Thus,
each literal can only become an asserted literal (of any clause) only once in this
whole process.

Since there are only n variables, this can be repeated at most O(n) times
before the empowering literal (`) itself is implied by the assertion of some assert-
ing clause. Whenever that happens, it means that ` no longer is an empowering
literal of C. At this point, the proof produced so far has size in O(n3). In order to
completely absorb C, we need to repeat this whole process for each empowering
literal of C. Since there are ≤ n literals in any clause, the total size of the proof
is clearly in O(n4). ¤

Next we prove Proposition 3.

Proof of Proposition 3 Let C = (α∨`) and ` be its empowering literal. Let σ
be a branching sequence consisting of the literals of ¬α (in any order) followed by
¬`. Let DEC be the decision learning scheme (as defined based on implication

10 That ` is not implied is straightforward. If ¬` was implied, the current state would
be 1–inconsistent, because C is 1–provable. This contradicts (?).

graph in Section 2 of [17]). In this scheme, conflict clauses contain only literals
of decision variables.

Asserting σ will result in a conflict and DEC will derive an asserting clause
C ′ which consists entirely of the negations of decision literals. Since the decisions
in δ are all negations of literals in C, we have C ′ ⊆ C. Since DEC is a learning
scheme based on implication graph, Proposition 4 of [4] implies that every conflict
clause produced by it, C ′ in particular, can be derived using a trivial resolution
proof. ¤

References

1. Atserias, A., Fichte, J. K., and Thurley, M. Clause-learning algorithms with
many restarts and bounded-width resolution. In Proceedings of the Twelfth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT’09)
(2009), pp. 114–127.

2. Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., and Sais, L. A
generalized framework for conflict analysis. In SAT’08 (2008), pp. 21–27.

3. Bayardo, R. J. J., and Schrag, R. C. Using CSP look-back techniques to solve
real-world SAT instances. In Proceedings of AAAI’97 (1997), pp. 203–208.

4. Beame, P., Kautz, H., and Sabharwal, A. Towards understanding and har-
nessing the potential of clause learning. JAIR 22 (2004), 319–351.

5. Buss, S. R., Hoffmann, J., and Johannsen, J. Resolution trees with lemmas:
Resolution refinements that characterize DLL algorithms with clause learning. Log-
ical Methods in Computer Science 4, 4 (2008).

6. Cook, S. A., and Reckhow, R. A. The relative efficiency of propositional proof
systems. J. Symb. Log. 44, 1 (1979), 36–50.

7. Davis, M., Logemann, G., and Loveland, D. A machine program for theorem-
proving. Commun. ACM 5, 7 (1962), 394–397.

8. Gomes, C. P., Selman, B., and Crato, N. Heavy-tailed distributions in com-
binatorial search. In Proceedings of CP-97 (1997), pp. 121–135.

9. Hertel, P., Bacchus, F., Pitassi, T., and Van Gelder, A. Clause learning
can effectively p-simulate general propositional resolution. In Proc. of AAAI-08
(2008), pp. 283–290.

10. Huang, J. The effect of restarts on the efficiency of clause learning. In Proc. of
IJCAI-07 (2007), pp. 2318–2323.

11. Marques-Silva, J. P., and Sakallah, K. A. GRASP - A New Search Algorithm
for Satisfiability. In Proceedings of ICCAD’96 (1996), pp. 220–227.

12. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., and Malik, S. Chaff:
Engineering an efficient sat solver. In Proceedings of DAC’01, June 2001. (2001).

13. Pipatsrisawat, K., and Darwiche, A. A new clause learning scheme for efficient
unsatisfiability proofs. In Proceedings of AAAI-08 (2008), pp. 1481–1484.

14. Robinson, J. A. A machine-oriented logic based on the resolution principle. J.
ACM 12, 1 (1965), 23–41.

15. Sang, T., Beame, P., and Kautz, H. Heuristics for fast exact model counting.
In SAT’05 (2005), pp. 226–240.

16. Van Gelder, A. Pool resolution and its relation to regular resolution and dpll
with clause learning. In LPAR’05 (2005), pp. 580–594.

17. Zhang, L., Madigan, C. F., Moskewicz, M. W., and Malik, S. Efficient con-
flict driven learning in boolean satisfiability solver. In ICCAD’01 (2001), pp. 279–
285.

