
1

Probabilistic Model-Based Diagnosis: An Electrical
Power System Case Study

Ole J. Mengshoel, Mark Chavira, Keith Cascio, Scott Poll, Adnan Darwiche, Serdar Uckun

Abstract�We present in this article a case study of the prob-
abilistic approach to model-based diagnosis. Here, the diagnosed
system is a real-world electrical power system, namely the
Advanced Diagnostic and Prognostic Testbed (ADAPT) located
at the NASA Ames Research Center. Our probabilistic approach
is formally well-founded, and based on Bayesian networks and
arithmetic circuits. We pay special attention to meeting two of the
main challenges � model development and real-time reasoning
� often associated with real-world application of model-based
diagnosis technologies. To address the challenge of model develop-
ment, we develop a systematic approach to representing electrical
power systems as Bayesian networks, supported by an easy-to-
use speci�cation language. To address the real-time reasoning
challenge, we compile Bayesian networks into arithmetic circuits.
Arithmetic circuit evaluation supports real-time diagnosis by
being predictable and fast. In experiments with the ADAPT
Bayesian network, which contains 503 discrete nodes and 579
edges and produces accurate results, the time taken to compute
the most probable explanation using arithmetic circuits has a
mean of 0.2625 milliseconds and a standard deviation of 0.2028
milliseconds. In comparative experiments, we found that while
the variable elimination and join tree propagation algorithms
also perform very well in the ADAPT setting, arithmetic circuit
evaluation was an order of magnitude or more faster.

Index Terms�Bayesian networks, arithmetic circuits, uncer-
tainty; model-based diagnosis; knowledge engineering; electrical
power systems; aerospace; real-time systems; domain modelling.

I. INTRODUCTION

IN this paper, we apply probabilistic model-based diagnosistechniques to a real-world electrical power system (EPS),
namely the Advanced Diagnostic and Prognostic Testbed
(ADAPT) [1]. In this application, a Bayesian network (BN)
model [2] of the ADAPT electrical power system plays a

Manuscript received TBD. We would like to thank Ann Patterson-Hine
and Dougal Maclise (NASA ARC) for their central roles in the development
of the ADAPT testbed, and David Garcia and David Nishikawa (NASA
ARC) for generating the ADAPT data for many of our experiments. This
material is based upon work supported by NASA under awards NCC2-1426
and NNA07BB97C.
Ole J. Mengshoel is with CMU and the Intelligent Systems Division

at the NASA Ames Research Center, Moffett Field, CA 94035; email:
Ole.J.Mengshoel@nasa.gov.
Mark Chavira is af�liated with the Computer Science Department at the

University of California, Los Angeles, CA 90095; chavira@cs.ucla.edu. He
is currently at Google.
Keith Cascio is with the Computer Science Department at the University

of California, Los Angeles, CA 90095 ; email: keith@cs.ucla.edu.
Scott Poll is with the Intelligent Systems Division at the NASA Ames

Research Center, Moffett Field, CA 94035; email: Scott.Poll@nasa.gov.
Adnan Darwiche is with the Computer Science Department at the University

of California, Los Angeles, CA 90095; email: darwiche@cs.ucla.edu.
Serdar Uckun is with the Embedded Reasoning Area at the Palo Alto

Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304; email:
Serdar.Uckun@parc.com. This work was performed while he was at NASA.

central role. The ADAPT BN represents health of sensors
and subsystem components explicitly, and is auto-generated
from a high-level system model of the ADAPT EPS. This BN
is then compiled, off-line, into an arithmetic circuit which is
then evaluated on-line. We believe that this ADAPT case study
clearly demonstrates how arithmetic circuits offer a scalable
inference technique with potential for real-time evaluation in
aircraft and spacecraft.
Several aspects of this work make it different from previous

efforts that utilize Bayesian networks for EPS diagnosis [3],
[4]: A �rst contribution is our expression of EPS components
and structure, using a novel high-level language, coupled with
auto-generation of Bayesian networks from models expressed
in this language. This approach supports the iterative devel-
opment of probabilistic diagnostic models for large EPSs,
including diagnostic system models that would be extremely
tedious to hand-construct even for Bayesian network experts.
The bene�t of this approach to developers and engineers
that are not, or only vaguely, familiar with Bayesian network
appears to be even greater.
It is important to achieve real-time performance in many

EPS health monitoring applications in aerospace [5], [6].
As a second contribution, we would like to highlight our
compilation approach to probabilistic diagnosis, speci�cally
the off-line compilation of Bayesian networks to arithmetic
circuits [7], [8], which are then used for on-line diagnosis.
An arithmetic circuit, which typically is large but has simple
a semantics, supports real-time diagnosis on-line in the fol-
lowing two ways. First, it results in more predictable times.
Second, it results in much faster inference. These two bene�ts
are important to us, given the real-time requirements of aircraft
and spacecraft avionics [6]. In experiments, we have here
successfully shown that this approach provides high-quality
diagnostic results on ADAPT scenarios. In addition, we have
shown that performance is substantially better than alternative
probabilistic inference algorithms, speci�cally variable elimi-
nation and clique (or join) tree propagation.
Electrical power systems are of crucial importance in

aerospace as well as in numerous other areas of society [9],
[1]. Our results in this article provide an argument for the
feasibility of probabilistic, model-based diagnosis of EPSs.
One of our main contributions is the integration of different
techniques, both existing and novel, in order to address a
real world problem, thereby obtaining an approach that scales
up to handle real world challenges in probabilistic model-
based diagnosis. Building on the approach discussed here, we
have developed BNs that achieved the best overall scores in
the Industrial Track of the 2009 DX Challenge Competition

2

[10]. In addition, we have demonstrated scalability for BNs
representing 24 distinct EPSs, where the largest BN had 1,018
nodes and 1,194 edges [11].
The rest of this article is structured as follows. We discuss

electrical power systems in aerospace, the ADAPT testbed, and
diagnostic challenges in Section II. We then brie�y introduce
fundamentals of Bayesian networks and arithmetic circuits in
Section III. Using ADAPT as a case study, we discuss the high
level speci�cation language (Section IV), Bayesian network
modelling and auto-generation (Section V and Section VI
respectively), and compilation to arithmetic circuits (Section
VII). Finally, we report on experimental results in Section
VIII, both on real-world and synthetic data, before concluding
in Section IX.

II. ELECTRICAL POWER SYSTEMS
We consider the importance of electrical power systems

(EPSs) in aerospace, describe an EPS testbed that is the subject
of this case study, and discuss diagnostic challenges associated
with EPSs.

A. Challenges in Aerospace and at NASA
The essential role that electrical power systems (EPSs) play

in aerospace vehicles is well-known [9], [1]. The electrical
power system may be thought of as the circulatory system
of an aerospace vehicle. In the human body, the circulatory
system delivers oxygen and removes carbon dioxide. Similarly,
the EPS delivers energy to subsystems in order to power
required vehicle functions such as life support, propulsion,
communications, guidance, navigation, and control. Loss of
electrical power to these and similar subsystems can result in
severe repercussions for the vehicle, personnel, or mission.
Unfortunately, electrical power systems have been impli-

cated in several aerospace vehicle incidents, accidents and
mishaps. In one accident, the left Power Conversion and
Distribution Unit (PCDU) on a Boeing 717 failed, resulting in
the loss of the left AC and DC busses. The most likely cause
was determined to be the failure of a transient suppression
diode, which allowed AC current to contaminate the DC
circuits of the PCDU. In another incident involving the PCDU
of a Boeing 717, a tantalum capacitor and a permanent magnet
generator input transformer failed, resulting in smoke in the
cabin and an emergency landing and evacuation (NTSB report
ATL04IA085). The Electric Propulsion Space Experiment
(ESEX) mission, launched and operated in early 1999, ended
prematurely when the spacecraft experienced a catastrophic
battery failure. The failure was most likely the result of elec-
trolyte leakage which caused a short circuit to the battery case,
resulting in a breach of the battery case, entry of super-heated
gas into the �ight unit, and eventual venting into space [12].
On January 14 2005, an Intelsat operated communications
satellite suffered a total loss after a sudden and unexpected
electrical power system anomaly. The failure of Intelsat 804's
high voltage power system was likely the result of a high
current event in the battery circuitry triggered by an electro-
static discharge (see http://sat-nd.com/failures/index.html/). A
battery failure also occurred on the Mars Global Surveyor,

A

A

AA

AA

Fig. 1. Schematic of the ADAPT testbed, showing one of three power storage
parts (for Battery 1, top) and one of two load banks (Load bank 1, bottom).
Detailed information about loads is given in Table II.

which last communicated with Earth on November 2, 2006. A
software error oriented the spacecraft to an angle that exposed
it to too much sunlight. This caused the battery to overheat
and ultimately led to the depletion of both batteries (see
http://mpfwww.jpl.nasa.gov/mgs/newsroom/20070413a.html).
These are just a few examples of the faults that can arise in

EPSs. Given the prevalence and importance of EPSs, it is vital
to develop effective health management approaches, including
diagnostic techniques, for real-time operation in aerospace
vehicles.

B. The Advanced Diagnostic and Prognostic Testbed

We now turn to the Advanced Diagnostics and Prognostics
Testbed (ADAPT); see also http://ti.arc.nasa.gov/adapt/ and
[1]. ADAPT, which has capabilities for power generation,
power storage, and power distribution, is a fully operational
electrical power system that is representative of such systems
in aircraft and spacecraft. Figure 1 presents a schematic
with a representative battery and load bank from ADAPT.
ADAPT is con�gured to achieve fault-tolerance, and contains
three batteries and two load banks. One battery can provide
power to two load banks. However, two batteries may not be
connected to the same load bank. In Figure 1, for example,
for Battery 1 to power Load bank 1, relay EY141 is closed.
For Battery 1 to power Load bank 2, on the other hand, relay

3

Part Pre�x Mode (Healthy/Faulty) States
Battery BATT Healthy healthy

Voltage failure or drain stuckDisabled
Circuit ISH Healthy healthy
breaker Stuck or failed open stuckOpen

Stuck or failed closed stuckClosed
Inverter INV Healthy healthy

Switched off stuckOpen
Relay EY Healthy healthy

Stuck or failed open stuckOpen
Stuck or failed closed stuckClosed

Voltage EI Healthy healthy
sensor Reading stuck low readVoltageLo

Reading stuck high readVoltageHi
Current IT Healthy healthy
sensor Reading stuck low readCurrentLo

Reading stuck high readCurrentHi
Position ISH Healthy healthy
sensor Reading stuck open stuckOpen

Reading stuck closed stuckClosed

TABLE I
DIFFERENT EPS PARTS ALONG WITH THEIR MODES AND THE
CORRESPONDING STATES OF THE HEALTH NODE FOR THE PART.

EY144 is closed. Relays EY141 and EY144 cannot both be
closed at the same time.
Different types of components and sensors used in ADAPT

are presented in Table I. Relays, which are commanded to
close and open to control power, have pre�x EY (in Figure
1) and health modes as indicated in the table. A position
sensor, also presented in Table I, reports on the status of
a relay. As concrete examples, consider in Figure 1 relay
EY170 that controls power to load L1A; it also has a posi-
tion (or touch) sensor ESH170. Our probabilistic diagnostic
application works on real-world data from ADAPT. In our
application, each of EY170 and ESH170 are represented by
random variables including health status random variables with
states as represented in Table I. For example, EY170's health
random variable has states {healthy, stuckOpen, stuckClosed}.
Upstream of relay EY170 is a current sensor IT167; the states
of its health variable are {healthy, readCurrentLo, readCur-
rentHi} as shown in the table. Further information on our
probabilistic modelling of EPS components and structure is
provided in Section V and Section VI.
There are two load banks in ADAPT, each has an AC part

and a DC part. Load bank 2 is very similar to Load bank 1,
the loads are just plugged into different locations. Each load
is connected at a �xed place in the power distribution unit.
In other words, there is no ambiguity as to which �power
outlet� a load is �plugged into�. At this time, there are mostly
AC loads in ADAPT; see Table II. Currently there are 2 DC
loads, one for each load bank. To convert DC power from
the batteries into AC power used by the AC loads, ADAPT
has two inverters, one per load bank. A failed inverter breaks
power transmission to the AC loads; see the stuckOpen failure
mode in Table I.

C. Diagnostic Challenges
There are several diagnostic challenges associated with

EPSs including ADAPT. First, they often have a large number
of distinct modes due to mode-inducing components such as

ID Relay Description Load Measurements (Sensors)
L1A EY170 3 light LGT6 Temperatures (TE500,

bulbs TE501,TE502);
Light sensor (LT500)

L1B EY171 Big fan FAN1 RPM (ST515)
L1C EY172 Small fan FAN3 None
L1D EY173 1 light bulb LGT8 None
L1E EY174 Water pump PMP2 Flow rate (FT525)
L1F EY175 1 light bulb LGT4 Temperature (TE511)
L1G EY183 Electromech. DC1 None
L1H EY184 None N/A N/A

TABLE II
LOADS AND THEIR SENSORS (WHERE APPLICABLE) FOR LOAD BANK 1 OF

THE ADAPT ELECTRICAL POWER SYSTEM.

relays, circuit breakers, and loads. If an EPS has m such
components, and we conservatively assume 2 discrete states
for each, there are potentially 2m modes in the EPS. Second,
while much EPS behavior is deterministic, there is both sensor
noise and system state uncertainty in EPSs. Sensor noise is due
to the imperfections of sensing, while system state uncertainty
is due to failures of EPS components and sensors. Third, the
mode switching behavior of EPSs often induces transients in
system response and the corresponding sensor measurements,
which may lead to false alarms if simple threshold-based mon-
itoring is used. Fourth, the time evolution of faults can have a
wide range of time scales depending on the fault mechanism;
switch faults will manifest very quickly while degradation in a
power source could take place over days or weeks. Our use of
Bayesian networks and arithmetic circuits, as discussed in this
article, is motivated by the need to construct EPS diagnostic
models that capture both deterministic and uncertain behavior
when many modes are present.

III. BAYESIAN NETWORKS AND ARITHMETIC CIRCUITS
We now brie�y present the underlying formalisms of our

probabilistic model-based reasoning approach: Bayesian net-
works and arithmetic circuits.

A. Bayesian Networks
Bayesian networks (BNs) represent multivariate probability

distributions and are used for reasoning and learning under
uncertainty [2]. Probability theory and graph theory form
the basis of BNs: Roughly speaking, random variables are
represented as nodes in a directed acyclic graph (DAG), while
conditional dependencies are represented as graph edges. A
key point is that a BN, whose graph structure often re�ects
a domain's causal structure, is a compact representation of a
joint probability table if its graph is relatively sparse. Both
discrete and continuous random variables can be represented
in BNs; our main emphasis in this article is on BNs with
discrete random variables. Each discrete random variable (or
node) X has a �nite number of states fx1; : : : xmg and is
parameterized by a conditional probability table (CPT).
Let X be the BN nodes, E � X the evidence nodes, and

e the evidence. Different probabilistic queries can now be
formulated; they all assume that all nodes in E are clamped
to values e. Computation of most probable explanation (MPE)

4

amounts to �nding a most probable explanation over the
remaining nodes R = X � E, or MPE(e). Computation of
marginals (or beliefs) amounts to inferring the posterior prob-
abilities over one or more query nodes Q � R, speci�cally
BEL(Q;e) where Q 2 Q. Marginals are used to compute
most likely values (MLVs) simply by picking, in BEL(Q;e),
a most likely state. Computation of the maximum a posteriori
probability (MAP) generalizes MPE computation and �nds a
most probable instantiation over nodes Q � R, MAP(Q; e).
MAP can be approximated by MPE and MLV, and we will
denote this using MAPMPE(Q; e) and MAPMLV(Q; e) respec-
tively. MAPMPE(Q; e) is the result of disregarding the nodes
in R not in Q, and MAPMLV(Q; e) is the result of aggregating
MLV(Q;e) of all Q 2 Q. These two approximations are of
interest because of the greater computational complexity of
MAP [13] compared to MPE and marginals [14], [15].
Different BN inference algorithms can be used to per-

form the above computations. We distinguish between exact
and inexact algorithms, and focus in this article on exact
algorithms, which include join tree propagation [16], [17],
[18], conditioning [19], [20], variable elimination [21], [22],
and arithmetic circuit evaluation [7], [8]. In resource-bounded
systems, including real-time avionics systems, there is a
strong need to align the resource consumption of diagnostic
computation with resource bounds [5], [6]. The compilation
approach�including join tree propagation and arithmetic cir-
cuit evaluation�is attractive in resource-bounded systems. In
this article we emphasize compilation into arithmetic circuits,
which we present next.

B. Arithmetic Circuits
Arithmetic circuits (ACs), as discussed in [23], [7], are here

used to perform probabilistic inference. The compilation from
BNs to ACs is based on the following connection between
BNs and multi-linear functions. With each Bayesian network,
we associate a corresponding multi-linear function (MLF) that
computes the probability of evidence. For example, the BN
A ! C B, where A and B are Boolean and C has three
values, induces the following MLF:

�a1�b1�c1�a1�b1�c1ja1;b1 + �a1�b1�c2�a1�b1�c2ja1;b1 + � � �
+ �a2�b2�c2�a2�b2�c2ja2;b2 + �a2�b2�c3�a2�b2�c3ja2;b2 :

The terms in the MLF are in one-to-one correspondence
with the rows of the network's joint distribution. Assume that
all indicator variables �x have value 1 and all parameter
variables �xju have value Pr(xju). Each term will then be
a product of probabilities which evaluates to the probability
of the corresponding row from the joint. The MLF will
add all probabilities from the joint, for a sum of 1:0. To
compute the probability Pr(e) of evidence e, we need a way
to exclude certain terms from the sum. This removal of terms
is accomplished by carefully setting certain indicators to 0
instead of 1, according to the evidence.
Unfortunately, the network MLF has exponential size. How-

ever, if we can factor the MLF into something small enough
to �t within memory, then we can compute Pr(e) in time
that is linear in the size of the factorization. The factorization

<eps> ::= <component>+
<component> ::= (<source> j <basic> j <sensor> j <sink>) ";"
<source> ::= <name> ":" "source" ":" <p> ":"
<basic> ::= <name> ":" <btype> ":" <p> ":" <name>+
<sensor> ::= <name> ":" <stype> ":" <p> ":" <name>
<sink> ::= <name> ":" "sink" ":" <p> ":" <name>+
<btype> ::= "load" j "wire" j "inverter" j "breaker" j "relay"
<stype> ::= "sensorCurrent" j "sensorVoltage" j "sensorTouch"

TABLE III
THE SYNTAX OF OUR NOVEL SPECIFICATION LANGUAGE.

will take the form of an AC, which is a rooted DAG, where an
internal node represents the sum or product of its children, and
a leaf represents a constant or variable. In this context, those
variables will be indicator and parameter variables. We refer
to this process of producing an AC from a BN as compiling
the network. While a BN is more compact than an AC, there
are in fact several advantages associated with using an AC for
probabilistic inference, as we will discuss shortly.
Once we have an AC for a network, we can compute Pr(e)

for given evidence e by assigning appropriate values to leaves
and then computing a value for each internal node in bottom-
up fashion. The value for the root is then the answer to the
query. We can also compute answers to many other queries
(a posterior marginal for each network variable, a posterior
marginal for each network family, etc.) by performing a second
downward pass [7] analogous to the outward pass of the
join tree algorithm. Hence, many queries can be computed
simultaneously in time linear in the size of the AC. MPE(e)
may be computed in a similar manner, by using maximization
nodes instead of addition nodes in the AC. Another main point
is that the upward and downward passes may then be repeated
for as many evidence sets as desired, without recompiling.
Performing inference using an AC is therefore divided into two
phases, an of�ine phase, which compiles the network into an
AC and is run once, and an online phase, which answers many
queries each time it is invoked, and which may be invoked
multiple times.
We close this section by noting the close relationship be-

tween the join tree algorithm [16], [17] and ACs, since the data
structures involved in this algorithm embed an AC in a very
precise sense [24]. Other compilation algorithms have been
developed based on tabular elimination [23], weighted model
counting [25], and ADD elimination [8]. These algorithms can
have an exponential advantage over join tree by exploiting
structure in the parameters of the Bayesian network [26].

IV. HIGH LEVEL MODEL

Our approach to probabilistic model�based diagnosis in-
volves four stages. In the �rst stage, we describe the EPS using
a high�level modeling language. In the second stage, we apply
a program to automatically convert the high�level speci�cation
into a Bayesian network. Putting the EPS model into the form
of a Bayesian network allows us to leverage a large body
of existing work on inference techniques. In the third stage,
we compile the Bayesian network into an arithmetic circuit.
This stage represents the application of a speci�c technique

5

Fig. 2. A small electrical power system; it is described using our speci�cation
language in Table IV.

batt : source : 0.0001 ;
wire1 : wire : 0.0000 : batt ;
curSens : sensorCurrent : 0.0003 : wire1 ;
rly : relay : 0.0003 : wire1 ;
touchSens : sensorTouch : 0.0002 : rly ;
wire2 : wire : 0.0000 : rly ;
voltSens : sensorVoltage : 0.0002 : wire2 ;
ld : sink : 0.0001 : wire2 ;

TABLE IV
A SMALL EPS, SHOWN IN FIGURE 2, DESCRIBED USING OUR

SPECIFICATION LANGUAGE.

(arithmetic circuits) for performing inference in Bayesian net-
works, which in the resource-bounded, real-time context has
signi�cant advantages over other techniques [5], [6]. All stages
up to this point have taken place of�ine, before the EPS is put
into actual use. The fourth stage involves applying algorithms
to the arithmetic circuit to perform inference online, when
the EPS is in the �eld. By this time, as much computational
effort as possible has been performed of�ine, leaving much
less computation to be performed online. In this and the next
four sections, we provide more detail on each stage, beginning
in this section with the novel high-level speci�cation language.
The syntax of our high�level speci�cation language is

given in Table III. A speci�cation is a list of statements.
(Here, <name> is an identi�er, and <p> is a probability.)
Each statement de�nes a component, which can either be
a source (battery), a basic component, a sensor, or a sink
(load). For brevity, we do not describe here some state-
ments de�ning more complicated sensors. The general idea
is that power �ows from sources through basic components
to sinks, monitored by sensors, and various failures can
occur at each component. For each component, we de�ne
its name, its type (e.g., source, load, breaker, relay,
sensorCurrent, sensorVoltage), the probability that
the component will fail,1 and a set of neighboring components.
For a source, the set of neighbors is empty; for a basic
component or a sink, we list all neighbors that lie between
the component and a source of electricity; for a sensor, we
list only the component to which the sensor is attached. These
sets of neighbors serve to de�ne the topology of an EPS.
Figure 2 depicts a very simple example of an electrical

power system, which is also described in Table IV by means of
our speci�cation language. The third line, for example, de�nes
a current sensor curSens with failure probability 0.0003 and
attached to component wire1 (which happens to be a wire

1As described, all failures for a given component have equal probability, but
the syntax can easily be extended to assign differing probabilities to different
kinds of failures.

de�ned in the second line); and the �fth line de�nes a touch (or
position) sensor touchSens with failure probability 0.0002
and attached to the relay rly.
Using our speci�cation language, the ADAPT EPS is de-

scribed using statements for the following components: 3
sources (batteries), 20 sinks (loads), 16 wires (we only need
to describe a wire if it has a sensor attached or if we want
to model failures in wires), 2 inverters, 9 circuit breakers, 25
relays, 17 current and load sensors, 16 voltage sensors, 33
position (touch) sensors, and 6 more advanced sensors (these
advanced sensors are not described here for sake of brevity).
The main purpose of the high�level speci�cation language

is to make developing an EPS model easy and less error�
prone. One can specify a model by listing which components
exist in the system, and for each, its type, failure probability,
and neighbors. All of this information can often be obtained
directly from schematics and hardware manuals. Consequently,
the modeling task at the speci�cation language level does not
require guesswork or any knowledge of Bayesian networks or
arithmetic circuits.
Components differ from each other in some ways that

are not represented explicitly in the speci�cation language,
because the information can be inferred from the component's
type. For example, some component types, such as a circuit�
breaker, accept a command to open or close, whereas some,
such as a wire, do not. Similarly, different components may
suffer different types of failures as presented in Table I. For
example, a wire can only fail in a stuck�open state, whereas
a circuit breaker can be stuck�open or stuck�closed. This
information is added during the BN auto-generation stage (see
Section VI), re�ecting our BN modelling approach, which is
what we discuss next.

V. MODELLING ELECTRICAL POWER SYSTEMS

A main contribution in this work is our systematic mod-
elling of EPSs using BNs. BNs provide a probabilistic seman-
tics for our high-level speci�cation language, and in addition
they support ef�cient inference including compilation into
arithmetic circuits. We partition the set of BN nodes X into
subsets H , E, C, P and R as follows:
� Health nodes (H), where H = HC[HS and HC \
HS = ?. Here,HC (component health nodes) represent
health of the EPS components and HS (sensor health
nodes) represent the health of the EPS sensors.

� Evidence nodes (E), where E = EC[ES and EC\
ES = ?. Here, EC (command nodes) represent the
commands to the EPS, while ES (sensor reading nodes)
represent sensor readings from the EPS.

� Connection nodes (C), where C = CR[CK and CR\
CK = ?. Here, CR (source connection nodes) represent
connection to a source (battery) in an EPS; CK (sink
connection nodes) represent connection to a sink (load)
in an EPS.

� Presence nodes (P), where P = PC[P V and PC\
P V = ?. Here, P V (voltage presence nodes) represent
voltage, similar to water pressure, provided by a source
(battery) in an EPS. PC (current propagation or presence

6

TABLE V
BN (LEFT) AND MPE COMPUTATION USING THE NETWORK (RIGHT) FOR THE SMALL EPS SPECIFIED IN TABLE IV. IN THE BN WE SHOW BOTH THE

NODE NAMES (Health_batt, Health_ld, : : :) AND THE NOTATION (Ch , Cd , : : :) USED TO DESCRIBE THE AUTO-GENERATION ALGORITHM.

nodes) represent �ow, similar to water �ow, of electrical
current from a source (battery) to a sink (load) in an
EPS. In our case, there is presence of voltage iff there
is a closed connection to one or more batteries, therefore
one may work with either CR or P V .

� Remaining EPS nodes (R): Nodes that are not health,
evidence, connection, or presence nodes. If X is the set
of all BN nodes, then R = X �H �E �C � P .

The above node partitioning allows us to state different
probabilistic queries of interest; discuss our EPS modelling
approach using BNs (both the topology as well as the indi-
vidual nodes associated with different EPS components); and
clearly present the experimental protocol.
In Section III we discussed, given query variables Q �

X and evidence e, three probabilistic queries: MAP(Q; e),
MAPMPE(Q; e), and MAPMLV(Q; e). By introducing the above
partitioning, we can put Q = HC , Q = HS , or Q = H
and obtain a total of nine different diagnostics queries. As an
example, Q = HS is of interest in sensor validation, where
the main focus is on qualifying and disqualifying sensors [27],
for instance voltage sensors, current sensors, fuel sensors, or
altitude sensors. In the rest of this article we emphasize Q =
H and in particular MAPMPE(H; e).
A key contribution in this work is our modeling of EPSs

using Bayesian networks. An EPS presents two different but
closely related problems, namely a voltage presence problem
and a current �ow problem. Voltage may propagate from a
battery towards the loads. For current to �ow, there must
be voltage present and in addition the EPS circuit needs
to be closed, which typically happens when an EPS load
is turned on and all other relays between the load and a
battery are also closed. This bidirectional voltage-current
propagation problem is different from, and more complicated
than, the unidirectional �ow problem posed by digital circuits
implementing boolean logic. Such digital electronic circuits
have been extensively studied in the model-based diagnosis
and Bayesian network literature [2].
Table V provides a simple example of our EPS

modelling approach. This BN was auto-generated, as
discussed in Section VI, from the speci�cation in Table

IV. Here, HC = {Health_batt, Health_ld} and HS =
{Health_curSens, Health_voltSens, Health_touchSens};
EC ={Command_relay} and ES = {Sensor_curSens,
Sensor_voltSens, Sensor_touchSens}. The topology of the
ADAPT BN, which currently contains over 500 nodes, is
analogous to this BN's topology. A key point in this example
is how the integration of voltage presence nodes (P V =
{Voltage_batt, Voltage_wire1, Voltage_rly, Voltage_wire2}),
sink connection nodes (CK = {ToSink_wire1, ToSink_rly,
ToSink_wire2, ToSink_ld}), and the current �ow node (PC

= {Current_wire1}) help solve the problems of voltage
presence and current �ow identi�ed above. Many nodes,
including current �ow nodes, can be pruned (and indeed have
been here) because they are leaf nodes and not involved in
sensors. Another key point is how sensors, for example the
voltage sensor (nodes Health_voltSens, Sensor_voltSens) and
the current sensor (nodes Health_curSens, Sensor_curSens),
are integrated into the overall BN topology.
We now consider inference as illustrated in Table V. Sup-

pose that e ={Command_rly = cmdClose, Sensor_curSens
= readCurrentLo, Sensor_voltSens = readVoltageHi, Sen-
sor_touchSens = readClosed}. This gives MAPMPE(H; e) =
{Health_batt = healthy, Health_ld = healthy, Health_curSens
= stuckCurrentLo, Health_voltSens = healthy}. In words, if
the command and sensor readings, except for Sensor_curSens
= readCurrentLo, suggest that power is supplied to the load,
then the MPE diagnosis is that all components and sensors are
healthy, except for the current sensor, where Health_curSens
= stuckCurrentLo. It is reassuring that there is agreement
between the MPE diagnosis and common sense in this case.
While our modelling approach, as discussed above, can be

used when manually constructing BNs for EPSs and similar
systems, it is even more powerful when automated, and we
now turn to how we have formalized it in an auto-generation
algorithm.

VI. AUTO-GENERATION OF BAYESIAN NETWORK
In this section, we discuss how a BN is auto-generated

from a high-level speci�cation model. This is the second stage
in our approach to probabilistic model�based diagnosis. The

7

Fig. 3. The part of the BN corresponding to (a) a relay and (b) a current
sensor.

conversion runs in a loop, which processes one component
from the speci�cation in each iteration. Such a sequential
order is guaranteed to exist under the assumption that the
underlying EPS can be described using a directed acyclic
graph (DAG). There is a clear mapping from a high-level
speci�cation to a DAG: In each component statement (see
Table III), the �rst <name> represents a node, and the
<name>+ part represents its parents (assuming this is not
a source statement in the speci�cation, which is trivial since
it is a root node in the DAG). Under the assumption that
there exists such a DAG, there exists a sequential high-level
speci�cation, since it is well-known from graph theory that
any DAG can be topologically (or sequentially) sorted.
The auto-generation algorithm can now be summarized as

follows: We iterate over the components in the speci�cation
and for each generate a set of BN nodes and a set of BN edges.
Each time the algorithm creates a BN node for a component,
it places the node into the appropriate set among HC , HS ,
EC , ES , CR, CK , PC , P V , and R, as we illustrate below.
The processing of a sensor is somewhat different from the

processing of other components, so we treat sensors separately,
after �rst discussing other components. As an example, Fig-
ure 3(a) depicts the part of a BN corresponding to a relay C.
For the component C, the auto-generation algorithm generates
six nodes in the BN:
� A component health node Ch 2 HC , with values
{healthy, stuckOpen, stuckClosed}, indicates C's health
state. Ch has a CPT set according to C's failure proba-
bility as de�ned in the high�level speci�cation.

� A command node Cm 2 EC , with values {cmdOpen,
cmdClose}, indicates the command being sent to the
relay. This value will always be known prior to inference,
since it is set according to the command being issued
to the relay. Therefore, probabilities in this CPT are not
important; Cm has a uniform CPT.

� A remaining node Cd 2 R, with values {open, closed},
indicates whether C is currently closed. If Ch = healthy,
then Cd indicates closed iff Cm = cmdClose. Otherwise,
if Ch is stuckOpen (stuckClosed), then Cd indicates open
(closed).

� A source connection node Cr 2 CR, with values {open,
closed}, indicates whether there is a closed path from
C to a battery (source). Cr = closed iff Cd = closed

^ _N [Nr = closed] where N iterates over all of C's
upstream neighbors2.

� A sink connection node Ck 2 CK , with values {open,
closed}, indicates whether there is a closed path from C
to a load (sink). Ck = closed iff Cd = closed ^_N [Nk =
closed] where N iterates over all of C's downstream
neighbors.

� A current presence node Cc 2 PC , with values {cur-
rentLo, currentHi}, indicates whether current is �owing
through C. Cc = currentHi iff Cr = closed and Ck =
closed.

For Cr and Ck, the disjunction is cascaded to prevent the
CPT from becoming too large. This same template applies to
all non�sensor components with a few minor modi�cations.
For example, a source can set Cr to be equivalent to Cd; a
sink can set Ck to be equivalent to Cd; a wire, which does
not accept commands, will always set Cm to cmdClosed (or
omit Cm from the model); and different component types may
have different types of failures.
Figure 3(b) depicts the part of the BN corresponding to a

current sensor S, which is attached to a node such as Cc of
a component C. The auto-generation algorithm creates two
nodes in the BN corresponding to S :
� A sensor health node Sh 2 HS , with values {healthy,
stuckCurrentLo, stuckCurrentHi}, indicates S's health
state. Sh has a CPT set according to S's failure prob-
ability as de�ned in the high�level speci�cation.

� A sensor reading node Ss 2 ES , with values {read-
CurrentLo, readCurrentHi}, indicates S's two-state dis-
cretized sensor reading. If Sh = healthy, then Ss indicates
closed iff Cc = currentHi. Otherwise, if Sh is stuckCur-
rentLo (stuckCurrentHi), then Ss indicates readCurrentLo
(readCurrentHi).

This same template applies to all sensor components (except
some more complicated sensors, which are beyond the scope
of this work) with a few minor modi�cations. For example,
different sensors are attached to different nodes in C: current
sensors are attached to Cc, voltage sensors are attached to Cr,
while touch sensors are attached to Cd.
After the BN generation step discussed above, there is a

BN pruning step. Pruning takes place based on information
about query nodes (HC and HS) as well as about evidence
nodes (EC and ES). A common pruning technique involves
removing leaf nodes that are not part of the evidence (EC

[ES) or the query (HC , HS , or HC [HS) [28]. In
Table V, some of the nodes have been pruned compared to
Figure 3(a). Speci�cally, nodes corresponding to Cr, Ck, and
Cc are pruned in Table V. In other words, for the relay shown
in Table V we have the following correspondence with the
non-pruned nodes in Figure 3(a): Ch = Health_rly, Cm =
Command_rly, Cd = Closed_rly. How can we determine to
prune Cr, Ck, and Cc (referring to Figure 3(a)), but not prune
Ss = Sensor_curSens and Sh = Health_curSens (referring to
Figure 3(b) and Table V)? Here, Ss = Sensor_curSens is a vari-

2A neighbor of C is upstream of C if it is located between C and a source
in the high-level speci�cation. A neighbor of C is downstream of C if it is
located between C and a sink in the high-level speci�cation.

8

able for which we assert evidence, while Sh = Health_curSens
is a query variable. Evidence and query variables are never
pruned. We only prune non-evidence, non-query variables
that are leaves, or which become leaves as a result of other
pruning. Consequently, all of C's nodes are pruned except the
following: Ch = Health_rly which is a query variable; Cm
= Command_rly which is an evidence variable; and Cd =
Closed_rly which is neither, but it cannot be pruned in this
case, because it has descendent that is an evidence variable,
namely the touch sensor variable Sensor_touchSens.
A few assumptions have been made in our BN-generation

approach. First, the approach assumes that a model can be
expressed as a DAG, since BNs are restricted to DAGs.
Second, we do not model dynamic behavior (as induced, for
example, by capacitors or inductors) in the BN at this stage.
Third, continuous sensor values are currently discretized into
a small (from two to four) number of states. The number of
states could relatively easily be increased or one could use
soft evidence, and we are in fact exploring more �ne-grained
discretizations in on-going research.
Our work is similar to existing work on constructing layered

Bayesian networks with Noisy-MAX CPTs [29], [30]. For
example, our component models are layered with a small
number of layers as illustrated in Figure 3. The justi�cation
for our and similar research is the following. Even though
existing WYSIWYG BN modeling tools, such as GENIE,
HUGIN, and SAMIAM, are user friendly and intuitive to use,
it still takes a substantial effort and expertise to create BNs
with hundreds or thousands of nodes. By introducing certain
assumptions, as re�ected in Section IV and Section V, the
effort and level of expertise required to develop large-scale
BNs is substantially reduced. While similar in spirit, there are
also some differences between our and related research [29],
[30]. For example, our auto-generated BNs do not have a �xed
number of layers. Instead, the number of layers is determined
by the how component models are combined according to the
structure of the system, see Table V.

VII. COMPILATION TO ARITHMETIC CIRCUIT

We now very brie�y summarize the compilation of Bayesian
networks to arithmetic circuits (ACs). Compilation is the third
stage in our approach to probabilistic model�based diagnosis.
Prior to compilation, we modify the BN's CPTs to store
pointers to AC nodes rather than numbers. For example, if 0.1
is stored in a CPT slot, then this number would be replaced
with a pointer to a single AC node (sink) labeled with 0.1.
Also prior to compilation, for each BN variable, we add a
new table over just that variable representing the values of
that variable. For example, variable X with values 0 and 1
would generate a table over X where the �rst slot contains a
pointer to an AC node (sink) labeled with �0 and the second
slot contains a pointer to an AC node (sink) labeled with �1.
After these two preprocessing steps, we run a slightly

modi�ed version of standard variable elimination (VE) [22],
[31]. The only difference occurs when the standard version
wishes to add or multiply two numbers. In each of these
situations, the standard algorithm will identify two slots A and

B in tables, add (multiply) the two numbers residing there, and
store the result back into some slot C of some table. When the
modi�ed algorithm looks into A and B, it �nds pointers to AC
nodes � and � rather than numbers. Instead of performing the
arithmetic operation, the modi�ed algorithm creates a new AC
node
 labeled with �+� or �*�, makes � and � children of
,
and stores a pointer to
 into C. Upon completion, standard
VE yields a single table containing a single slot containing a
number. The modi�ed algorithm will be the same, except that
rather than a number, we will have a pointer to an AC node,
which is the root of the compiled arithmetic circuit.
By exploiting local structure, this modi�ed VE algorithm

can yield an arithmetic circuit that is much smaller than
exponential in treewidth. If one pays attention to how the CPTs
of the Bayesian network representing EPSs are auto-generated
as described in Section VI, it is easy to see that many of
these CPTs will be small and deterministic. Arithmetic circuit
compilation has been shown to perform well on many such
BNs [26], [8], and the ADAPT BN is no exception.

VIII. EXPERIMENTAL RESULTS
We now discuss probabilistic inference experiments based

on an ADAPT BN with 503 discrete nodes and 579 edges;
related experiments can be found elsewhere [10], [11]. Prob-
abilistic inference is the fourth and �nal stage in our proba-
bilistic model�based diagnosis approach, and the only one that
needs to be performed on-line. In the ADAPT BN, the number
of states per node ranges from 2 to 4 with an average of 2.23
and a median of 2. Experimental data are divided into two sets:
real-world data from ADAPT and synthetic data automatically
generated from the ADAPT BN. For arithmetic circuit evalua-
tion, we used the ACE system to compile an ADAPT BN into
an arithmetic circuit and to evaluate that arithmetic circuit (see
http://reasoning.cs.ucla.edu/ace/ regarding ACE). The timing
measurements reported here were made on a PC with an Intel
4 1.83 GHz processor, 1 GB RAM, and Windows XP.

A. Experiments using Electrical Power System Data
The purpose of the experiment with real-world data was do

characterize the diagnostic quality of the ADAPT BN.
1) Design: For experimentation using real-world data, EPS

scenarios were generated using the ADAPT EPS at NASA
Ames (see https://dashlink.arc.nasa.gov/). These scenarios,
which are summarized in Table VI, cover component failures,
sensor failures, and both component and sensor failures. Each
scenario contains one, two, or three faults. In order to stress-
test our probabilistic reasoner, we did not restrict inserted
faults to discrete faults only. We also inserted continuous
faults, speci�cally faults of the form �stuck at x�, �noise
StdDev = x�, or �drift slope = x�, with x 2 R. Since our
probabilistic models do not contain continuous random vari-
ables, experiments with continuous faults cannot be diagnosed
exactly, but they are still of great interest and included in many
of the experiments reported on below.
In each scenario, ADAPT's initial state was as follows:

Circuit breakers were commanded closed; the corresponding
command variables in EC were clamped to cmdClose in

9

ID Faults Inserted in ADAPT Most Probable Diagnosis - Computed Match
304 Relay EY260 failed open Health_relay_ey260_cl = stuckOpen Yes
305 Relay feedback sensor ESH175 failed open Health_relay_ey175_cl = stuckOpen Yes
306 Circuit breaker ISH262 tripped Health_breaker_ey262_op = stuckOpen Yes
308 Voltage sensor E261 failed low Health_e261 = stuckVoltageLo Yes
309 Battery BATT1 voltage low Health_battery1 = stuckDisabled Yes
310 Inverter INV1 failed off Health_inv1 = stuckOpen Yes
311 Light sensor LT500 failed low Health_lt500 = stuckLow Yes
441 Relay EY160 stuck open Health_relay_ey160_cl = stuckOpen Partly

Big fan ST515 stuck at 0 RPM
442 Current sensor IT261 noise StdDev = 5 Health_it261 = stuckCurrentHi Partly

Relay feedback sensor ESH172 stuck at 0 Health_esh172 = stuckOpen
Current sensor IT140 stuck at 100

443 Current sensor IT281 drift slope = 2 Health_it281 = stuckCurrentHi Partly
Relay EY244 stuck closed Health_relay_ey244_cl = stuckClosed
Big fan ST516 stuck at -10 RPM

445 Voltage sensor E235 stuck at 0.3 Health_e235 = stuckVoltageLo Partly
Relay feedback sensor ESH344A stuck closed Health_relay_ey344_cl = stuckClosed
Inverter INV2 failed off Health_inv2 = stuckOpen

447 Voltage sensor E161 failed low Health_e161 = stuckVoltageLo Yes
Current sensor IT167 failed low Health_it167 = stuckCurrentLo

449 Voltage sensor E140 failed low Health_e140 = stuckVoltageLo Yes
Voltage sensor E161 failed low Health_e161 = stuckVoltageLo

450 Inverter INV1 failed off Health_inv1 = stuckOpen Partly
Big fan ST515 stuck at 600 RPM Health_fan1_speed_st515 = stuckMid

451 Relay EY171 failed open Health_relay_ey171_cl = stuckOpen Yes
Light sensor LT500 failed low Health_lt500 = stuckLow

452 Light bulb TE500 failed off Health_load170_bulb1 = stuckDisabled Partly
Temperature sensor TE501 failed low

TABLE VI
DIAGNOSTIC RESULTS FOR DIFFERENT FAULT SCENARIOS (WITH IDS 304, 305, . . .) FOR THE ELECTRICAL POWER SYSTEM TESTBED ADAPT.

evidence e. Relays were commanded open; the corresponding
relay variables in EC were clamped to cmdOpen in e. In this
initial state, all health nodes HE are deemed healthy when
computing MAP(HE), MAPMPE(HE), or MAPMLV(HE).
Continuous sensor readings were discretized before being used
for clamping the corresponding discrete random variables EC

in our ADAPT model. To keep the experimental protocol con-
sistent across scenarios, all inserted faults were persisted until
the end of the experiments. Diagnostic queries MAPMPE(HE),
for which results are presented in Table VI, were taken towards
the end of the scenarios.
2) Results: The results of the experiments with real-world

data from ADAPT are summarized in Table VI. Each scenario
is presented in one or more rows of the table, along with
faults inserted and the diagnostic results computed for queries
MAPMPE(HE , e). SinceHE contains 128 variables, re�ecting
the health status of 128 EPS components and sensors, we only
show the variables found to be non-healthy in Table VI.
3) Discussion: We see in Table VI that the different

diagnostic queries correctly diagnose a majority of these
component and sensor failure scenarios. In fact, there is an
exact match in 10 of the 16 scenarios. Even in cases where
there is not exact agreement, the diagnosis is either partly
matching or at least reasonable as we will see in the following.
We now discuss in more detail experiments for which an

exact match was not obtained. In Experiment 441 in Table
VI, both EY160 and ST515 were failed. However, since
EY160 is upstream of and controls the power to ST515,
the non-performance of ST515 is consistent with the single-
fault diagnosis computed by ACE, and in fact has a greater
probability than the double faults actually inserted. In other

words, the ST515 failure is masked by the EY160 failure.
Experiments 442 and 443 have continuous faults inserted

that are currently beyond the scope of our discrete probabilistic
model. In Experiment 442, there are no sensors on the affected
load, making it dif�cult to detect whether (i) the relay has
failed open, thus turning off the load, or (ii) the relay feedback
sensor has failed open. (Estimating how current varies for
varying loads is beyond the scope of our discrete model.)
So, if the relay failed open and turned off the attached load
there would be a drop in current being drawn from the battery
because there are fewer loads. But we are not discretizing the
current nodes in this way, sometimes making it dif�cult to
distinguish between relay failure and relay position sensor
failure.
In Experiment 443, 2 of the 3 faulty components were

correctly isolated in spite of continuous faults being inserted.
We now consider the one fault not caught: This fault was
inserted in ST516, a fan on Load bank 2, which was not
commanded on during this experiment. In other words, the fact
that ST516 was neither on nor commanded to be on made the
abnormally low sensor reading of -10 RPM harder to detect.
Another issue was the discretization in the BN, where the
faulty sensor reading of -10 is binned with the correct sensor
reading of 0.
In Experiment 445, 2 of the 3 faulty components were

correctly isolated, and the only dif�culty was due to the
continuous fault inserted.
In Experiment 450, two faults were inserted. When the

inverter failed, all downstream power was disrupted. So E165,
E167, ST165, LT500, IT167 go to low values. But ST515,
which should also have gone to a low value (because the fan

10

does not have power anymore and therefore is not spinning)
was stuck reading that its nominal value was around 600,
which lead to the partly correct diagnosis stuckMid; the
diagnosis Health_inv1 = stuckOpen is correct.
In Experiment 452, the light sensor LT500 falls from � 43

to � 32 towards the end of the experiment. This lower value
of � 32 strongly suggests that only two bulbs are on, in other
words that one bulb out of the three bulbs present had failed.
Temperature sensor TE500 started falling, indicating that the
bulb associated with that sensor was off. Then TE501 went to
0 while the light sensor reading remained the same, indicating
that sensor TE501 was likely also faulty. At the time of the
diagnosis, we have the following evidence: TE500 reads high
(however, its derivative is negative indicating that the bulb is
off � but that is not in the discrete model); TE501 reads low;
TE502 reads high; and LT500's sensor reading indicates that
two bulbs are lit. Thus, based on the evidence provided to our
model, it concludes a single fault of stuckDisabled for Bulb 1.
This diagnosis of Health_load170_bulb1 = stuckDisabled is a
direct result of the TE501 and LT500 readings. However,
what was inserted was two faults, for Bulb 0 and TE501.
This highlights two issues. First, the discretization does not
perfectly capture the signature of a bulb being off. Here, the
bulb is still warm from having previously been on, leading
the TE500 value to be above the threshold de�ned for on.
A second issue is that temporal aspects are not captured by
taking one time slice near end of run; in this case there are
temporal clues that point toward the correct diagnosis.
We note that there are several different but related phe-

nomena underlying the mismatches in Table VI. First, and
re�ecting the challenging nature of the fault scenarios that
can be created using ADAPT, continuous faults (as inserted
in experiments 441, 442, 443, 445, 448, and 450) are simply
beyond the scope of our currently discrete probabilistic model.
Second, there is no guarantee that the inserted faults are part
of a unique MPE for the given evidence for EE . There may be
multiple most probable explanations, or alternatively, m faults
may have been inserted, but one or more explanations with
m�1 faults or less turn out to be more probable. For example,
three faults may have been inserted into ADAPT, but there is
an explanation with two or one faults that has a higher or equal
posterior probability. Experiment 441 is a good example of
this effect. Third, there are faults that could have been detected
had more �ne-grained discretizations of random variables been
used. Experiments 442 and 452 provides an example of this,
since the failure of the temperature sensor TE501 was quite
dramatic and indicative of a sensor failure rather than only
a failure in the light bulb TE500. A fourth phenomenon is
that there might be too few, improperly placed, or inadequate
sensors to distinguish between different faults. Many of the
mismatches in these experiments could have been detected had
more appropriate sensing been used; a detailed discussion of
sensing issues including sensor placement is beyond the scope
of this article.
In summary, we have observed strong performance for

our probabilistic model in these controlled experiments with
ADAPT. We also note that a richer way of presenting di-
agnostic results would be helpful but non-trivial to provide.

Inference MPE Marginals
Time (ms) VE ACE JTP ACE
Minimum 19.30 0.2235 9.792 0.5721
Maximum 40.21 2.5411 65.34 5.9228
Median 19.81 0.2260 10.52 0.6006
Mean 20.13 0.2625 11.01 0.7854
St. Dev. 1.554 0.2028 4.101 0.6970

TABLE VII
RESULTS FOR DIFFERENT INFERENCE ALGORITHMS (VE, ACE, AND
CTP) WHEN COMPUTING MPES AND MARGINALS USING SYNTHETIC

DATA GENERATED FROM THE ADAPT BN.

Speci�cally, it would be useful to have access to all non-zero
explanations and their probabilities, not just the most probable
explanation but explanations with lower probabilities. These
experimental results also motivate several other future research
directions as discussed in Section IX.

B. Experiments using Simulated Data
The goal of the experiment with synthetic data was to

understand the performance of arithmetic circuit evaluation
versus alternative algorithms, variable elimination and join tree
propagation in particular, in the ADAPT setting.
1) Design: In order to better understand the performance

of arithmetic circuit evaluation (ACE), we performed com-
parative experiments with variable elimination (VE) and join
tree propagation (JTP). Simulated data was created by a
program that (i) generated a set of failure scenarios according
to the probabilities of the ADAPT BN's health nodes HE ,
and (ii) generated evidence by doing stochastic simulation for
each failure scenario. These evidence sets were then used as
evidence in the three different inference systems, and inference
was performed as presented below.
2) Results: Results from the experiments are summarized

in Table VII. Both MPEs and marginals were computed for
200 simulated evidence sets generated from the ADAPT BN.
3) Discussion: The main points, which are in line with

previous results on a smaller version of the ADAPT BN [32],
are as follows. On average, ACE is over 76 times faster than
VE when computing MPEs (see Table VII). In addition, ACE
can compute all marginals, supporting the probabilistic queries
BEL(H , e) (where H 2 HE) and MAPMLV(HE , e), using
just slightly more than twice the time used for computing
MPEs, or MAPMPE(HE , e). In other words, ACE computes
probabilities over 500 random variables more than 33 times
faster than VE computes probabilities for a single random
variable. The third inference system, JTP, can compute all
marginals in a manner similar to ACE. This overcomes VE's
limitation of computing probabilities for only one random
variable at a time. Compared to ACE, however, JTP is over
14 times slower. Finally, the standard deviation is substantially
smaller for ACE than for VE and JTP. The fast and predictable
inference times of ACE are both very important factors for
electrical power system health management in the real-time
setting of aerospace.
Parametric structure can also be exploited by VE and JTP

algorithms using more sophisticated representations of factors
[33, Chapter 13]. However, the overhead associated with

11

these techniques tends to outweigh the savings, unless the
parametric structure is very excessive. The main bene�t of
using arithmetic circuits is that the overhead is pushed into
the compilation phase and is factored out from the run-time
process. This particular issue is discussed in some theoretical
detail in [33], and there are also experimental results that
illustrate this point (see http://www.ics.uci.edu/~csp/uai2006/
tutorials#AdnanDarwiche).
That said, it is clear that our approach produces, for ADAPT,

a BN that all three systems perform well on. This illustrates
that the ADAPT BN was carefully generated, using our novel
modelling approach and auto-generation algorithm, in manner
that supports ef�cient inference using three quite different
exact inference algorithms.

IX. CONCLUSION AND FUTURE WORK

In this article, we have discussed an electrical power sys-
tem application of the probabilistic approach to model-based
diagnosis. Speci�cally, we have discussed the use of Bayesian
networks and arithmetic circuits to perform diagnosis and
health management in electrical power systems in aircraft and
spacecraft. We have emphasized two important issues that arise
when developing diagnostic applications in this area, namely
the challenges of modelling and real-time reasoning. The
modelling challenge concerns how to model a real-world EPS
by means of Bayesian networks. To address this challenge, we
developed a systematic way of representing electrical power
systems as Bayesian networks, supported by an easy-to-use
speci�cation language and an auto-generation algorithm. The
second challenge, that of real-time reasoning, is associated
with the embedding of algorithms that solve computationally
hard problems, including diagnostic reasoning, into hard real-
time systems [5], [6]. To address this challenge, we compiled
Bayesian networks into arithmetic circuits.
While compilation of Bayesian networks to arithmetic cir-

cuits is well-established [23], [25], [24], [26], [8], this article
further extends the reach of the technology by introducing a
high-level EPS speci�cation languages from which Bayesian
networks are auto-generated, and showing that the combined
approach gives strong experimental results on ADAPT, a real-
world EPS.
Future directions of work include the following. First, im-

proved modeling of and reasoning with continuous behavior,
using soft evidence, highly discretized, and/or continuous
random variables, along with representation using arithmetic
circuits for purposes of compilation, would be of great interest.
A second area of interest is improved modeling of dynamic,
transient, and cascading faults along with their integration
into the compilation approach. Third, it would be very useful
to extend the high-level speci�cation language and further
investigate sensing issues, including the questions of optimal
sensor placement as well as the number and types of sensors
needed to distinguish between different faults.

REFERENCES
[1] S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C. Lee,

O. J. Mengshoel, C. Neukom, D. Nishikawa, J. Ossenfort, A. Sweet,
S. Yentus, I. Roychoudhury, M. Daigle, G. Biswas, and X. Koutsoukos,

�Advanced diagnostics and prognostics testbed,� in Proceedings of
the 18th International Workshop on Principles of Diagnosis (DX-07),
(Nashville, TN), pp. 178�185, 2007.

[2] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[3] C.-F. Chien, S.-L. Chen, and Y.-S. Lin, �Using Bayesian network for
fault location on distribution feeder,� IEEE Transactions on Power
Delivery, vol. 17, pp. 785�793, 2002.

[4] Z. Yongli, H. Limin, and L. Jinling, �Bayesian network-based approach
for power system fault diagnosis,� IEEE Transactions on Power Deliv-
ery, vol. 21, pp. 634�639, 2006.

[5] D. Musliner, J. Hendler, A. K. Agrawala, E. Durfee, J. K. Strosnider, and
C. J. Paul, �The challenges of real-time AI,� IEEE Computer, vol. 28,
pp. 58�66, January 1995.

[6] O. J. Mengshoel, �Designing resource-bounded reasoners using
Bayesian networks: System health monitoring and diagnosis,� in Pro-
ceedings of the 18th International Workshop on Principles of Diagnosis
(DX-07), (Nashville, TN), pp. 330�337, 2007.

[7] A. Darwiche, �A differential approach to inference in Bayesian net-
works,� Journal of the ACM, vol. 50, no. 3, pp. 280�305, 2003.

[8] M. Chavira and A. Darwiche, �Compiling Bayesian networks using
variable elimination,� in Proceedings of the Twentieth International Joint
Conference on Arti�cial Intelligence (IJCAI-07), (Hyderabad, India),
pp. 2443�2449, 2007.

[9] R. M. Button and A. Chicatelli, �Electrical power system health man-
agement,� in Proceedings of the 1st International Forum on Integrated
System Health Engineering and Management in Aerospace, (Napa, CA),
2005.

[10] B. W. Ricks and O. J. Mengshoel, �The diagnostic challenge compe-
tition: Probabilistic techniques for fault diagnosis in electrical power
systems,� in Proc. of the 20th International Workshop on Principles of
Diagnosis (DX-09), (Stockholm, Sweden), 2009.

[11] O. J. Mengshoel, S. Poll, and T. Kurtoglu, �Developing large-scale
Bayesian networks by composition: Fault diagnosis of electrical power
systems in aircraft and spacecraft,� in Proc. of the IJCAI-09 Workshop
on Self-? and Autonomous Systems (SAS): Reasoning and Integration
Challenges, 2009.

[12] D. R. Bromaghim, J. R. Leduc, R. M. Salasovich, G. G. Spanjers, J. M.
Fife, M. J. Dulligan, J. H. Schilling, D. C. White, and L. K. Johnson,
�Review of the electric propulsion space experiment (ESEX) program,�
Journal of Propulsion and Power, vol. 18, no. 4, pp. 723�730, 2002.

[13] J. D. Park and A. Darwiche, �Complexity results and approximation
strategies for MAP explanations,� Journal of Arti�cial Intelligence
Research (JAIR), vol. 21, pp. 101�133, 2004.

[14] F. G. Cooper, �The computational complexity of probabilistic inference
using Bayesian belief networks,� Arti�cial Intelligence, vol. 42, pp. 393�
405, 1990.

[15] E. Shimony, �Finding MAPs for belief networks is NP-hard,� Arti�cial
Intelligence, vol. 68, pp. 399�410, 1994.

[16] S. Lauritzen and D. J. Spiegelhalter, �Local computations with probabil-
ities on graphical structures and their application to expert systems (with
discussion),� Journal of the Royal Statistical Society series B, vol. 50,
no. 2, pp. 157�224, 1988.

[17] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen, �Bayesian updating in
causal probabilistic networks by local computations,� SIAM Journal on
Computing, vol. 4, pp. 269�282, 1990.

[18] P. P. Shenoy, �A valuation-based language for expert systems,� Interna-
tional Journal of Approximate Reasoning, vol. 5, no. 3, pp. 383�411,
1989.

[19] J. Pearl, �A constraint - propagation approach to probabilistic reasoning,�
in Uncertainty in Arti�cial Intelligence (L. N. Kanal and J. F. Lemmer,
eds.), pp. 357�369, Amsterdam, Netherlands: Elsevier, 1986.

[20] A. Darwiche, �Recursive conditioning,� Arti�cial Intelligence, vol. 126,
no. 1-2, pp. 5�41, 2001.

[21] Z. Li and B. D'Ambrosio, �Ef�cient inference in Bayes nets as a com-
binatorial optimization problem,� International Journal of Approximate
Reasoning, vol. 11, no. 1, pp. 55�81, 1994.

[22] N. L. Zhang and D. Poole, �Exploiting causal independence in Bayesian
network inference,� Journal of Arti�cial Intelligence Research, vol. 5,
pp. 301�328, 1996.

[23] A. Darwiche, �A differential approach to inference in Bayesian net-
works,� in Proceedings of the 16th Conference in Uncertainty in
Arti�cial Intelligence (UAI), pp. 123�132, 2000.

[24] J. D. Park and A. Darwiche, �A differential semantics for jointree
algorithms,� Arti�cial Intelligence, vol. 156, no. 2, pp. 197�216, 2004.

12

[25] A. Darwiche, �A logical approach to factoring belief networks,� in
Proceedings of the Eight International Conference on Principles and
Knowledge Representation and Reasoning (KR-02), pp. 409�420, 2002.

[26] M. Chavira and A. Darwiche, �Compiling Bayesian networks with local
structure,� in Proceedings of the 19th International Joint Conference on
Arti�cial Intelligence (IJCAI), pp. 1306�1312, 2005.

[27] O. J. Mengshoel, A. Darwiche, and S. Uckun, �Sensor validation using
Bayesian networks,� in Proceedings of the 9th International Symposium
on Arti�cial Intelligence, Robotics, and Automation in Space (iSAIRAS-
08), 2008.

[28] R. D. Shachter, �Evaluating in�uence diagrams,� Operations Research,
vol. 34, no. 6, pp. 871�882, 1986.

[29] P. Kraaijeveld and M. Druzdzel, �GeNIeRate: an interactive generator of
diagnostic Bayesian network models,� in Proc. of the 16th International
Workshop on Principles of Diagnosis, pp. 175�180, 2005.

[30] K. Przytula, G. Isdale, and T.-S. Lu, �Collaborative development of large
Bayesian networks,� in Proc. of the 2006 IEEE Autotestcon, pp. 515�
522, 2006.

[31] R. Dechter, �Bucket elimination: A unifying framework for reasoning,�
Arti�cial Intelligence, vol. 113, no. 1-2, pp. 41�85, 1999.

[32] O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S. Poll, and
S. Uckun, �Diagnosing faults in electrical power systems of spacecraft
and aircraft,� in Proceedings of the Twentieth Innovative Applications
of Arti�cial Intelligence Conference (IAAI-08), (Chicago, IL), pp. 1699�
1705, 2008.

[33] A. Darwiche, Modeling and Reasoning with Bayesian Networks. Cam-
bridge, UK: Cambridge University Press, 2009.

