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What are Bayesian networks and why are their 
applications growing across all fields?

by Adnan Darwiche

Bayesian 
Networks

problems that span across domains 
such as computer vision, the Web, and 
medical diagnosis.

So what are Bayesian networks, 
and why are they widely used, either 
directly or indirectly, across so many 
fields and application areas? Intui-
tively, Bayesian networks provide a 
systematic and localized method for 
structuring probabilistic informa-
tion about a situation into a coher-
ent whole. They also provide a suite 
of algorithms that allow one to auto-
matically derive many implications of 
this information, which can form the 
basis for important conclusions and 
decisions about the corresponding 
situation (for example, computing the 
overall reliability of a system, finding 
the most likely message that was sent 
across a noisy channel, identifying the 
most likely users that would respond 
to an ad, restoring a noisy image, 
mapping genes onto a chromosome, 
among others). Technically speaking, 
a Bayesian network is a compact rep-
resentation of a probability distribu-
tion that is usually too large to be han-
dled using traditional specifications 
from probability and statistics such 
as tables and equations. For example, 
Bayesian networks with thousands of 
variables have been constructed and 
reasoned about successfully, allowing 
one to efficiently represent and reason 
about probability distributions whose 
size is exponential in that number of 
variables (for example, in genetic link-

Bayesian networks have been receiving considerable 
attention over the last few decades from scientists 
and engineers across a number of fields, including 
computer science, cognitive science, statistics, and 
philosophy. In computer science, the development 
of Bayesian networks was driven by research in 
artificial intelligence, which aimed at producing a 
practical framework for commonsense reasoning.29 
Statisticians have also contributed to the development 
of Bayesian networks, where they are studied under 
the broader umbrella of probabilistic graphical 
models.5,11 

Interestingly enough, a number of other more 
specialized fields, such as genetic linkage analysis, 
speech recognition, information theory and reliability 
analysis, have developed representations that can be 
thought of as concrete instantiations or restricted 
cases of Bayesian networks. For example, pedigrees 
and their associated phenotype/genotype information, 
reliability block diagrams, and hidden Markov models 
(used in many fields including speech recognition 
and bioinformatics) can all be viewed as Bayesian 
networks. Canonical instances of Bayesian networks 
also exist and have been used to solve standard 

 key insights
 � �Bayesian networks provide a 

systematic and localized method for 
structuring probabilistic information 
about a situation into a coherent  
whole, and are supported by a suite  
of inference algorithms.

 � �Bayesian networks have been 
established as a ubiquitous tool 
for modeling and reasoning under 
uncertainty.

 � �Many applications can be reduced 
to Bayesian network inference,  
allowing one to capitalize on Bayesian 
network algorithms instead of having  
to invent specialized algorithms for  
each new application.
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age analysis,12 low-level vision,34 and 
networks synthesized from relational 
models4).

For a concrete feel of Bayesian net-
works, Figure 1 depicts a small net-
work over six binary variables. Every 
Bayesian network has two compo-
nents: a directed acyclic graph (called 
a structure), and a set of conditional 
probability tables (CPTs). The nodes 
of a structure correspond to the vari-
ables of interest, and its edges have 
a formal interpretation in terms of 
probabilistic independence. We will 
discuss this interpretation later, but 
suffice to say here that in many prac-
tical applications, one can often inter-
pret network edges as signifying direct 
causal influences. A Bayesian network 
must include a CPT for each variable, 
which quantifies the relationship be-
tween that variable and its parents in 
the network. For example, the CPT for 
variable A specifies the conditional 
probability distribution of A given its 
parents F and T. According to this CPT, 
the probability of A = true given F = 
true and T = false is Pr(A=true|F = 
true; T = false) = .9900 and is called 
a network parameter.a

A main feature of Bayesian net-
works is their guaranteed consistency 
and completeness as there is one and 
only one probability distribution that 
satisfies the constraints of a Bayesian 
network. For example, the network in 
Figure 1 induces a unique probability 
distribution over the 64 instantiations 
of its variables. This distribution pro-
vides enough information to attribute 
a probability to every event that can be 
expressed using the variables appear-
ing in this network, for example, the 
probability of alarm tampering given 
no smoke and a report of people leav-
ing the building.

Another feature of Bayesian net-
works is the existence of efficient 
algorithms for computing such 
probabilities without having to explic-

a	 Bayesian networks may contain continuous 
variables, yet our discussion here is restricted 
to the discrete case.
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itly generate the underlying probability 
distribution (which would be compu-
tationally infeasible for many interest-
ing networks). These algorithms, to be 
discussed in detail later, apply to any 
Bayesian network, regardless of its to-
pology. Yet, the efficiency of these algo-
rithms—and their accuracy in the case 
of approximation algorithms—may be 
quite sensitive to this topology and the 
specific query at hand. Interestingly 
enough, in domains such as genetics, 
reliability analysis, and information 
theory, scientists have developed algo-
rithms that are indeed subsumed by 
the more general algorithms for Bayes-
ian networks. In fact, one of the main 
objectives of this article is to raise 
awareness about these connections. 
The more general objective, however, 
is to provide an accessible introduc-
tion to Bayesian networks, which al-
lows scientists and engineers to more 
easily identify problems that can be re-
duced to Bayesian network inference, 
putting them in a position where they 

can capitalize on the vast progress that 
has been made in this area over the last 
few decades.

Causality and Independence
We will start by unveiling the central 
insight behind Bayesian networks that 
allows them to compactly represent 
very large distributions. Consider Fig-
ure 1 and the associated CPTs. Each 
probability that appears in one of 
these CPTs does specify a constraint 
that must be satisfied by the distribu-
tion induced by the network. For ex-
ample, the distribution must assign 
the probability .01 to having smoke 
without fire, Pr(S = true|F = false), 
since this is specified by the CPT of 
variable S. These constraints, however, 
are not sufficient to pin down a unique 
probability distribution. So what addi-
tional information is being appealed 
to here?

The answer lies in the structure of 
a Bayesian network, which specifies 
additional constraints in the form of 

probabilistic conditional independen-
cies. In particular, every variable in the 
structure is assumed to become inde-
pendent of its non-descendants once 
its parents are known. In Figure 1, 
variable L is assumed to become inde-
pendent of its non-descendants T, F, 
S once its parent A is known. In other 
words, once the value of variable A is 
known, the probability distribution of 
variable L will no longer change due to 
new information about variables T, F 
and S. Another example from Figure 
1: variable A is assumed to become 
independent of its non-descendant 
S once its parents F and T are known. 
These independence constraints are 
known as the Markovian assumptions 
of a Bayesian network. Together with 
the numerical constraints specified by 
CPTs, they are satisfied by exactly one 
probability distribution.

Does this mean that every time 
a Bayesian network is constructed, 
one must verify the conditional inde-
pendencies asserted by its structure? 
This really depends on the construc-
tion method. I will discuss three main 
methods in the section entitled “How 
Are Bayesian Networks Constructed?” 
that include subjective construction, 
synthesis from other specifications, 
and learning from data. The first 
method is the least systematic, but 
even in that case, one rarely thinks 
about conditional independence 
when constructing networks. Instead, 
one thinks about causality, adding the 
edge X → Y whenever X is perceived to 
be a direct cause of Y. This leads to a 
causal structure in which the Markov-
ian assumptions read: each variable 
becomes independent of its non-ef-
fects once its direct causes are known. 
The ubiquity of Bayesian networks 
stems from the fact that people are 
quite good at identifying direct causes 
from a given set of variables, and at de-
ciding whether the set of variables con-
tains all of the relevant direct causes. 
This ability is all that one needs for 
constructing a causal structure.

The distribution induced by a 
Bayesian network typically satisfies 
additional independencies, beyond 
the Markovian ones discussed above. 
Moreover, all such independencies 
can be identified efficiently using a 
graphical test known as d-separation.29 
According to this test, variables X and 

Figure 1. A Bayesian network with some of its conditional probability tables (CPTs).

Fire (F)

Alarm (A)
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Fire Smoke θs|f

true true .90

false true .01

Fire Tampering Alarm θa|f,t

true true true .5000

true false true .9900

false true true .8500

false false true .0001

Figure 2. A hidden Markov model (HMM) and its corresponding dynamic Bayesian  
network (DBN).
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Y are guaranteed to be independent 
given variables Z if every path between 
X and Y is blocked by Z. Intuitively, a 
path is blocked when it cannot be used 
to justify a dependence between X and 
Y in light of our knowledge of Z. For an 
example, consider the path α : S ← F 
→ A ← T in Figure 1 and suppose we 
know the alarm has triggered (that is, 
we know the value of variable A). This 
path can then be used to establish a 
dependence between variables S and T 
as follows. First, observing smoke in-
creases the likelihood of fire since fire 
is a direct cause of smoke according to 
path α. Moreover, the increased likeli-
hood of fire explains away tampering 
as a cause of the alarm, leading to a 
decrease in the probability of tamper-
ing (fire and tampering are two com-
peting causes of the alarm according 
to path α). Hence, the path could be 
used to establish a dependence be-
tween S and T in this case. Variables S 
and T are therefore not independent 
given A due to the presence of this 
unblocked path. One can verify, how-
ever, that this path cannot be used to 
establish a dependence between S and 
T in case we know the value of vari-
able F instead of A. Hence, the path is 
blocked by F.

Even though we appealed to the no-
tion of causality when describing the 
d-separation test, one can phrase and 
prove the test without any appeal to 
causality—we only need the Markov-
ian assumptions. The full d-separation 
test gives the precise conditions under 
which a path between two variables is 
blocked, guaranteeing independence 
whenever all paths are blocked. The 
test can be implemented in time lin-
ear in the Bayesian network structure, 
without the need to explicitly enumer-
ate paths as suggested previously.

The d-separation test can be used 
to directly derive results that have 
been proven for specialized probabi-
listic models used in a variety of fields. 
One example is hidden Markov mod-
els (HMMs), which are used to model 
dynamic systems whose states are 
not observable, yet their outputs are. 
One uses an HMM when interested 
in making inferences about these 
changing states, given the sequence 
of outputs they generate. HMMs are 
widely used in applications requiring 
temporal pattern recognition, includ-

ing speech, handwriting, and gesture 
recognition; and various problems in 
bioinformatics.31 Figure 2a depicts an 
HMM, which models a system with 
three states (a, b, c) and three outputs 
(x, y, z). The figure depicts the possible 
transitions between the system states, 
which need to be annotated by their 
probabilities. For example, state b can 
transition to states a or c, with a 30% 
chance of transitioning to state c. Each 
state can emit a number of observable 
outputs, again, with some probabili-
ties. In this example, state b can emit 
any of the three outputs, with output z 
having a 15% chance of being emitted 
by this state.

This HMM can be represented by 
the Bayesian network in Figure 2b.32 
Here, variable St has three values a, b, 
c and represents the system state at 
time t, while variable Ot has the val-
ues x, y, z and represents the system 
output at time t. Using d-separation 
on this network, one can immediately 
derive the characteristic property of 
HMMs: once the state of the system at 
time t is known, its states and outputs 
at times > t become independent of its 
states and outputs at times < t.

We also note the network in Figure 
2b is one of the simplest instances 
of what is known as dynamic Bayes-
ian networks (DBNs).9 A number of 
extensions have been considered for 
HMMs, which can be viewed as more 
structured instances of DBNs. When 
proposing such extensions, however, 
one has the obligation of offering a 

corresponding algorithmic toolbox 
for inference. By viewing these extend-
ed HMMs as instances of Bayesian 
networks, however, one immediately 
inherits the corresponding Bayesian 
network algorithms for this purpose.

How are Bayesian Networks 
Constructed?
One can identify three main methods 
for constructing Bayesian networks.8 
According to the first method, which 
is largely subjective, one reflects on 
their own knowledge or the knowledge 
of others (typically, perceptions about 
causal influences) and then captures 
them into a Bayesian network. The 
network in Figure 1 is an example of 
this construction method. The net-
work structure of Figure 3 depicts 
another example, yet the parameters 
of this network can be obtained from 
more formal sources, such as popula-
tion statistics and test specifications. 
According to this network, we have a 
population that is 55% males and 45% 
females, whose members can suffer 
from a medical condition C that is 
more likely to occur in males. More-
over, two diagnostic tests are available 
for detecting this condition, T1 and T2, 
with the second test being more effec-
tive on females. The CPTs of this net-
work also reveal that the two tests are 
equally effective on males.

The second method for construct-
ing Bayesian networks is based on au-
tomatically synthesizing them from 
some other type of formal knowledge. 

Figure 3. A Bayesian network that models a population, a medical condition, and two  
corresponding tests. 

Sex (S)
C = yes means that 
the condition C is 
present, and Ti = +ve 
means the result of 
test Ti is positive.

Test (T1) Test (T2)

Condition (C)
S θs

male .55

S C T2 θt2|s,c

male yes +ve .80

male no +ve .20

female yes +ve .95

female no +ve .05

S C θc|s

male yes .05

female yes .01

C T1 θt1|c

yes +ve .80

no +ve .20
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For example, in many applications 
that involve system analysis, such as 
reliability and diagnosis, one can syn-
thesize a Bayesian network automati-
cally from a formal system design. 
Figure 4 depicts a reliability block dia-
gram (RBD) used in reliability analysis. 
The RBD depicts system components 
and the dependencies between their 
availability. For example, Processor 1 
requires either of the fans for its avail-
ability, and each of the fans requires 
power for its availability. The goal here 
is to compute the overall reliability 
of the system (probability of its avail-
ability) given the reliabilities of each 

of its components. Figure 4 shows also 
how one may systematically convert 
each block in an RBD into a Bayes-
ian network fragment, while Figure 5 
depicts the corresponding Bayesian 
network constructed according to this 
method. The CPTs of this figure can be 
completely constructed based on the 
reliabilities of individual components 
(not shown here) and the semantics of 
the transformation method.8

The third method for constructing 
Bayesian networks is based on learn-
ing them from data, such as medical 
records or student admissions data. 
Consider Figure 3 and the data set de-

picted in the table here as an example.

Sex S Condition C Test T1 Test T2

male no ? –ve

male ? –ve +ve

female yes +ve ?

… … … …

Each row of the table corresponds to 
an individual and what we know about 
them. One can use such a data set to 
learn the network parameters given its 
structure, or learn both the structure 
and its parameters. Learning parame-
ters only is an easier task computation-
ally. Moreover, learning either struc-
ture or parameters always becomes 
easier when the data set is complete—
that is, the value of each variable is 
known in each data record.

Since learning is an inductive pro-
cess, one needs a principle of induc-
tion to guide the learning process. The 
two main principles for this purpose 
lead to the maximum likelihood and 
Bayesian approaches to learning (see, 
for example, the work of 5,8,17,22,27). The 
maximum likelihood approach favors 
Bayesian networks that maximize the 
probability of observing the given data 
set. The Bayesian approach on the oth-
er hand uses the likelihood principle 
in addition to some prior information 
which encodes preferences on Bayes-
ian networks.

Suppose we are only learning net-
work parameters. The Bayesian ap-
proach allows one to put a prior distri-
bution on the possible values of each 
network parameter. This prior distri-
bution, together with the data set, in-
duces a posterior distribution on the 
values of that parameter. One can then 
use this posterior to pick a value for 
that parameter (for example, the dis-
tribution mean). Alternatively, one can 
decide to avoid committing to a fixed 
parameter value, while computing an-
swers to queries by averaging over all 
possible parameter values according to 
their posterior probabilities.

It is critical to observe here that the 
term “Bayesian network” does not nec-
essarily imply a commitment to the 
Bayesian approach for learning net-
works. This term was coined by Judea 
Pearl28 to emphasize three aspects: 
the often subjective nature of the in-
formation used in constructing these 
networks; the reliance on Bayes condi-

Figure 4. A reliability block diagram (top), with a systematic method for mapping its blocks 
into Bayesian network fragments (bottom).
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Figure 5. A Bayesian network generated automatically from a reliability block diagram. 
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tioning when reasoning with Bayesian 
networks; and the ability to perform 
causal as well as evidential reasoning 
on these networks, which is a distinc-
tion underscored by Thomas Bayes.1

These learning approaches are 
meant to induce Bayesian networks 
that are meaningful independently of 
the tasks for which they are intend-
ed. Consider for example a network 
which models a set of diseases and a 
corresponding set of symptoms. This 
network may be used to perform di-
agnostic tasks, by inferring the most 
likely disease given a set of observed 
symptoms. It may also be used for pre-
diction tasks, where we infer the most 
likely symptom given some diseases. 
If we concern ourselves with only one 
of these tasks, say diagnostics, we can 
use a more specialized induction prin-
ciple that optimizes the diagnostic 
performance of the learned network. 
In machine learning jargon, we say 
we are learning a discriminative model 
in this case, as it is often used to dis-
criminate among patients according 
to a predefined set of classes (for ex-
ample, has cancer or not). This is to be 
contrasted with learning a generative 
model, which is to be evaluated based 
on its ability to generate the given data 
set, regardless of how it performs on 
any particular task.

We finally note that it is not un-
common to assume some canoni-
cal network structure when learning 
Bayesian networks from data, in or-
der to reduce the problem of learning 
structure and parameters to the eas-
ier problem of learning parameters 
only. Perhaps the most common such 
structure is what is known as naïve 
Bayes: C → A1, … , C →  An, where C is 
known as the class variable and vari-
ables A1,…, An are known as attributes. 
This structure has proven to be very 
popular and effective in a number of 
applications, in particular classifica-
tion and clustering.14

Canonical Bayesian Networks
A number of canonical Bayesian net-
works have been proposed for model-
ing some well-known problems in a 
variety of fields. For example, genetic 
linkage analysis is concerned with 
mapping genes onto a chromosome, 
utilizing the fact that the distance be-
tween genes is inversely proportional 

to the extent to which genes are linked 
(two genes are linked when it is more 
likely than not that their states are 
passed together from a single grand-
parent, instead of one state from each 
grandparent). To assess the likelihood 
of a linkage hypothesis, one uses a 
pedigree with some information about 
the genotype and phenotype of asso-
ciated individuals. Such information 
can be systematically translated into a 
Bayesian network (see Figure 6), where 

the likelihood of a linkage hypothesis 
corresponds to computing the prob-
ability of an event with respect to this 
network.12 By casting this problem in 
terms of inference on Bayesian net-
works, and by capitalizing on the state-
of-the-art algorithms for this purpose, 
the scalability of genetic linkage analy-
sis was advanced considerably, lead-
ing to the most efficient algorithms for 
exact linkage computations on general 
pedigrees (for example, the SUPER-

Figure 6. A Bayesian network generated automatically from a pedigree that contains three 
individuals. 

Variables GPij and GMij represent the states of gene j for individual i, which are inherited from 
the father and mother of i, respectively. Variable Pij represents the phenotype determined by 
gene j of individual i. Variables SPij and SMij are meant to model recombination events, which 
occur when the states of two genes inherited from a parent do not come from a single grand-
parent. The CPTs of these variables contain parameters which encode linkage hypotheses.
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Figure 7. A Bayesian network that models a noisy channel with input (U1,…,U4, X1,…,X3) and 
output (Y1,…,Y7). 

Bits X1,…,X3 are redundant 
coding bits and their CPTs 
capture the coding protocol. 
The CPTs of variables Yi 
capture the noise model. 
This network can be used to 
recover the most likely sent 
message U1,…,U4 given a 
received message Y1,…,Y7. 
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LINK program initiated by Fishelson 
and Geiger12).

Canonical models also exist for 
modeling the problem of passing in-
formation over a noisy channel, where 
the goal here is to compute the most 
likely message sent over such a chan-
nel, given the channel output.13 For 
example, Figure 7 depicts a Bayesian 
network corresponding to a situation 
where seven bits are sent across a noisy 
channel (four original bits and three 
redundant ones).

Another class of canonical Bayes-
ian networks has been used in various 
problems relating to vision, including 

image restoration and stereo vision. 
Figure 8 depicts two examples of imag-
es that were restored by posing a query 
to a corresponding Bayesian network. 
Figure 9a depicts the Bayesian network 
in this case, where we have one node Pi 
for each pixel i in the image—the val-
ues pi of Pi represent the gray levels of 
pixel i. For each pair of neighboring 
pixels, i and j, a child node Cij is added 
with a CPT that imposes a smoothness 
constraint between the pixels. That is, 
the probability Pr(Cij = true| Pi = pi, Pj 
= pj) specified by the CPT decreases as 
the difference in gray levels | pi – pj | 
increases. The only additional infor-

mation needed to completely specify 
the Bayesian network is a CPT for each 
node Pi, which provides a prior distri-
bution on the gray levels of each pixel 
i. These CPTs are chosen to give the 
highest probability to the gray level vi 
appearing in the input image, with the 
prior probability Pr (Pi = pi) decreasing 
as the difference | pi – vi | increases. By 
simply adjusting the domain and the 
prior probabilities of nodes Pi, while 
asserting an appropriate degree of 
smoothness using variables Cij, one 
can use this model to perform other 
“pixel-labeling” tasks such as stereo 
vision, photomontage, and binary 
segmentation.34 The formulation of 
these tasks as inference on Bayesian 
networks is not only elegant, but has 
also proven to be very powerful. For 
example, such inference is the basis 
for almost all top-performing stereo 
methods.34

Canonical Bayesian network mod-
els have also been emerging in recent 
years in the context of other important 
applications, such as the analysis of 
documents, and text. Many of these 
networks are based on topic models 
that view a document as arising from 
a set of unknown topics, and provide 
a framework for reasoning about the 
connections between words, docu-
ments, and underlying topics.2,33 Topic 
models have been applied to many 
kinds of documents, including email, 
scientific abstracts, and newspaper 
archives, allowing one to utilize infer-
ence on Bayesian networks to tackle 
tasks such as measuring document 
similarity, discovering emergent top-
ics, and browsing through documents 
based on their underlying content in-
stead of traditional indexing schemes.

What Can One Do with a 
Bayesian Network?
Similar to any modeling language, the 
value of Bayesian networks is mainly 
tied to the class of queries they support.

Consider the network in Figure 3 for 
an example and the following queries: 
Given a male that came out positive 
on both tests, what is the probability 
he has the condition? Which group of 
the population is most likely to test 
negative on both tests? Considering 
the network in Figure 5: What is the 
overall reliability of the given system? 
What is the most likely configuration 

Figure 8. Images from left to right: input, restored (using Bayesian network inference)  
and original.

Figure 9. Modeling low-level vision problems using two types of graphical models:  
Bayesian networks and MRFs.

Pi PiCij Pj Pj

(a) Bayesian network (b) Markov random field (MRF)
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of the two fans given that the system is 
unavailable? What single component 
can be replaced to increase the over-
all system reliability by 5%? Consider 
Figure 7: What is the most likely chan-
nel input that would yield the channel 
output 1001100? These are example 
questions that would be of interest in 
these application domains, and they 
are questions that can be answered 
systematically using three canonical 
Bayesian network queries.8 A main 
benefit of using Bayesian networks in 
these application areas is the ability to 
capitalize on existing algorithms for 
these queries, instead of having to in-
vent a corresponding specialized algo-
rithm for each application area.

Probability of Evidence. This query 
computes the probability Pr(e), where 
e is an assignment of values to some 
variables E in the Bayesian network—
e is called a variable instantiation or 
evidence in this case. For example, in 
Figure 3, we can compute the prob-
ability that an individual will come out 
positive on both tests using the proba-
bility-of-evidence query Pr(T1 = +ve, T2 
= +ve). We can also use the same query 
to compute the overall reliability of the 
system in Figure 5, Pr(S = avail). The 
decision version of this query is known 
to be PP-complete. It is also related to 
another common query, which asks 
for computing the probability Pr(x|e) 
for each network variable X and each 
of its values x. This is known as the 
node marginals query.

Most Probable Explanation (MPE). 
Given an instantiation e of some vari-
ables E in the Bayesian network, this 
query identifies the instantiation q 
of variables Q = E that maximizes the 
probability Pr (q|e). In Figure 3, we 
can use an MPE query to find the most 
likely group, dissected by sex and con-
dition, that will yield negative results 
for both tests, by taking the evidence e 
to be T1 = –ve; T2 = –ve and Q = {S, C}. We 
can also use an MPE query to restore im-
ages as shown in Figures 8 and 9. Here, 
we take the evidence e to be Cij = true 
for all i, j and Q to include Pi for all i. The 
decision version of MPE is known to 
be NP-complete and is therefore easier 
than the probability-of-evidence query 
under standard assumptions of com-
plexity theory.

Maximum a Posteriori Hypothesis 
(MAP). Given an instantiation e of some 

Figure 10. An arithmetic circuit for the Bayesian network B ← A → C. Inputs labeled 
with θ variables correspond to network parameters, while those labeled with λ variables 
capture evidence. 

Probability-of-evidence, node-
marginals, and MPE queries can all be 
answered using linear-time traversal 
algorithms of the arithmetic circuit.
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Figure 11. Two networks that represent the same set of conditional independencies.
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Figure 12. Extending Bayesian networks to account for interventions.
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variables E in the Bayesian network, 
this query identifies the instantiation 
q of some variables Q ⊆ E that maxi-
mizes the probability Pr (q|e). Note the 
subtle difference with MPE queries: 
Q is a subset of variables E instead of 
being all of these variables. MAP is a 
more difficult problem than MPE since 
its decision version is known to be 
NPPP -complete, while MPE is only NP-
complete. As an example of this query, 
consider Figure 5 and suppose we are 
interested in the most likely configu-
ration of the two fans given that the 
system is unavailable. We can find this 
configuration using a MAP query with 
the evidence e being S = un_avail and 
Q = {F1, F2}.

One can use these canonical que-
ries to implement more sophisticated 
queries, such as the ones demanded 
by sensitivity analysis. This is a mode 
of analysis that allows one to check the 
robustness of conclusions drawn from 
Bayesian networks against perturba-
tions in network parameters (for exam-
ple, see Darwiche8). Sensitivity analy-
sis can also be used for automatically 
revising these parameters in order to 
satisfy some global constraints that are 
imposed by experts, or derived from 
the formal specifications of tasks un-
der consideration. Suppose for exam-
ple that we compute the overall system 
reliability using the network in Figure 5 
and it turns out to be 95%. Suppose we 
wish this reliability to be no less than 
99%: Pr (S = avail) ≥ 99%. Sensitivity 
analysis can be used to identify com-
ponents whose reliability is relevant to 
achieving this objective, together with 
the new reliabilities they must attain 
for this purpose. Note that component 
reliabilities correspond to network pa-
rameters in this example.

How Well Do Bayesian 
Networks Scale?
Algorithms for inference on Bayes-
ian networks fall into two main cat-
egories: exact and approximate al-
gorithms. Exact algorithms make no 
compromises on accuracy and tend 
to be more expensive computation-
ally. Much emphasis was placed on 
exact inference in the 1980s and early 
1990s, leading to two classes of al-
gorithms based on the concepts of 
elimination10,24,36 and conditioning.6,29 
In their pure form, the complexity of 

these algorithms is exponential only 
in the network treewidth, which is a 
graph-theoretic parameter that mea-
sures the resemblance of a graph to a 
tree structure. For example, the tree-
width of trees is ≤ 1 and, hence, infer-
ence on such tree networks is quite ef-
ficient. As the network becomes more 
and more connected, its treewidth in-
creases and so does the complexity of 
inference. For example, the network 
in Figure 9 has a treewidth of n as-
suming an underlying image with n × 
n pixels. This is usually too high, even 
for modest-size images, to make these 
networks accessible to treewidth-
based algorithms.

The pure form of elimination and 
conditioning algorithms are called 
structure-based as their complexity is 
sensitive only to the network structure. 
In particular, these algorithms will 
consume the same computational re-
sources when applied to two networks 
that share the same structure, regard-
less of what probabilities are used to 
annotate them. It has long been ob-
served that inference algorithms can 
be made more efficient if they also 
exploit the structure exhibited by net-
work parameters, including determin-
ism (0 and 1 parameters) and context-
specific independence (independence 
that follows from network parameters 
and is not detectable by d-separation3). 
Yet, algorithms for exploiting paramet-
ric structure have only matured in the 
last few years, allowing one to perform 
exact inference on some networks 
whose treewidth is quite large (see sur-
vey8). Networks that correspond to ge-
netic linkage analysis (Figure 6) tend 
to fall in this category12 and so do net-
works that are synthesized from rela-
tional models.4

One of the key techniques for ex-
ploiting parametric structure is based 
on compiling Bayesian networks into 
arithmetic circuits, allowing one to re-
duce probabilistic inference to a pro-
cess of circuit propagation;7 see Figure 
10. The size of these compiled circuits 
is determined by both the network to-
pology and its parameters, leading to 
relatively compact circuits in some 
situations where the parametric struc-
ture is excessive, even if the network 
treewidth is quite high (for example, 
Chavira et al.4). Reducing inference to 
circuit propagation makes it also easi-

er to support applications that require 
real-time inference, as in certain diag-
nosis applications.25

Around the mid-1990s, a strong be-
lief started forming in the inference 
community that the performance of 
exact algorithms must be exponential 
in treewidth—this is before parametric 
structure was being exploited effective-
ly. At about the same time, methods for 
automatically constructing Bayesian 
networks started maturing to the point 
of yielding networks whose treewidth 
is too large to be handled efficiently by 
exact algorithms at the time. This has 
led to a surge of interest in approxi-
mate inference algorithms, which are 
generally independent of treewidth. 
Today, approximate inference algo-
rithms are the only choice for networks 
that have a high treewidth, yet lack suf-
ficient parametric structure—the net-
works used in low-level vision appli-
cations tend to have this property. An 
influential class of approximate infer-
ence algorithms is based on reducing 
the inference problem to a constrained 
optimization problem, with loopy be-
lief propagation and its generalizations 
as one key example.29,35 Loopy belief 
propagation is actually the common 
algorithm of choice today for handling 
networks with very high treewidth, 
such as the ones arising in vision or 
channel coding applications. Algo-
rithms based on stochastic sampling 
have also been pursued for a long time 
and are especially important for infer-
ence in Bayesian networks that contain 
continuous variables.8,15,22 Variational 
methods provide another important 
class of approximation techniques19,22 
and are key for inference on some 
Bayesian networks, such as the ones 
arising in topic models.2

Causality, Again
One of the most intriguing aspects of 
Bayesian networks is the role they play 
in formalizing causality. To illustrate 
this point, consider Figure 11, which 
depicts two Bayesian network struc-
tures over the same set of variables. 
One can verify using d-separation 
that these structures represent the 
same set of conditional independen-
cies. As such, they are representation-
ally equivalent as they can induce the 
same set of probability distributions 
when augmented with appropriate 
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CPTs. Note, however, that the network 
in Figure 11a is consistent with com-
mon perceptions of causal influences, 
yet the one in Figure 11b violates these 
perceptions due to edges A → E and A 
→ B. Is there any significance to this 
discrepancy? In other words, is there 
some additional information that can 
be extracted from one of these net-
works, which cannot be extracted from 
the other? The answer is yes according 
to a body of work on causal Bayesian 
networks, which is concerned with a 
key question:16,30 how can one charac-
terize the additional information cap-
tured by a causal Bayesian network 
and, hence, what queries can be an-
swered only by Bayesian networks that 
have a causal interpretation? 

According to this body of work, only 
causal networks are capable of updat-
ing probabilities based on interven-
tions, as opposed to observations. To 
give an example of this difference, con-
sider Figure 11 again and suppose that 
we want to compute the probabilities 
of various events given that someone 
has tampered with the alarm, causing 
it to go off. This is an intervention, to be 
contrasted with an observation, where 
we know the alarm went off but with-
out knowing the reason. In a causal 
network, interventions are handled as 
shown in Figure 12a: by simply adding a 
new direct cause for the alarm variable. 
This local fix, however, cannot be ap-
plied to the non-causal network in Fig-
ure 11b. If we do, we obtain the network 
in Figure 12b, which asserts the follow-
ing (using d-separation): if we observe 
the alarm did go off, then knowing it 
was not tampered with is irrelevant to 
whether a burglary or an earthquake 
took place. This independence, which 
is counterintuitive, does not hold in 
the causal structure and represents one 
example of what may go wrong when 
using a non-causal structure to answer 
questions about interventions.

Causal structures can also be used 
to answer more sophisticated queries, 
such as counterfactuals. For example, 
the probability of “the patient would 
have been alive had he not taken the 
drug” requires reasoning about in-
terventions (and sometimes might 
even require functional information, 
beyond standard causal Bayesian net-
works30). Other types of queries in-
clude ones for distinguishing between 

direct and indirect causes and for de-
termining the sufficiency and neces-
sity of causation.30 Learning causal 
Bayesian networks has also been 
treated,16,30 although not as extensive-
ly as the learning of general Bayesian 
networks.

Beyond Bayesian Networks
Viewed as graphical representations 
of probability distributions, Bayesian 
networks are only one of several other 
models for this purpose. In fact, in 
areas such as statistics (and now also 
in AI), Bayesian networks are studied 
under the broader class of probabi-
listic graphical models, which include 
other instances such as Markov net-
works and chain graphs (for example, 
Edwards11 and Koller and Friedman22). 
Markov networks correspond to undi-
rected graphs, and chain graphs have 
both directed and undirected edges. 
Both of these models can be inter-
preted as compact specifications of 
probability distributions, yet their se-
mantics tend to be less transparent 
than Bayesian networks. For example, 
both of these models include numeric 
annotations, yet one cannot interpret 
these numbers directly as probabili-
ties even though the whole model can 
be interpreted as a probability dis-
tribution. Figure 9b depicts a special 
case of a Markov network, known as a 
Markov random field (MRF), which is 
typically used in vision applications. 
Comparing this model to the Bayes-
ian network in Figure 9a, one finds 
that smoothness constraints between 
two adjacent pixels Pi and Pj can now 
be represented by a single undirected 
edge Pi – Pj instead of two directed edg-
es and an additional node, Pi → Cij ← 
Pj. In this model, each edge is associ-
ated with a function f (Pi, Pj) over the 
states of adjacent pixels. The values of 
this function can be used to capture 
the smoothness constraint for these 
pixels, yet do not admit a direct proba-
bilistic interpretation.

Bayesian networks are meant to 
model probabilistic beliefs, yet the 
interest in such beliefs is typically mo-
tivated by the need to make rational 
decisions. Since such decisions are 
often contemplated in the presence 
of uncertainty, one needs to know 
the likelihood and utilities associated 
with various decision outcomes. A 
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classical example in this regard con-
cerns an oil wildcatter that needs to 
decide whether or not to drill for oil at 
a specific site, with an additional de-
cision on whether to request seismic 
soundings that may help determine 
the geological structure of the site. 
Each of these decisions has an asso-
ciated cost. Moreover, their potential 
outcomes have associated utilities and 
probabilities. The need to integrate 
these probabilistic beliefs, utilities 
and decisions has lead to the develop-
ment of Influence Diagrams, which are 
extensions of Bayesian networks that 
include three types of nodes: chance, 
utility, and decision.18 Influence dia-
grams, also called decision networks, 
come with a toolbox that allows one to 
compute optimal strategies: ones that 
are guaranteed to produce the highest 
expected utility.20,22

Bayesian networks have also been 
extended in ways that are meant to fa-
cilitate their construction. In many do-
mains, such networks tend to exhibit 
regular and repetitive structures, with 
the regularities manifesting in both 
CPTs and network structure. In these 
situations, one can synthesize large 
Bayesian networks automatically from 
compact high-level specifications. A 
number of concrete specifications 
have been proposed for this purpose. 
For example, template-based ap-
proaches require two components for 
specifying a Bayesian network: a set of 
network templates whose instantia-
tion leads to network segments, and 
a specification of which segments to 
generate and how to connect them to-
gether.22,23 Other approaches include 
languages based on first-order logic, 
allowing one to reason about situa-
tions with varying sets of objects (for 
example, Milch et al.26).

The Challenges Ahead
Bayesian networks have been estab-
lished as a ubiquitous tool for model-
ing and reasoning under uncertainty. 
The reach of Bayesian networks, how-
ever, is tied to their effectiveness in 
representing the phenomena of inter-
est, and the scalability of their infer-
ence algorithms. To further improve 
the scope and ubiquity of Bayesian net-
works, one therefore needs sustained 
progress on both fronts. The main 
challenges on the first front lie in in-

creasing the expressive power of Bayes-
ian network representations, while 
maintaining the key features that have 
proven necessary for their success: 
modularity of representation, trans-
parent graphical nature, and efficiency 
of inference. On the algorithmic side, 
there is a need to better understand the 
theoretical and practical limits of exact 
inference algorithms based on the two 
dimensions that characterize Bayesian 
networks: their topology and paramet-
ric structure. 

With regard to approximate infer-
ence algorithms, the main challenges 
seem to be in better understanding 
their behavior to the point where we 
can characterize conditions under 
which they are expected to yield good 
approximations, and provide tools for 
practically trading off approximation 
quality with computational resources. 
Pushing the limits of inference algo-
rithms will immediately push the en-
velope with regard to learning Bayes-
ian networks since many learning 
algorithms rely heavily on inference. 
One cannot emphasize enough the im-
portance of this line of work, given the 
extent to which data is available today, 
and the abundance of applications 
that require the learning of networks 
from such data.	
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