
BIOINFORMATICS Vol. 00 no. 00 2010
Pages 1–9

Optimal Algorithms for Haplotype Assembly From
Whole-Genome Sequence Data
Dan He ∗, Arthur Choi, Knot Pipatsrisawat, Adnan Darwiche, Eleazar Eskin
Dept. of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Haplotype inference is an important step for many types
of analyses of genetic variation in the human genome. Traditional
approaches for obtaining haplotypes involve collecting genotype infor-
mation from a population of individuals and then applying a haplotype
inference algorithm. The development of high-throughput sequencing
technologies allows for an alternative strategy to obtain haploty-
pes by combining sequence fragments. The problem of “haplotype
assembly” is the problem of assembling the two haplotypes for a chro-
mosome given the collection of such fragments, or reads, and their
locations in the haplotypes which are pre-determined by mapping the
reads to a reference genome. Errors in reads significantly increase
the difficulty of the problem and it has been shown that the problem
is NP-hard even for reads of length 2. Existing greedy and stocha-
stic algorithms are not guaranteed to find the optimal solutions for the
haplotype assembly problem.
Results: In this paper, we proposed a dynamic programming algo-
rithm, which is able to assemble the haplotypes optimally with time
complexity O(m × 2k × n), where m is the number of reads, k is
the length of the longest read and n is the total number of SNPs
in the haplotypes. We also reduce the haplotype assembly problem
into the MaxSAT problem which can often be solved optimally even
when k is large. Taking advantage of the efficiency of our algorithm,
we perform simulation experiments demonstrating that the assembly
of haplotypes using reads of length typical of the current sequen-
cing technologies is not practical. However, we demonstrate that the
combination of this approach and the traditional haplotype phasing
approaches allow us to practically construct haplotypes containing
both common and rare variants.
Contact: danhe@cs.ucla.edu

1 INTRODUCTION
Obtaining haplotypes, or the sequence of alleles on each chromo-
some, is an important step for many types of analyses of genetic
variation in the human genomes. In particular, haplotype inference
is required for the application of many imputation algorithms (Mar-
chini et al., 2007) which are now widely applied in the analysis of
genome-wide association studies.

The standard approach for obtaining haplotype information invol-
ves collecting genotype data from a population of individuals. Geno-
type data contains information on the set of alleles at each locus, but

∗to whom correspondence should be addressed

lacks information on which chromosome a particular allele occurs
on. Computational methods are then applied to these genotype data
to infer the haplotypes (Stephens et al., 2001; Halperin and Eskin,
2004; Browning and Browning, 2008). These methods take advan-
tage of the fact that alleles at neighboring loci in the genomes are
correlated or are “in linkage disequilibrium” (LD), as well as the fact
that in any given region, only a few common haplotypes account for
the majority of the genetic variations in the population. Because of
their reliance on LD, these methods have difficulty inferring haplo-
types with rare variants and have no ability to infer haplotypes for
alleles that are unique to an individual.

Recently, the development of high-throughput sequencing tech-
nology has enabled an alternative strategy to obtain haplotypes.
Since each sequence read is from a single chromosome, if a read
covers two variant sites, all of the alleles present in the read must be
from the same haplotype. Using this insight, it is possible to assem-
ble the two haplotypes for a chromosome from the collection of such
reads by joining reads which share alleles at common variants. The
problem is referred to as “haplotype assembly” (Lancia et al., 2001),
which is challenging in the following two aspects:

• Reads are sampled from either of the two haplotypes and
no information is given about which one they come from.
The reads need to be separated for the two haplotypes in the
assembly process.

• Errors in reads significantly increase the difficulty of the pro-
blem and it has been shown that the problem is NP-hard even
for reads of length 2 (Lancia et al., 2001; Cilibrasi et al., 2005).

A simple greedy heuristic method (Levy et al., 2007) (which we
call the Greedy algorithm), concatenates the reads with minimum
conflicts and is fast but not very accurate when reads contain
errors. Other stochastic algorithms, such as HASH (Bansal et al.,
2008), which is a Markov Chain Monte Carlo (MCMC) algorithm,
and HapCut (Bansal and Bafna, 2008), which is a combinatorial
approach, have been shown to be much more accurate than the
Greedy algorithm on the HuRef diploid genome sequence (Levy
et al., 2007).

However, both HASH and HapCut algorithms use stochastic stra-
tegies and therefore are not guaranteed to find optimal solutions
for the haplotype assembly problem. In this paper, we propose a
dynamic programming algorithm, which is able to assemble the
haplotypes optimally with time complexity O(m× 2k × n), where
m is the number of reads, k is the length of the longest read and



He et al

n is the total number of heterozygous sites in the haplotypes. Since
this time complexity is exponential in k, we reduce the problem to
the maximum satisfiability (MaxSAT) problem for cases where k is
large. MaxSAT conversion is a well-known strategy for many com-
putational biology problem such as SNP Tagging (Choi et al., 2008).
The converted MaxSAT problem can often be solved optimally in a
reasonable amount of time with a MaxSAT solver. Our experiments
show that the MaxSAT approach can solve 99.98% instances of the
converted haplotype assembly problem optimally. We also show for
the first time that the current best-known solution is only 1.1% from
the optimal solution and our solution is the best result that has yet
been achieved.

Taking advantage of the efficiency and optimality of our method,
we are able to perform simulation experiments to evalute the feasibi-
lity of assembling haplotypes using sequence reads with the length
typical of the current high-throughput technologies. The Current
sequencing technologies are able to collect paired-end reads where
sequences of two segments are obtained separated by an approxi-
mate distance (insert length). Our experiments show that the insert
length and in particular the variability in the insert length play a
crucial role in our ability to assemble haplotypes. Using data from
HapMap (International HapMap Consortium, 2007) we demon-
strate that using current high-throughput sequencing technologies,
the assembly of reads into haplotypes is impractical. However, we
show that combining haplotype assembly from sequencing with tra-
ditional approaches for inferring haplotypes using genotypes can
effectively recover haplotypes for both common and rare alleles.

2 RELATED WORK
The haplotype assembly problem was first introduced by Lan-
cia et al. (2001). They show that the problem is computationally
challenging when reads contain errors since the reads can not be
partitioned perfectly into two disjoint sets. Therefore, various com-
binatorial objective functions have been proposed (Lancia et al.,
2001; Lippert et al., 2002) to define the best reconstruction of
haplotypes such as minimum fragment removal (MFR), minimum
error correction (MEC), minimum SNP removal (MSR), minimum
implicit SNP removal (MISR), minimum implicit fragment removal
(MIFR). Out of these objective functions, MEC which is the number
of conflicts between the sequence reads and the constructed haplo-
types, is the most difficult one to optimize. The haplotype assembly
problem with MEC as the object function is NP-hard even for gap-
less reads of length 2, while polynomial algorithms exist for solving
the problem with MFR and MSR as the objective function (Lippert
et al., 2002; Cilibrasi et al., 2005). Several heuristic and stochastic
methods (Panconesi and Sozio, 2004; Wang et al., 2005; Levy et al.,
2007; Bansal et al., 2008; Bansal and Bafna, 2008) have been propo-
sed to optimize MEC for gapped reads. In this paper we also focus
on minimizing MEC. Therefore, the “haplotype assembly” problem
can be defined as following: given a set of reads which may contain
errors, reconstruct the pair of haplotypes by partitioning the reads to
either haplotype such that the Minimum Error Correction (MEC) is
minimized.

The Greedy heuristic algorithm (Levy et al., 2007), which con-
catenates the reads with minimum conflicts, is able to construct
optimal haplotypes very quickly if the reads are error-free. When
there are errors in the reads, the Greedy algorithm usually outputs
much worse results than the optimal solution. HASH (Bansal et al.,

2008) and HapCut (Bansal and Bafna, 2008) algorithms are both
based on the idea of building a graph from the read matrix where
each row corresponds to a read and each column corresponds to a
position of the haplotype. In the graph, each column is a node and
an edge between two nodes is created if there is a read spanning the
corresponding two columns. The weights of the edges are determi-
ned by the number of reads that are consistent with the haplotypes
minus the number of reads that are in conflict with the haplotypes in
the two columns. The HASH algorithm uses graph cut computati-
ons to construct the Markov Chain used for sampling the haplotype
space. HapCut uses Max-Cut computations in an associated graph
to greedily move towards the optimal MEC solution. Both HASH
and HapCut algorithms obtain much more accurate haplotypes than
the Greedy algorithm. Since convergence of Markov Chain is slow,
HapCut is much faster than HASH with almost the same accuracy.

Although HASH and HapCut achieve reasonably good results,
they are stochastic and therefore can not guarantee optimal soluti-
ons. In this paper we propose a dynamic programming algorithm,
which is able to find the optimal solution with time complexity
O(m× 2k × n) for gapless reads, where m is the number of reads,
k is the length of the longest read and n is the total number of SNPs
in the haplotypes. The time complexity implies that this algorithm
is most effective when k is relatively small. Since only heterozy-
gous sites in the reads are considered for assembly, and the number
of heterozygous sites, or variants, is small, and these sites are often
far from one another, most of the reads only cover a small number
of heterozygous sites. The dynamic programming algorithm is com-
putationally practical for up to reads of length 15, where length is
defined as the number of heterozygous sites covered by the read. We
show later that in the HuRef data, more than 90% of the reads are
of length less than 15, which indicates the dynamic programming
algorithm is practical for the majority of the data. In our expe-
riments, the run time of the dynamic programming algorithm we
propose here is comparable to that of the HapCut algorithm. Further-
more, to handle reads of length greater than 15, we propose to take
advantage of recent advances in the field of logical reasoning, by
modeling the haplotype problem as a MaxSAT problem. We show
that modern MaxSAT solvers are powerful enough to solve such
haplotype problems optimally in practice.

3 METHODS
3.1 The Haplotype Assembly Problem
We will follow the notation by Bansal and Bafna (2008) for the
haplotype assembly problem. Given a reference genome sequence
and the set of reads containing sequence from both chromosome,
after aligning all the reads to the reference genome (Li et al.,
2008), the homozygous sites (columns in the alignment with iden-
tical values) are discarded since they are not informative. The
heterozygous sites (columns in the alignment with different values)
correspond to alleles which differ between chromosomes and they
are labelled as 0 or 1 arbitrarily. A matrix X of size m × n can
be built from the alignment, where m is the number of reads and
n is the number of heterozygous sites. The i-th read is described
as a ternary string Xi ∈ {0, 1,−}n, where ‘−’ indicates a gap,
namely that the allele is not covered by the fragment (again follo-
wing the notation of Bansal and Bafna (2008) for clarity). The start
position and end position of a read are the first and last positions
in the corresponding row that are not ‘−’, respectively. Therefore

2



Haplotype Assembly From Whole-Genome Sequence Data

the ‘−’s in the head and tail of each row will not be considered as
part of the corresponding read. However, there can be ‘−’s inside
each read which correspond to either missing data for single reads
or gaps connecting a pair of single reads (called paired end reads).
Reads without “−” are called gapless reads; otherwise they are cal-
led gapped reads. Assuming a read’s end position is j, start position
is i, the length of the read is defined as j − i + 1. We also assume
all the reads have already been correctly aligned to the reference
genome by some mapper, which may not be true since the mapper
may introduce mapping errors and the reads may come from repeat-
rich regions. However, the mapping process is out of the scope of
this paper and we thus do not evaluate the effects of mapping errors
on the quality of our haplotype assembly solution.

The haplotypes can be represented as an unordered pair of binary
strings H = (h1, h2), each of length n. Since all the sites are
heterozygous, h2 is the bit-wise complement of h1. An example
of the read matrix is shown in Table 1. As we can see in this exam-
ple, each read corresponds to one row where ‘−’ indicates missing
information. Reads often contain errors. For example, if we only
consider reads 1,2,3, we can partition them perfectly into two sets
({read1, read3}, {read2}) and re-construct the haplotypes as H=(h1

= {0000}, h2 = {1111}) by assigning reads 1 and 3 to h1 and assi-
gning read2 to h2. However, read4 is in conflict with this partition
and there is no perfect partition for reads 1,2,3,4.

Therefore, in the presence of errors, we need to reconstruct the
haplotypes such that some objective function is minimized. The
objective function we use is Minimum Error Correction (MEC),
which is the minimum number of changes, or corrections, that
need to be made in the read matrix such that the resulting matrix
admits a perfect bi-partition, where each corrected read maps to
either haplotype perfectly. Alternatively speaking, for any pair of
complementary haplotypes, the set of reads can be partitioned into
two subsets which satisfy the following property: If both subsets of
the reads are mapped to the two haplotypes at their corresponding
intervals indicated by their starting positions and lengths, where
one subset is mapped to only one of the haplotypes, the number
of errors, or mismatches for the mapping is minimized. This mini-
mum number of errors is the MEC score of the reads for the pair
of haplotypes. In our example, if we only consider reads 1,2,3,4,
we can change read4 from (101) to (001) such that now we can
obtain a perfect bi-partition ({read1, read3, read4}, {read2}) with
reconstructed haplotypes H ′ = (h1 = {00001}, h2 = {11110}). The
number of changes we made is obviously 1. Therefore the “haplo-
type assembly” problem is identical to finding a pair of haplotypes
H such that the MEC score of the reads in the read matrix is mini-
mized. For example, the MEC score for reads 1,2,3,4 is 1 and the
corresponding optimal pair of haplotypes is H ′. This example is
very simple, however, in reality, the number of reads can be very
large and it has been shown that the “haplotype assembly” problem
is NP-hard even for gapless reads of length 2.

Notice that the optimal haplotypes which minimize the MEC
score may not be exactly the same as the real haplotypes. However,
our objective function for the haplotype assembly problem makes
the maximal parsimony assumption common in many computa-
tional biology problems (Fitch, 1977; Gusfield, 2003). Therefore
the optimal solution is the most biologically meaningful solution
for our problem. Another factor that may affect the quality of the
reconstructed haplotypes is sequencing error. If the errors are consi-
stent across reads, the reconstructed haplotypes may maintain these

Table 1. An example of read matrix which consists of 10 reads spanning 13
positions.

reads 0 1 2 3 4 5 6 7 8 9 10 11 12
read1 0 0 - - - - - - - - - - -
read2 - - 1 1 - - - - - - - - -
read3 0 0 0 0 - - - - - - - - -
read4 - - 1 0 1 - - - - - - - -
read5 - - 0 - - 0 - - - - - - -
read6 - - - 0 - - - - - - 1 1 -
read7 - - - - 0 0 0 - - - - - -
read8 - - - - 0 1 1 0 - - - - -
read9 - - - - - - - - 1 1 - - -

read10 - - - - - - - 1 1 0 - - 0

errors and may be incorrect. However, the MEC criteria attempts
to discover haplotypes that minimizes the number of errors in the
reconstruction. This is because if the errors are contained in only the
minority of the reads, by minimizing the possible errors, the recon-
structed haplotypes can still capture the reads that were sequenced
correctly and thus avoid the sequencing errors.

3.2 Dynamic Programming Algorithm
To obtain the optimal solution for the haplotype assembly problem,
a naive approach is to enumerate all binary strings, each of which
represents a possible haplotype, and then assign the reads to each
pair of possible haplotypes to minimize the conflicts with the reads.
Given the length of haplotypes as n, the number of reads as m, this
naive approach requires O(m × 2n) complexity and is therefore
infeasible for large n. However, the problem can be solved opti-
mally using a dynamic programming algorithm as we show here.
The basic idea of the dynamic programming algorithm is to store
the optimal MEC for partial haplotypes (the prefixes for full-length
haplotypes) ending with every possible length k binary strings. Then
the algorithm extends the partial haplotypes by one bit repeatedly
until full-length haplotypes are obtained.

We define r as a length k binary string and s(i, r) as the MEC
score for partial haplotypes starting at position 0 and ending at posi-
tion i + k − 1 with suffix r where the partial haplotypes are the
prefixes of full length haplotypes. s(i, r) is obtained by considering
only the reads whose starting positions are no greater than i and it
solves a subproblem of the full length haplotype assembly where
all reads are considered. We build a dynamic programming matrix
and at each position i we store s(i, r) for all r. The best MEC is
the minimum s(n − k, r) over all r, where n is the full length of
the haplotypes. Given the definition of MEC (minimum number of
changes (flips) needed), we can initialize s(0, r) by considering the
reads that start at position 0, and for each read compute the number
of mismatches between the read and r and the read and the comple-
ment of r. The partial haplotypes at position i can be obtained by
extending the partial haplotypes at position i − 1 with either a 0 or
1. s(i, r1) can be computed from s(i − 1, r2) and the newly intro-
duced errors between r1 and all reads starting at position i, where
the length k − 1 suffix of r2 is the same as the length k − 1 prefix
of r1. The recursion is illustrated in the following formula:

s(i, r) = min
b=0,1

(s(i− 1, (b, r[0, k − 2])) + h(i, r)) (1)

where b is a binary bit of either 0 or 1, r[0, k − 2] is the length
k − 1 prefix of r, (b, r[0, k − 2]) is a length-k binary string gene-
rated by concatenating b with r[0, k − 2], h(i, r) is the minimum
of the total number of disagreements between r or the complement

3



He et al

of r and all reads starting at position i. Notice that, for h(i, r), we
consider both r and the complement of r because each read can be
assigned to either the current haplotype or its complement (depen-
ding on which assignment produces smaller disagreements). The
assignments producing the minimum disagreements are then selec-
ted. Each ‘−’ matches both 0 and 1, so a mismatch only happens
between non-‘−’ symbols.

Starting from the solution which leads to a minimal value of s(n−
k, r) over all r, we can trace back the dynamic programming matrix
to re-construct the haplotypes that minimize the MEC score. The
time complexity of the dynamic programming algorithm is O(m×
2k × n), where m is the number of reads, k is the length of the
longest read and n is the total number of SNPs in the haplotypes.
Here, for illustrative purpose, we assume all reads are of length k.
In reality the reads are of different length and the time complexity of
the dynamic programming algorithm becomes O(m× 2kmax × n),
where kmax is the maximal number of alleles contained among all
reads.

We also observe that we can split up the reads into sets where
there is no read that spans any two sets. We call such a set a
block. The set of reads can thus be partitioned into many blocks.
Since no read spans any two blocks, which means those blocks are
independent, we can reconstruct haplotypes for each block in par-
allel using the dynamic programming algorithm developed above
and then concatenate the solutions for each block to construct the
complete haplotypes.

Next we show a simple example for the dynamic programming
algorithm. We take read1-read4 from Figure 1 as an example. We
need to order them according to their start positions.

1. At position i = 0: We have read1 and read3, k = length(read3)
= 4. Therefore we compute s(i, r) for all length k = 4 binary
strings r, using only read1 and read3:
s(0, 0000) = h(0, 0000) = 0,

s(0, 0001) = h(0, 0001) = 1,

s(0, 0010) = h(0, 0010) = 1,

...,

s(0, 1111) = h(0, 1111) = 0.

2. At position i = 1: There is no read starting at position 1.

3. At position i = 2: We have read2 and read4 and
k = length(read4) = 3. Again, we compute s(i, r) for all length
k = 3 binary strings r, using only read2 and read4. Since
we do not have read starting at position 1, to simplify the
computation, in Formula 1, s(i − 1, (b, r[0, k − 2])) becomes
s(i− 2, (b1, b2, r[0, k − 2]) where b1 ∈{0,1} and b2 ∈ {0,1}
are single binary bits. Therefore we have:
s(2, 000)=min(s(0, 0000)+h(2,000), s(0, 0100)+h(2,000), s(0, 1100)+h(2,000),

s(0, 1000)+h(2,000))=1,

s(2, 001)=min(s(0, 0000)+h(2,001), s(0, 0100)+h(2,001), s(0, 1100)+h(2,001),

s(0, 1000)+h(2,001))=1,

...,

s(2, 111)=min(s(0, 0011)+h(2,111), s(0, 0111)+h(2,111), s(0, 1111)+h(2,111),

s(0, 1011)+h(2,111))=1.

Therefore, the optimal MEC is min(s(2, r)) for all length k = 3
binary strings r and the optimal MEC is 1.

Notice that when we trace back to obtain the optimal haplotypes,
it is not necessarily the case that there is only one pair of optimal

haplotypes. In the above example, s(2, 000)=1 and it is from s(0,
0000). By tracing back from s(2, 000) we get the optimal haplo-
type pair ({00000}, {11111}). We also have s(2, 001)=1 and it is
from s(0, 0000). By tracking back from s(2, 001) we get the optimal
haplotype pair ({00001, 11110}). Both of the two pairs have opti-
mal MEC of 1. When there are multiple optimal solutions, data on
multiple individuals may be used to infer the most likely haplotypes
for each ambiguous individual.

3.3 MaxSAT Conversion for Haplotype Assembly
So far we only discussed a dynamic programming algorithm for
single reads. Consider reads 5, 6 and 10 in Figure 1. In each of
these reads, there are two continuous strings connected by “−”,
which indicates missing information. These reads are called paired
end reads and are generated by modern sequencing technologies.
The problem becomes much more complicated when paired end
reads are considered since paired end reads usually span a long
fragment, which can be as long as a few hundred positions. Alt-
hough paired-end read can be considered as a special case of a
single read, the dynamic programming algorithm introduced above
becomes impractical, since we need to enumerate all positions the
paired end read covers. As concluded above, the time complexity of
the dynamic programming algorithm is O(m × 2kmax × n) where
kmax is the maximum number of alleles contained among all reads.
When paired end reads are considered, kmax could be as large as a
few hundred, making the dynamic programming approach imprac-
tical. Even single reads can be too long to enumerate some of the
positions. We set a threshold for kmax such that the enumeration
of all length kmax binary strings is computational feasible. We call
the single reads and the paired end reads of length greater than the
threshold long reads and the other reads as short reads.

We solve the haplotype assembly problem when long reads are
also considered by conversion to MaxSAT. The maximum satisfia-
bility problem (MaxSAT) is an optimization version of the well-
known Boolean satisfiability problem (SAT) (Biere et al., 2009).
Given a set of clauses (a clause is a disjunction of boolean literals),
the MaxSAT problem asks for a complete assignment of all varia-
bles that maximizes the number of clauses the assignment satisfies.
For example, consider the following set of four clauses:

(x1), (¬x1 ∨ x2), (¬x1 ∨ x3), (¬x2 ∨ ¬x3)

The assignment x1 = false, x2 = false, x3 = false satisfies
three clauses and is optimal. In this work, we consider a variant of
MaxSAT known as partial MaxSAT. Partial MaxSAT allows some
clauses to be labelled as hard—i.e., their satisfiability is mandatory
in any solution. The objective of the problem is to find an assi-
gnment that satisfies all hard clauses and satisfies the most number
of non-hard (i.e, soft) clauses. For more discussion on MaxSAT and
its variations, please see (Li and Manyá, 2009).

In our conversion of the haplotype assembly problem to partial
MaxSAT, we define the following boolean variables:

• hi, 0 ≤ i < n, represents the binary symbol at position i in the
haplotype to be constructed.

• rj , 0 ≤ j < m, represents the assignment of read j to a haplo-
type. The value rj = 0 indicates that read j is assigned to the
considered haplotype, while the value rj = 1 indicates that the
read is assigned the complement haplotype.

4



Haplotype Assembly From Whole-Genome Sequence Data

1 3 5 7 9 11 13 15 17 19 21

(a) Number of Reads for Haplotypes of Each Chromosome

chromosome

nu
m

be
r 

of
 r

ea
ds

0e
+

00
2e

+
05

4e
+

05
6e

+
05 long reads

short reads

1 3 5 7 9 11 13 15 17 19 21

(b) Length of Haplotypes for Each Chromosome

chromosome

le
ng

th
 o

f h
ap

lo
ty

pe
s

0
50

00
0

10
00

00
15

00
00

Fig. 1. (a) The number of short reads, all reads and the length of haplotypes for each chromosome. The threshold for short reads is 15. (b) The length of
haplotypes is the number of heterozygous sites in each chromosome.

• eij , 0 ≤ i < n, 0 ≤ j < m, represents whether a correction
is needed for position i of read j with respect to the considered
haplotype. The value eij = 1 indicates that a correction is
needed, while the value eij = 0 indicates that no correction is
needed at that position.

Given these variables, we can define the set of clauses that describes
the relationship between hi, rj , and eij . These clauses essentially
specify that there is an error whenever the value at position i of read
j does not match with the value at position i of the haplotype that
the read is assigned to. Let read[i][j] represent the value at position
i of read j (i.e., the value of cell[i][j] of the read matrix). We can
formally define a set of clauses for each non-“−” entry in the read
matrix as follows:

(hi ⇔ ¬rj ⇔ eij), if read[i][j] is 0,

(hi ⇔ rj ⇔ eij), if read[i][j] is 1.

Note that ⇔ is the logical equivalence operator and that (x ⇔ y ⇔
z) is a shorthand notation for the clauses (x ∨ y ∨ z), (¬x ∨ ¬y ∨
z), (¬x∨y∨¬z), (x∨¬y∨¬z). The above clause definition can be
understood as follows. If read[i][j] is 0, then the error eij is defined
to be hi ⇔ ¬rj . That is, there should be an error if (and only if) (i)
hi is 1 and the read is assigned to the considered haplotype or (ii) hi

is 0 and the read is assigned to the complement haplotype. The case
when read[i][j] is 1 can be understood in a similar way. As these
clauses describe how the errors are calculated, they should be hard
clauses in our MaxSAT problem (they should not be violated by any
solution).

Since we would like to find an assignment that minimizes error,
we add to our MaxSAT problem the unit clause (¬eij) for each non-
“−” position in the read matrix. Every unit clause that an assignment
falsifies (i.e., every error introduced) will incur a penalty of 1 to that
assignment. These unit clauses are soft clauses that might be falsi-
fied by the optimal solution. The optimal solution to this MaxSAT
problem is simply any assignment that respects the error calculation
rules and introduces the least amount of error.

This concludes our conversion of the haplotype assembly problem
to partial MaxSAT problem. We may use any partial MaxSAT solver
to solve the resulting problem. In this work, we used the solvers cal-
led Clone (Pipatsrisawat et al., 2008) and WBO (Manquinho et al.,
2009) to solve the resulting MaxSAT problems. We will report the
experimental results in the next section.

4 RESULTS
4.1 HuRef Experiments
We first examine the performance of the dynamic programming
algorithm on the filtered HuRef data from (Levy et al., 2007) over
all 22 chromosomes and directly compare our method to previous
approaches (Bansal and Bafna, 2008). The data consists of 32 mil-
lion DNA fragments generated by Sanger sequencing and contains
a total of 1.85 million heterozygous variants for the 22 chromoso-
mes. We show the number of short reads, all reads and number of
heterozygous sites for each chromosome where the threshold for
short reads is 15 in Figure 1. As we can see, the number of reads
for each chromosome is very large. More than 90% of the reads are
short reads. Haplotypes for each chromosome are also very long,
making the haplotype assembly problem computationally intensive.
The average number of reads that span each heterozygous site is
between 6 and 7.

The whole-genome sequence data consists of many disconnected
blocks where no read spans the boundary of two blocks. Therefore
we can split the sequence data independently into many blocks and
then solve the haplotype assembly problem for each block. The glo-
bal MEC score is the sum of the scores from each block and the
optimal haplotypes are the concatenation of the haplotypes from
each block. We show the read matrix for the first block of chro-
mosome 22 in Figure 2 as an example, where we have around 2300
reads spanning a block of length around 400.

4.1.1 HuRef Experiments on Only Short Reads We first compare
the results of the dynamic programming algorithm with the results
of Greedy and HapCut, on short reads, namely single reads and the
paired end reads of length less than 15 only. As we showed in Figure
1, most of the reads are very short. However, there are still tens of
thousands of reads of length more than 15. For example, in the block
shown in Figure 2, there are around 400 long reads and the maxi-
mal length of the reads is around 200. We run all three algorithms
on short reads only and the results are shown in Table 2. As we
can see on average HapCut improves the MEC score of Greedy by
30%, while our dynamic programming algorithm shows for the first
time that the solution from HapCut is only 1.1% from the optimal
solution. The run time of the dynamic programming algorithm is
reasonably fast and comparable to the HapCut algorithm. For exam-
ple, for the first block of chromosome 22 in Figure 2, HapCut runs
for 20 seconds while the dynamic programming algorithm runs for
24 seconds. The run times are even closer for small size blocks and
around 90% blocks are such small size blocks. Both algorithms run

5



He et al

0 50 100 150 200 250 300 350 400
columns

0

500

1000

1500

2000

2500

ro
w

s

Fig. 2. Graphical representation of the read matrix for the first block of
Chromosome 22, where the reads are sorted by their starting positions. The
rows are the reads and the columns are the haplotype positions. The black
dots are the non-‘−’ cells for the short reads and the red dots are the non-
‘−’ cells for the long reads. The red lines are the gap cells of the paired-end
reads.

for more than 10 hours and finish in roughly the same time on a
computational cluster for all 22 chromosomes.

4.1.2 HuRef Experiments on All Reads As mentioned in the pre-
vious section, in order to solve the haplotype assembly problem
containing reads of all lengths, we convert the problem into a partial
MaxSAT problem and use partial MaxSAT solvers to solve it. In this
work, we consider two MaxSAT solvers: Clone (Pipatsrisawat et al.,
2008) and WBO (Manquinho et al., 2009).

Out of 47,758 blocks, Clone was able to solve all but 8 blocks
optimally. WBO, on the other hand, solved all but 34 blocks opti-
mally. These two solvers report the same optimal solutions for the
blocks they both solved. Interestingly, even for the 8 blocks that
Clone could not solve optimally, it still reported solutions with lower
MEC scores than those obtained from the HapCut algorithm.1 We
compared our results with the results of Greedy and HapCut. The
results are shown in Table 2. As we can see, on average, HapCut
improves the MEC score of Greedy by 34%, while our MaxSAT
conversion method again shows that the solution of HapCut is very
close to the optimal solution. Although there are 8 blocks that we
could not solve optimally, the remaining 99.98% of the blocks were
optimally solved. Therefore it is reasonable to believe that the over-
all solution we obtained is very close to optimal. The run time of the
MaxSAT solver on our cluster machine is around 15 hours, which is
comparable to that of HapCut.

4.2 Designing Haplotype Assembly Protocols
While previously developed haplotype assembly approaches have
been successfully applied to the HuRef data, it is not clear how app-
licable these approaches would be using current high-throughput
genotyping technologies which have much shorter read lengths,
yet higher coverage than the HuRef data. We take advantage of
the efficiency of our algorithm to perform simulations in order to
design sequencing protocols for current high-throughput techno-
logy in order to effectively obtain haplotypes. Unlike the reads for
HuRef data, which are sequenced with the Sanger-based whole-
genome shotgun sequencing and therefore are very long (each
segment is thousands of base-pairs long including both homozygous

1 Clone is an any-time algorithm that reports the current best solution as
soon as it is discovered.

and heterozygous sites), here we consider the reads generated by
the high-throughput sequencing (HTS) technology (Wheeler et al.,
2008). The reads generated by HTS are usually very short (each seg-
ment is around 30-100 base-pairs including both homozygous and
heterozygous sites).

The basic parameters of sequencing technology that we explore
are the sequence coverage ratio (the number of times that each
base-pair in the sequence is covered), the insert length of the
paired-end reads (the distance between the two segments of the
paired-end reads), the variance of this insert length and the read
length. We explore how these parameters affect the haplotype
assembly. We perform our experiments over individual genotype
data from HapMap (International HapMap Consortium, 2007). For
a single individual, we concatenate the heterozygous SNPs to con-
struct a true haplotype. For the individual we downloaded, there are
505,065 heterozygous SNPs. We then mimic the sequencing process
by randomly generating paired-end reads with varying parameters
including coverage ratio, insert length of the reads and standard
deviation of the insert length. The insert length follows a Gaus-
sian distribution with mean 1000. Assume the genome length is n,
the sequence read length is l, the coverage ratio is c, the number
of reads to be generated then is n×c

l
. The starting positions of the

reads are randomly selected within the range of the whole genome,
therefore they may cover both heterozygous and homozygous SNPs.
The segment length of the sequence paired-end read is 36 (including
both heterozygous sites and homozygous sites) which is a reasona-
ble value given current technology. To evaluate the effects of these
parameters on the assembly process, we first divide the haplotypes
into blocks with distances greater than one standard deviation above
the sum of the mean of the insert length (we use 1000). The reads
are then very unlikely to span two blocks due to the distance bet-
ween them. The length of a read in the read matrix is the number of
heterozygous SNPs the read covers. Since we generate only paired-
end reads in our simulation, which consist of two segments, if only
one segment of a read covers heterozygous SNPs, the resulting read
in the read matrix will be considered as a single read, otherwise it
is considered as a paired-end read. The insertion of a paired-end
read corresponds to the gap of the read in the read matrix. Alt-
hough the mean of the insert length is 1000, the corresponding gap
length in the read matrix is very small because only heterozygous
SNPs are considered for assembly. Therefore, almost all the reads
are very short. To illustrate this, we vary the coverage ratio as 10, 20,
30, 40 times, the standard deviation of insert length as 5, 50, 500.
For all combinations of parameter settings, the ratios of short reads,
namely reads of length less than 15, out of all reads, are all greater
than 99.99%, indicating that our dynamic programming algorithm
is indeed very practical and can be considered as optimal.

To evaluate how well the haplotype assembly can be done w.r.t
the sequencing protocols, we next construct a graph from the read
matrix. Each heterozygous SNP is a vertex in the graph and we
draw an edge between two vertices if their corresponding SNPs
are covered by the same read. We construct such a graph using
all the generated reads and consider the connected components in
this graph since we have no information on how to phase heterozy-
gous sites in different connected components relative to each other.
The number of optimal solutions will be exponential in the num-
ber of connected components. Therefore, the smaller the number of
connected components is, the better we can assemble the haploty-
pes. We count the average number of connected components each

6



Haplotype Assembly From Whole-Genome Sequence Data

Table 2. The MEC scores computed by Greedy, HapCut and dynamic programming, MaxSAT conversion, on short reads only and on all reads, respectively,
for each chromosome.

On Short Reads On All Reads
Greedy HapCut DP Greedy HapCut MaxSAT

Chromosome1 21355 15312 15292 29518 19687 19584
Chromosome2 16067 11251 11107 22706 14615 14576
Chromosome3 11909 8223 8181 16696 10702 10647
Chromosome4 12518 8820 8775 17509 11525 11304
Chromosome5 11621 8017 7944 16432 10536 10528
Chromosome6 10624 7487 7369 15295 9842 9826
Chromosome7 11668 8531 8423 17188 11244 11187
Chromosome8 10501 7343 7311 14535 9741 9025
Chromosome9 10199 7350 7312 13512 9222 9201
Chromosome10 10263 7313 7236 15076 9846 9778
Chromosome11 8825 6224 6196 12667 8200 8183
Chromosome12 8641 6337 6155 12453 8218 8176
Chromosome13 6412 4396 4341 8848 5822 5761
Chromosome14 6634 4567 4532 9070 5879 5845
Chromosome15 9289 6653 6623 13291 9311 9285
Chromosome16 8574 6160 6093 12365 8259 8207
Chromosome17 7088 5034 4955 10195 6525 6459
Chromosome18 4973 3526 3398 8324 4991 4943
Chromosome19 5549 3996 3907 7939 5319 5288
Chromosome20 4136 2909 2891 5563 3739 3723
Chromosome21 3877 2903 2796 5607 3888 3881
Chromosome22 4424 3267 3250 6685 4495 4479

Sum 205147 145619 144087 291474 191606 189886

block contains. We also compute the average size of the connected
components. We show the experimental results in Table 3. As we
can see, the number of connected components in each block decre-
ases as coverage ratio increases and as standard deviation increases.
Meanwhile, the average size of connected components also increa-
ses. However, to reduce the number of connected components each
block contains to one such that we can fully reconstruct each block,
we need to use a very high coverage ratio such as 100. Thus for any
reasonable coverage ratio that would be collected in a sequencing
study, haplotype assembly will not be able to assemble haplotypes
because there will not be enough reads to connect all of the variants
into complete haplotypes.

However, the strategy of haplotype assembly can be combined
with traditional haplotype inference techniques (Stephens et al.,
2001; Halperin and Eskin, 2004) to infer haplotypes. The basic idea
is that genotypes are obtained from the sequence data by performing
SNP calling (Li et al., 2008) in the sequence reads. The majority of
the common variants will be present in the reference datasets such
as the HapMap (International HapMap Consortium, 2007) or the
1,000 Genomes Project (1000 Genomes Project, 2010) and for these
variants, haplotypes can be inferred using traditional techniques by
leveraging the haplotypes from the reference dataset. We note that
by using a reference dataset, we can predict haplotypes (or phase) at
the common sites even for a single individual given the genotypes
at the common sites for the individual.

Then the remaining variants (mostly rare variants) can be atta-
ched to the haplotypes by considering reads that span both the rare
variant and a common allele for which the haplotypes have been
inferred. The inference of the haplotypes can be performed using a
modified dynamic programming algorithm that forces the haploty-
pes at the common variants to match the haplotype inferred from the
genotypes.

We take the phased haplotype and treat them as a pair of very
long reads with a gap at each site which is not present in the refe-
rence sample. We have two ways to place these “reads”, namely

assign one of the phased haplotype to one of the final haplotypes,
say, h0, the other phased haplotype to h1, or the other way around.
For each placement, we then apply the dynamic programming algo-
rithm on the set of paired-end reads to infer the rare variants missed
by the phased haplotypes. We need to use a modified dynamic pro-
gramming algorithm where the phased haplotypes also need to be
taken into consideration for the MEC since we initially have placed
them. The placement with the minimum MEC will be the optimal
placement and the corresponding reconstructed haplotypes are the
optimal haplotypes. Weights can also be applied to the dynamic
programming algorithm when the MEC is computed. The weights
can be determined according to our belief of the relative accuracies
of the traditional techniques and the HTS technology respectively.
Then when the MEC is summed over the paired-end reads and
the phased haplotypes, different weights are assigned to the num-
ber of errors from the paired-end reads and the phased haplotypes
accordingly.

We can estimate how effective this approach would be by consi-
dering how often any given variant is covered by a read which also
covers an additional variant. We show such probabilities in Table
4 as well as the probabilities that the variants are covered by more
than one read. As we can see, the probability increases as the cover-
age ratio or the standard deviation increases. With 40 times coverage
and 500 base-pair standard deviation, the probability of a SNP being
attached to other SNPs at least once is as high as 92%, and at least
twice is also high as 83%. Therefore with even a moderate amount
of coverage, most variants are covered by at least one read to ano-
ther variant when the standard deviation of the insert length is big
enough. Thus the combined strategy of using a traditional approach
to infer haplotypes using the genotypes at the common variants com-
bined with assembly of the rare variants using the sequence reads is
a practical approach for inferring haplotypes.

7



He et al

Table 3. Average number of connected components contained in each block and average size of the connected components whose size is greater than 1 for
different (coverage ratio, standard deviation) settings.

(10, 5) (10, 50) (10, 500) (20, 5) (20, 50) (20, 500) (30, 5) (30, 50) (30, 500) (40, 5) (40, 50) (40, 500) (100, 500)
Num 8 7 10 8 6 6 8 6 4 8 5 3 1
Size 2 2 4 2 3 8 2 3 13 2 4 17 31

Table 4. The probability of a SNP attached to other SNPs more than once, twice, three times, four times, for different (coverage ratio, standard deviation)
settings.

(10, 5) (10, 50) (10, 500) (20, 5) (20, 50) (20, 500) (30, 5) (30, 50) (30, 500) (40, 5) (40, 50) (40, 500)
≥ 1 41% 56% 65% 45% 66% 82% 46% 70% 89% 47% 73% 92%

≥ 2 35% 38% 39% 41% 54% 62% 43% 62% 75% 44% 66% 83%

≥ 3 29% 26% 23% 38% 44% 44% 41% 54% 61% 43% 60% 71%

≥ 4 23% 19% 16% 35% 35% 32% 39% 46% 48% 41% 54% 60%

5 DISCUSSION
In this paper, we proposed a dynamic programming algorithm for
the “haplotype assembly” problem, which is able to assemble the
haplotypes optimally with time complexity O(m× 2k × n), where
m is the number of reads, k is the length of the longest read and n is
the total number of SNPs in the haplotypes. Our experiments show
for the first time that the current best-known solutions are very close
to the optimal solution.

The most difficult part of the haplotype assembly problem is to
handle the long reads. Long reads can span up to a few hundred
positions. To handle these cases, we convert the problem to a Max-
SAT problem, which can be solved optimally by a MaxSAT solver.
We show that our MaxSAT solver is able to solve 99.98% of the
problem instances optimally. For the remaining 0.02%, the Max-
SAT solver also reports better results than HapCut does. Therefore,
the overall solution we obtained is very close to the optimal.

Although the empirical results of our methods did not show a
major advance over existing methods, we believe it is technically
important and also interesting to have optimal algorithms for the
haplotype assembly problem.

Our analysis on individual genotype data from HapMap shows
that it is impractical to fully assemble the haplotypes as the cover-
age ratio needed is too high. However, combined with a traditional
haplotype inference approach, our algorithm is able to infer haplo-
types containing both rare and common SNPs, including SNPs that
are unique to individuals.

REFERENCES
1000 Genomes Project (2010). A deep catalog of human genetic variation.

http://www.1000genomes.org/.
Bansal, V. and Bafna, V. (2008). HapCUT: an efficient and accurate algorithm for the

haplotype assembly problem. Bioinformatics, 24(16), i153.
Bansal, V., Halpern, A., Axelrod, N., and Bafna, V. (2008). An MCMC algorithm for

haplotype assembly from whole-genome sequence data. Genome research, 18(8),
1336.

Biere, A., Heule, M. J. H., van Maaren, H., and Walsh, T., editors (2009). Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press.

Browning, B. and Browning, S. (2008). Haplotypic analysis of Wellcome Trust Case
Control Consortium data. Human genetics, 123(3), 273–280.

Choi, A., Zaitlen, N., Han, B., Pipatsrisawat, K., Darwiche, A., and Eskin, E. (2008).
Efficient genome wide tagging by reduction to SAT. Proceedings of the 8th Inter-
national Workshop on Algorithms in Bioinformatics. Lecture Notes in Computer
Science, 5251, 135–147.

Cilibrasi, R., van Iersel, L., Kelk, S., and Tromp, J. (2005). On the complexity of
several haplotyping problems. Proceedings of the 5th International Workshop on
Algorithms in Bioinformatics. Lecture Notes in Computer Science, 3692, 128–139.

Fitch, W. (1977). On the problem of discovering the most parsimonious tree. American
Naturalist, 111(978), 223–257.

Gusfield, D. (2003). Haplotype inference by pure parsimony. In Proceedings of the
Combinatorial Pattern Matching Conference, pages 144–155.

Halperin, E. and Eskin, E. (2004). Haplotype reconstruction from genotype data using
imperfect phylogeny. Bioinformatics, 20(12), 1842–9.

International HapMap Consortium (2007). A second generation human haplotype map
of over 3.1 million snps. Nature, 449(7164), 851–61.

Lancia, G., Bafna, V., Istrail, S., Lippert, R., and Schwartz, R. (2001). SNPs problems,
complexity, and algorithms. Proceedings of the 9th Annual European Symposium
on Algorithms. Lecture Notes in Computer Science, pages 182–193.

Levy, S., Sutton, G., Ng, P., Feuk, L., Halpern, A., Walenz, B., Axelrod, N., Huang,
J., Kirkness, E., Denisov, G., et al. (2007). The diploid genome sequence of an
individual human. PLoS Biol, 5(10), e254.

Li, C. and Manyá, F. (2009). MaxSAT, hard and soft constraints. Handbook of
Satisfiability, 185, 613–631.

Li, H., Ruan, J., and Durbin, R. (2008). Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome research, 18(11), 1851.

Lippert, R., Schwartz, R., Lancia, G., and Istrail, S. (2002). Algorithmic strategies
for the single nucleotide polymorphism haplotype assembly problem. Briefings in
Bioinformatics, 3(1), 23.

Manquinho, V., Marques-Silva, J., and Planes, J. (2009). Algorithms for weighted Boo-
lean optimization. In Proceedings of the 12th International Conference on Theory
and Applications of Satisfiability Testing, pages 495–508.

Marchini, J., Howie, B., Myers, S., McVean, G., and Donnelly, P. (2007). A new
multipoint method for genome-wide association studies by imputation of genotypes.
Nat Genet, 39(7), 906–13.

Panconesi, A. and Sozio, M. (2004). Fast hare: A fast heuristic for single individual
SNP haplotype reconstruction. Lecture Notes in Computer Science, 3240, 266–277.

Pipatsrisawat, K., Palyan, A., Chavira, M., Choi, A., and Darwiche, A. (2008). Solving
weighted Max-SAT problems in a reduced search space: A performance analysis.
Journal on Satisfiability, Boolean Modeling and Computation, 4, 191–217.

Stephens, M., Smith, N., and Donnelly, P. (2001). A new statistical method for
haplotype reconstruction from population data. The American Journal of Human
Genetics, 68(4), 978–989.

Wang, R., Wu, L., Li, Z., and Zhang, X. (2005). Haplotype reconstruction from SNP
fragments by minimum error correction. Bioinformatics, 21(10), 2456.

Wheeler, D., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He,
W., Chen, Y., Makhijani, V., Roth, G., et al. (2008). The complete genome of
an individual by massively parallel DNA sequencing. Nature, 452(7189), 872–876.

8


