
A Lower Bound on the Size of Decomposable Negation Normal Form

Knot Pipatsrisawat and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095 USA

{thammakn,darwiche}@cs.ucla.edu

Abstract

We consider in this paper the size of a Decomposable Nega-
tion Normal Form (DNNF) that respects a given vtree (known
as structured DNNF). This representation of propositional
knowledge bases was introduced recently and shown to in-
clude OBDD as a special case (an OBDD variable ordering
is a special type of vtree). We provide a lower bound on the
size of any structured DNNF and discuss three particular in-
stances of this bound, which correspond to three distinct sub-
sets of structured DNNF (including OBDD). We show that
our lower bound subsumes the influential Sieling and We-
gener’s lower bound for OBDDs, which is typically used for
identifying variable orderings that will cause a blowup in the
OBDD size. We show that our lower bound allows for similar
usage but with respect to vtrees, which provide structure for
DNNFs in the same way that variable orderings provide struc-
ture for OBDDs. We finally discuss some of the theoretical
and practical implications of our lower bound.

Introduction

An Ordered Binary Decision Diagram (OBDD) is a canon-
ical representation of a propositional knowledge base (also
known as a Boolean function). Because of its compactness
and efficient support for many Boolean operations, OBDD
has become an indispensable tool in many research areas
such as diagnosis, verification, system design, and planning.
A fundamental concept that underlies the OBDD represen-
tation is the notion of decomposability.

The most general language satisfying decomposabil-
ity is known as Decomposable Negation Normal Form
(DNNF) (Darwiche 2001a). Imposing other proper-
ties on top of decomposability yields various languages
such as deterministic DNNF (Darwiche 2001b), struc-
tured DNNF (SDNNF) (Pipatsrisawat and Darwiche 2008),
AOMDD (Boolean case) (Mateescu and Dechter 2006), and
OBDD (Bryant 1986). These languages differ on their sup-
ports for various operations and on their abilities to com-
pactly represent Boolean functions (Darwiche and Marquis
2002; Pipatsrisawat and Darwiche 2008).

Among the subsets of DNNF, OBDD is by far the most
studied language. Much effort has been dedicated to study-
ing the size of OBDD for various Boolean functions. As

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a result, lower and upper bounds have been presented on
the size of OBDD for various Boolean functions (e.g.,
see (Breitbart, Hunt, and Rosenkrantz 1995; Ponzio 1995;
Wegener 2000)). A key result that underlies much work
in this direction is the one by Sieling and Wegener (Sieling
and Wegener 1993), who showed that the size of an OBDD
representation of any Boolean function is closely related to
the number of sub-functions obtained by conditioning the
Boolean function on partial variable instantiations.

In this work, we consider the problem of providing a
lower bound on the size of structured DNNF, which in-
clude OBDD as a special case. In particular, we introduce
the general notion of a decomposition, which allows one to
write a Boolean function in terms of independent functions
(i.e., ones that do not share variables). We introduce sev-
eral types of decompositions and show that each type char-
acterizes one of the key subsets of structured DNNF. For
example, we show that the Shannon decomposition, which
underlies OBDD, is an instance of our notion of decomposi-
tions. We then provide a general lower bound on the size of
structured DNNF and show that it subsumes the Sieling and
Wegener’s bound when applied to OBDD. Theoretically, our
result unveils the fundamental notion of a decomposition,
which generalizes the influential Shannon decomposition,
and shows how it can be used to characterize different sub-
sets of structured DNNF. Practically, it allows us to show
that some vtrees are guaranteed to lead to exponential struc-
tured DNNF representations. This result allows us to lever-
age knowledge about the decomposition of Boolean func-
tions in providing guarantees on the size of their structured
DNNF representations in the same way knowledge about
sub-functions has been used in the context of OBDD.

The rest of the paper is structured as follows. We first
present basic definitions used in the paper. We then state the
OBDD lower bound by Sieling and Wegener, followed by an
overview of structured DNNF. The fundamental notion of
a decomposition is introduced next, followed by the lower
bound result. We finally discuss the relationship between
our lower bound and the OBDD lower bound, and close with
some concluding remarks.

Basic Definitions

We use the standard notation for variables and their instan-
tiations. In particular, we use an upper case letter to denote

a variable (e.g., X) and a lower case letter (e.g., x) to de-
note its instantiation (assignment). Moreover, we use a bold
upper case letter to denote a set of variables (e.g., X) and a
bold lower case letter (e.g., x) to denote their instantiations.

A Boolean function (or simply function) over a set of
variables Z is a function that maps each complete assign-
ment of variables Z to either true or false. The condition-
ing of function f on variable assignment x is defined as
f |x = ∃X(f ∧ x). If f is represented by a propositional
formula, we can obtain f |x by replacing each occurrence of
variable X ∈ X by its value in x.

A function f depends only on variables Z iff for any vari-
able X /∈ Z, we have f |X = f |¬X . We will write f(Z) to
indicate that f depends only on variables Z. Note that f(Z)
does not necessarily depend on every variable in Z.

A conjunction is decomposable if each pair of its con-
juncts share no variables. A disjunction is deterministic if
each pair of its disjuncts is mutually exclusive. A negation
normal form (NNF) is a DAG whose internal nodes are la-
belled with disjunctions and conjunctions, and whose leaf
nodes are labeled with literals or the constants true and false;
see Figure 4.1 An NNF is decomposable (called a DNNF) iff
each of its conjunctions is decomposable; see Figure 4(a). A
DNNF is deterministic (called a d-DNNF) iff each of its dis-
junctions is deterministic; see Figure 4(b). We use vars(N)
to denote the set of variables in the sub-NNF rooted at N .

OBDDs and the Sieling and Wegener’s Bound

An OBDD is a DAG whose non-leaf nodes are labeled with
variables, and whose leaf nodes are labeled with Boolean
constants; see Figure 1(a). Every non-leaf node in an OBDD
has exactly one high child (pointed to by a solid edge) and
one low child (pointed to by a dotted edge). An OBDD
respects a total variable ordering if the order of variables
on any path from the root to a leaf is consistent with the
given order. An OBDD is interpreted as a representation of
a Boolean function over the variables labeling its nodes.

One key concept that underlies OBDD is the Shannon de-
composition, which states that every function f can always
be written as f = (X ∧ f |X) ∨ (¬X ∧ f |¬X), where X is
any variable. Since f |X and f |¬X no longer depend on X ,
the conjunctions in the Shannon decomposition are clearly
decomposable. Any OBDD can be viewed as the result of
applying this decomposition recursively to some Boolean
function according to a given variable ordering.

An OBDD can also be interpreted as an NNF as shown in
Figure 1(b). Every OBDD node labeled with X is expanded
into (X ∧ h) ∨ (¬X ∧ l), where h and l are the results of
expanding the high and low children of the node. The result-
ing NNF is decomposable and deterministic by construction
(see (Darwiche and Marquis 2002) for more details).

An OBDD is an attractive representation of Boolean func-
tions because of its ability to represent some functions com-
pactly and its polytime support for many logical opera-
tions (Bryant 1986). Since most applications of OBDDs rely
on their compactness, much work exists on bounding the

1The circles, boxes, and dashed/bold edges in this figure have
no special meaning; they are visual aids that will be used later.

Q

R R

S

T

S

T

false

V

true

V

U

(a)

R ¬R

S ¬S

V ¬V

T¬T

U ¬U

Q ¬Q

and

true

and

false

or

and and

or

and

and and

or

and

or

and

and and

or

and

or

or

and

andand

or

and and

or

and

or

(b)

Figure 1: (a) an OBDD in the conventional representation
(b) the same OBDD in the NNF representation.

size of OBDDs for various Boolean functions. The follow-
ing (paraphrased) result by Sieling and Wegener provides a
basis for numerous work in this direction. Central to this re-
sult is the notion of a sub-function f |x, which is a function
obtained by conditioning f on a variable instantiation x.

Theorem 1 ((Sieling and Wegener 1993)) Let f be a func-
tion over X1, . . . ,Xn and m be the number of distinct sub-
functions of f obtained by conditioning on X1, . . . ,Xi−1

that depend on Xi. A reduced2 OBDD for f using variable
ordering X1, . . . ,Xn contains exactly m nodes labeled with
Xi.

The main use of the Sieling and Wegener’s result is in
showing which variable orderings lead to efficient OBDD
representations (upper bound), and which ones lead to expo-
nential OBDDs (lower bound). Consider the Boolean func-
tion f = (X1∧Y1)∨ . . .∨(Xn∧Yn), for example. If we use
variable ordering X1, Y1, . . . ,Xn, Yn, we find that the num-
ber of distinct sub-functions that depend on Xi or Yi (by
conditioning f on all preceding variables) is no more than 2
for any i. Hence, this variable order will lead to an efficient
OBDD representation. However, if we use the variable or-
dering X1, . . . ,Xn, Y1, . . . , Yn, we find that we have Ω(2n)
distinct sub-functions that depend on variable Y1, when we
condition f on X1, . . . ,Xn. Hence, this variable ordering
will lead to an exponentially-sized OBDD.

Structured DNNF

Our goal is to derive an analogue of the lower bound by
Sieling and Wegener, but for a more general class of repre-
sentations that subsume OBDDs. In particular, our focus is
on structured DNNFs. A structured DNNF is a DNNF that
respects a given vtree (Pipatsrisawat and Darwiche 2008).

2An OBDD is reduced iff no two distinct nodes in the OBDD
represent the same Boolean function.

R S

Q

V U

Tv1

v2

v3

v4

v5

(a)

R

S

Q

V U

T v1

v2

v3

v4

v5

(b)

Figure 2: A vtree in (a) and a linear vtree in (b). Their inter-
nal nodes are labeled to support the discussion.

Definition 1 (Vtree) A vtree for a set of variables Z is a
full, rooted binary tree whose leaves are in one-to-one cor-
respondence with the variables in Z.

Figure 2 depicts two example vtrees of {Q,R, S, T,
U, V }. Given an internal node v in a vtree, we use vl and
vr to refer to its left and right children, and use vars(v) to
denote the set of variables at or below v in the tree. We can
now define what it means for a DNNF to respect a vtree.

Definition 2 A DNNF respects a vtree iff each and-node has
exactly two children N l and Nr, and vars(N l) ⊆ vars(vl)
and vars(Nr) ⊆ vars(vr) for some vtree node v.

The DNNF in Figure 4(a) and the d-DNNF in Figure 4(b)
respect the vtree in Figure 2(a). The language of structured
DNNF simply contains all DNNFs that respects some vtree.3

Note that a variable ordering corresponds to a linear vtree
as shown in Figure 2(b). Moreover, every OBDD is a DNNF
that respects the corresponding linear vtree. Figure 1(b)
shows a DNNF representation of the OBDD in Figure 1(a),
which respects the vtree in Figure 2(b). The result we shall
present later will allow us to show that any DNNF that re-
spects a given vtree must have at least a certain number of
nodes (lower bound). When applied to an OBDD, our bound
will be shown to subsume the Sieling and Wegener’s bound.
We will later discuss the applicability of our result to some
key subsets of structured DNNF.

Decompositions of Boolean Functions
We now introduce the fundamental notion behind our lower
bound on the size of structured DNNF. In the rest of the
paper, we will assume that variable sets X and Y form a
partition of variable set Z.

Definition 3 An X-decomposition of function f(Z) is a col-

lection of functions (a.k.a. elements) f1(Z), . . . , fm(Z)
such that f(Z) =

∨m

i=1 f i(Z) and each f i(Z) can be ex-
pressed as follows:

f i(Z) = gi(X) ∧ hi(Y).

3Some DNNFs, such as (((a ∧ b) ∧ (¬c ∧ d)) ∨ ((¬a ∧ c) ∧
(b ∧ ¬d))), do not respect any vtree.

The number m is called the size of the decomposition in this
case. A decomposition is minimal if no other decomposition
has a smaller size. A decomposition is deterministic if f i∧f j

is inconsistent for all i 6= j.

Note that an X-decomposition for f(Z) is also a Y-
decomposition for f(Z). We will typically just say “decom-
position” when X and Y are clear from the context.

Consider the Boolean function f = (X1 ∧ Y1) ∨ (X2 ∧
Y2) ∨ (X2 ∧ Y3) and the partition X = {X1,X2},Y =
{Y1, Y2, Y3}. The following are two decompositions of this
function:

gi(X) hi(Y)
X1 Y1

X2 Y2 ∨ Y3

gi(X) hi(Y)
X1 Y1

¬X1 ∧ X2 Y2 ∨ Y3

X1 ∧ X2 ¬Y1 ∧ (Y2 ∨ Y3)

Each row corresponds to an element of the decomposi-
tion. Moreover, we present each element in terms of its X
and Y components, where the element is simply the con-
junction of these components. Note that the left decompo-
sition is non-deterministic, while the right decomposition is
deterministic. One can always find a decomposition for any
function f(Z) if one is not concerned about the size of the
decomposition. In particular, the models of f(Z) can be the
basis for a trivial decomposition for any partition of Z.

The notion of a decomposition generalizes the Shannon
decomposition as used in the OBDD literature. According
to the Shannon decomposition, each function f(Z) can be
expressed as f = (X ∧ f |X) ∨ (¬X ∧ f |¬X). If we let
X = {X},Y = Z \ X, then this can be thought of as the
following decomposition:

gi(X) hi(Y)
X f |X
¬X f |¬X

The Shannon decomposition is always of size two, de-
terministic, and is completely determined by the choice of
variable X .

A Lower Bound

We are now ready to state our main result, which is a lower
bound on the size of structured DNNFs. This result is a
corollary of a more specific result that we discuss later.

Theorem 2 (Lower bound) Suppose we are given a (resp.
deterministic) DNNF for function f(Z) and the DNNF re-
spects a given vtree, which has a node with variables X.
The DNNF must have at least k nodes, where k is the size of
a minimal (resp. deterministic) X-decomposition of f(Z).

One application of the above result is in demonstrating
that, for certain Boolean functions, any DNNF representa-
tion that respects certain vtrees will be exponentially-sized.
This approach could form a basis of both theoretical and
practical work. Theoretically, our lower bound can be used
to show the separation in terms of succinctness (Darwiche
and Marquis 2002) between different languages.4 Practi-
cally, the lower bound can be used to rule out bad vtrees

4We will provide a brief example of this usage later.

X ...1 Y1 X2 Y2 Xn-1 Y Xn Yn-1 n

(a)

X1 Y1X2

X3

Xn

Y2

Y3

Yn

(b)

Figure 3: Two vtrees for {X1, . . . ,Xn, Y1, . . . , Yn}.

when we construct structured DNNFs. In what follows, we
demonstrate the potentials of our result by providing ex-
amples of how it can be used to prove (exponential) lower
bounds for some functions (with respect to some vtrees). We
omit the proofs of these claims due to space limitations.

Consider the function F1 = (X1 ⊕ Y1) ∧ . . . ∧ (Xn ⊕
Yn), where ⊕ is the exclusive-or operator. This function has
a compact DNNF representation that respects the vtree in
Figure 3(a).5 However, any DNNF of F1 that respects the
vtree in Figure 3(b) must have an exponential size. This is
because this vtree has a node (shaded) with variables X =
{X1, . . . ,Xn}. The function F1 has 2n models and one can
show that no two of these models can reside in the same
element of any X-decomposition (proof in the full paper).
Thus, any optimal X-decomposition of F1 has size Ω(2n).
Hence, by Theorem 2, any DNNF that respects this vtree (or
any vtree with a node containing just the variables X) must
contain an exponential number of nodes.

Note the simplicity of the proof as our lower bound re-
moves the burden of analyzing the structure of the consid-
ered DNNF. In this approach, one only needs to show that
some variable partition induced by the vtree will always in-
duce an exponentially-sized decomposition. This is analo-
gous to how the Sieling and Wegener’s result is typically
used. The following list gives several examples of func-
tions whose exponential lower bound (with respect to certain
vtrees) can be easily established using the same approach.

1. F2 = (X1 ∨ Y1) ∧ . . . ∧ (Xn ∨ Yn).

2. F3 = Tk(X0,Y0) ∧ . . . ∧ Tk(X(n−1),Y(n−1)), where
Xi = Xik+1, . . . ,Xik+k (Yi is defined similarly) and Tk

evaluates to true iff at least k (a constant) of its inputs are
true (threshold function).

3. F4 = diff(X,Y,N): the difference function, which
evaluates to true iff the difference between the values of
X and Y is N (all interpreted as binary numbers).

4. F5 = CBS(X,Y,N): the circular bit shift func-
tion (Fortune, Hopcroft, and Schmidt 1978). This func-
tion evaluates to true iff X is equal to Y after being cir-
cularly shifted by N (binary number) positions.

5Simply create a tree of and-nodes with the same structure as
the vtree and place a DNNF for each (Xi ⊕ Yi) at each leaf.

VT

orQ

R S

or

and

and

U

andand

or

and

or

(a)

Q

R ¬S

and S

or

and

¬T

V¬U

and

and

T

and

or

and

U

and

and and

or

and

or

(b)

Figure 4: (a) A DNNF depicting a node and its paths (bold
lines). The edges from the paths to their branches are
dashed. (b) a d-DNNF of the same Boolean function.

In all these cases, we can easily use our lower bound result
to show that any DNNF that respects a vtree having a node
v with vars(v) = X or vars(v) = Y cannot have a polyno-
mial number of nodes. Note that one can construct a vtree
that yields polysize DNNFs for F2 − F4. The key idea is to
position Xi close to Yi in the tree. However, for F5, we can
actually use our lower bound as a basis of a proof to show
that F5 does not admit a polysize structured DNNF repre-
sentation for any vtree. Since F5 has a polysize representa-
tion as a free binary decision diagram (FBDD) (see (Fortune,
Hopcroft, and Schmidt 1978)), this proof provides an expo-
nential separation between structured DNNF and DNNF.6

This claim was previously made in (Pipatsrisawat and Dar-
wiche 2008) based on a different proof. The lower bound
presented here allows for a more direct and shorter proof (to
be presented in the full paper).

If the considered DNNF is deterministic, Theorem 2 tells
us that its size must be lower bounded by the size of a min-
imal deterministic decomposition. The insistence on deter-
minism may lead to stronger lower bounds. Consider for
example the function f = (X1 ∧ Y1) ∨ . . . ∨ (Xn ∧ Yn). In
this form, this formula, which is polysized, is already a (non-
deterministic) DNNF that respects the vtree in Figure 3(b).
However, for X = {X1, . . . ,Xn}, we conjecture that any
deterministic X-decomposition of this function must have
an exponential size. The truth of this conjecture would im-
ply that any deterministic DNNF of f that respects the vtree
in Figure 3(b) must have an exponential size, even though
we have a polysized DNNF that respects this vtree.

We will later show that OBDDs are governed by an even
stronger type of deterministic decompositions, leading to an
even stronger lower bound. This, however, requires a more
specific result, which we present next.

Decompositions Induced by Structured DNNF

We will now present a result that explicates the particular
decompositions induced by structured DNNF. This result re-

6According to the notation in (Darwiche and Marquis 2002),
this shows that DNNF is strictly more succinct than structured
DNNF.

veals the main idea that underlies Theorem 2. To state this
result, we need a few definitions.

Definition 4 In a DNNF, a path p for node N is a path from
the DNNF root to node N . If an and-node on the path (ex-
cluding N) has a child L that is not on the path, then node
L is called a branch of the path. The path function of p is
the conjunction of functions corresponding to its branches.

Consider the DNNF in Figure 4(a). The node (R ∨ S)
(circled) has two paths from the root (bold edges). The left
path has two branches that correspond to Q and (T ∨ V).
Hence, its path function is Q ∧ (T ∨ V). The right path has
only one branch with function ((T ∧ U) ∨ (V ∧ U)).

For OBDDs, path functions are always terms (conjunc-
tions of literals). Consider the OBDD in Figure 1(b) for
an example. The top-left boxed node has two paths (bold
edges). The corresponding path functions are Q ∧ R ∧ ¬T
and Q ∧ ¬R ∧ S ∧ ¬T .

Definition 5 Consider a DNNF that respects a vtree having
node v. A node N in the DNNF is said to be a v-node if
it is not true or false, its variables are all in vars(v), and
has at least one v-path. A v-path for node N is a path from
the root to node N with no other node whose variables are
also all in vars(v). The v-paths function of a v-node is the
disjunction of the path functions of all its v-paths.

Consider the node v3 in Figure 2(a). All v-nodes (with
v = v3) of the structured DNNFs in Figures 4(a) and 4(b)
are shown in boxes. Node U in Figure 4(a) is a v-node with
v-paths function T ∧ (R ∨ S). Note that the rightmost path
is not a v-path of U as it contains another node (V ∧U) with
variables in vars(v). We are now ready to present the result.

Theorem 3 Consider a (resp. deterministic) DNNF for
function f(Z) that respects a given vtree. Let v be a vtree
node with vars(v) = X. If the (resp. deterministic) DNNF
has v-nodes 1, . . . ,m, then function f must have the follow-
ing (resp. deterministic) X-decomposition:

g1(X) ∧ h1(Y), . . . , gm(X) ∧ hm(Y),H(Y)

where gi(X) is the function of v-node i, hi(Y) is the v-paths
function of v-node i, and H(Y) is equivalent to the DNNF
after having replaced all v-nodes by false.

We will next illustrate this theorem with some examples.
First, consider the DNNF in Figure 4(a), which respects the
vtree in Figure 2(a). Consider vtree node v3 which has vari-
ables X = {U, V }. The corresponding v-nodes of this
DNNF are boxed in Figure 4(a). These nodes induce the
following (non-deterministic) decomposition.

v-node function, gi(X) v-paths function, hi(Y)
V ∧ U R ∨ S
U T ∧ (R ∨ S)
V Q ∧ (R ∨ S)

H(Y) = Q ∧ T ∧ (R ∨ S)

Consider now the deterministic DNNF in Figure 4(b) and
the same vtree node v3 in Figure 2(a). The corresponding
v-nodes of this DNNF are boxed in Figure 4(b) and induce
the following deterministic decomposition.

v-node function, gi(X) v-paths function, hi(Y)
¬U ∧ V ¬T ∧ Q ∧ (S ∨ (R ∧ ¬S))
V ∧ U ¬T ∧ (S ∨ (R ∧ ¬S))
U T ∧ (S ∨ (R ∧ ¬S))
¬U T ∧ Q ∧ (S ∨ (R ∧ ¬S))

H(Y) = false

Finally, consider the OBDD in Figure 1(b). This OBDD
respects the linear vtree in Figure 2(b). Consider vtree node
v1 which has variables X = {U, V }. The corresponding
v-nodes are boxed in Figure 1(b) and induce the following
decomposition.

v-node function, gi(X) v-paths function, hi(Y)
(V ∧ U) ¬T ∧ (R ∨ (S ∧ ¬R)) ∧ ¬Q
V ¬T ∧ (R ∨ (S ∧ ¬R)) ∧ Q
U T ∧ (R ∨ (S ∧ ¬R)) ∧ ¬Q

H(Y) = T ∧ (R ∨ (S ∧ ¬R)) ∧ Q

If we carefully examine this decomposition, we find that
it is not just deterministic, but deterministic in a strong way.
In particular, not only does every pair of elements contradict
each other, but the contradiction can be established by con-
sidering only the v-paths function of each element. This is
an example of the following type of decompositions.

Definition 6 A decomposition g1(X) ∧ h1(Y), . . . ,
gm(X) ∧ hm(Y) is strongly deterministic on X iff gi(X) ∧

gj(X) is inconsistent for all i 6= j.

We will later show that OBDDs induce strongly determin-
istic decompositions in general. This has implications as we
have the following lower bound on the size of strongly de-
terministic decompositions.

Proposition 1 Let g1(X)∧h1(Y), . . . , gm(X)∧hm(Y) be
a decomposition of function f that is strongly deterministic
on X. If the sub-function f |x is consistent, then f |x =
hi(Y) for some i (satisfying x |= gi(X)). Hence, the size
of the decomposition, m, cannot be less than the number of
distinct (consistent) sub-functions f |x.

Hence, the elements of a decomposition that is strongly
deterministic on X provide an encoding of all consistent
sub-functions f |x. In fact, if the decomposition is mini-
mal, we have a one-to-one correspondence between these
elements and consistent sub-functions.

Relationship to the Sieling and Wegener’s

Lower Bound

We will now provide another version of Theorem 3, which is
now specialized for OBDDs using their standard representa-
tions (instead of NNF representations). Stating the result in
this form will help us draw connections between our lower
bound and the one given in Theorem 1. We begin with some
definitions needed to state the result.

Definition 7 Let p be a path from an OBDD root to some
node. The path function of p is a term that includes literal
X iff X and one of its high children appear on the path, and
includes literal ¬X iff X and one of its low children appear
on the path.

Definition 8 Let X1, . . . ,Xn be a variable ordering for an
OBDD. An OBDD node N is said to be a k-node if it is
labeled with a variable in X = {Xk, . . . ,Xn} and has at
least one k-path. A k-path for node N is a path from the
OBDD root to node N that has no other node whose label is
in X. The k-paths function of a k-node is the disjunction of

the path functions of all its k-paths.

The set of k-nodes of any OBDD must contain all the
nodes labeled with Xk and potentially some other nodes.
For example, consider the OBDD in Figure 1(a) and let
k = 5 (the 5th and 6th variables in the order are V and
U , respectively). The three k-nodes in the OBDD, which
are shown in gray, include both nodes labeled with V and
one node labeled with U .

Corollary 1 Consider an OBDD with variable ordering
X1, . . . ,Xn that represents function f(Z). Let 1 . . . ,m be
all k-nodes in the OBDD. The following must be an X-
decomposition for function f :

g1(X) ∧ h1(Y), . . . , gm(X) ∧ hm(Y),H(Y).

Here, X = {Xk, . . . ,Xn}, gi(X) is the function of k-node
i, hi(Y) is the k-paths function of k-node i, and H(Y) is
equivalent to the OBDD after replacing all k-nodes with
false. Moreover, the decomposition is strongly determinis-
tic on Y.

We will now contrast this result with the Sieling and We-
gener’s lower bound. Consider again the k-nodes (k = 5) of
the OBDD in Figure 1(a). In this case, we have X = {V,U}.
These nodes lead to the following decomposition.

k-node k-node k-paths
label function (X) function (Y)

V V ∧ U ¬T ∧ (R ∨ (S ∧ ¬R)) ∧ ¬Q
V V ¬T ∧ (R ∨ (S ∧ ¬R)) ∧ Q
U U T ∧ (R ∨ (S ∧ ¬R)) ∧ ¬Q

H(Y) = T ∧ (R ∨ (S ∧ ¬R)) ∧ Q

Since this decomposition is strongly deterministic on Y =
{Q,R, S, T}, every consistent sub-function f |y must ap-
pear in the second column of the above table by Proposi-
tion 1. Note that only two of these sub-functions depend on
the kth variable in the ordering, V . Hence, the Sieling and
Wegener’s lower bound says that we must have at least two
OBDD nodes labeled with variable V . Corollary 1, together
with Proposition 1, is saying this and more. In particular,
the proposition implies that every f |y that depend on Xk

must appear in any decomposition, including the one given
by the corollary. Each of these functions (that depends on
Xk) must correspond to the function of a node labeled with
Xk in the OBDD. As a result, we can conclude that the num-
ber of nodes labeled with Xk must be lower bounded by the
number of distinct functions f |y that depend on Xk. More-
over, the corollary is saying that we must have one distinct
OBDD node for each distinct and consistent sub-function
f |y (regardless of its dependence on Xk). These distinct
nodes are labeled with variables in X or true.

Conclusions

We presented in this paper a lower bound on the size of
structured DNNF. The result, which relies on the general no-
tion of decompositions, enables us to transform knowledge
about Boolean functions into a size guarantee for DNNFs
that respect certain vtrees. We discussed our result in the
context of a few distinguished subsets of DNNF: determin-
istic DNNF and OBDD. We showed that our lower bound,
when applied to OBDD, subsumes the well-known OBDD
lower bound given by Sieling and Wegener. Finally, we
demonstrated some usages of our result in proving lower
bounds for DNNF representations.

Unlike the Sieling and Wegener’s result, our result in this
paper does not provide an upper bound on the size of struc-
tured DNNF. While we always insist on using the Shannon
decompositions in the construction of every OBDD, we do
not make any assumption about the type of decompositions
used to construct structured DNNF in general. As a result,
coming up with a useful upper bound requires some assump-
tions about the decompositions used. This is a topic of on-
going research.

References

Breitbart, Y.; Hunt, III, H.; and Rosenkrantz, D. 1995. On
the size of binary decision diagrams representing boolean
functions. Theor. Comput. Sci. 145(1-2):45–69.

Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Tran. Com. C-35:677–691.

Darwiche, A., and Marquis, P. 2002. A knowledge compi-
lation map. JAIR 17:229–264.

Darwiche, A. 2001a. Decomposable negation normal form.
Journal of the ACM 48(4):608–647.

Darwiche, A. 2001b. On the tractable counting of theory
models and its application to truth maintenance and belief
revision. Journal of Applied Non-Classical Logics 11(1-
2):11–34.

Fortune, S.; Hopcroft, J. E.; and Schmidt, E. M. 1978. The
complexity of equivalence and containment for free single
variable program schemes. In Proc. of 5th Colloquium on
Automata, Languages and Programming, 227–240.

Mateescu, R., and Dechter, R. 2006. Compiling con-
straint networks into and/or multi-valued decision diagrams
(AOMDDs). In Proc. of CP-06, 329–343.

Pipatsrisawat, K., and Darwiche, A. 2008. New compilation
languages based on structured decomposability. In Proc. of
AAAI-08, 517–522.

Ponzio, S. 1995. A lower bound for integer multiplication
with read-once branching programs. In Proc. of STOC ’95,
130–139.

Sieling, D., and Wegener, I. 1993. Nc-algorithms for op-
erations on binary decision diagrams. Parallel Processing
Letters 3:3–12.

Wegener, I. 2000. Branching programs and binary decision
diagrams: theory and applications. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics.

