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Abstract

We consider in this paper the robustness of decisions based on probabilistic thresholds
under noisy sensor readings. In particular, we consider the stability of these decisions
under different assumptions about the causal mechanisms that govern the output of a
sensor. To this effect, we propose the same-decision probability as a query that can be used
as a confidence measure for threshold-based decisions, and study some of its properties.

1 Introduction

There has been an increased interest recently
in providing assurances on the results of prob-
abilistic reasoning systems. One clear exam-
ple are the many results on sensitivity anal-
ysis, which is concerned with providing guar-
antees on the relationship between probabilis-
tic queries and model parameters; see, e.g.,
(Chan, 2009; Kwisthout and van der Gaag,
2008). These results include specific bounds on
the changes in probabilistic queries that could
result from perturbing model parameters.

We consider another class of assurances in
this paper, which is concerned with quantify-
ing the robustness of threshold-based decisions
against noisy observations, where we propose a
specific notion, called the same-decision proba-
bility. Our proposed notion is cast in the con-
text of Bayesian networks where the goal is to
make a decision based on whether some prob-
ability Pr(d | s) passes a given threshold T ,
where s represents the readings of noisy sen-
sors. The same-decision probability is based
on the following key observation. If one were
to know the specific causal mechanisms h that
govern the behavior of each noisy sensor (and
hence, allow us to precisely interpret each sen-
sor reading), then one should clearly make the
decision based on the probability Pr(d | s,h)
instead of the probability Pr(d | s). In fact,

the probability Pr(d | s) can be seen as sim-
ply the expectation of Pr(d | s,h) with respect
to the distribution Pr(h | s) over causal mech-
anisms. The same-decision probability is then
the probability that we would have made the
same threshold-based decision had we known
the specific causal mechanism h. More pre-
cisely, it is the expected decision based on Pr(d |
s,h), with respect to the distribution Pr(h | s)
over sensor causal mechanisms.

We show a number of results about this pro-
posed quantity. First, we show that a stan-
dard Bayesian network does not contain all of
the information necessary to pinpoint the dis-
tribution Pr(h | s) which is needed for com-
pletely defining the same decision probability.
We formulate, however, two assumptions, each
of which is sufficient to induce this distribu-
tion. Second, we propose a bound on the same-
decision probability using the one-sided Cheby-
shev inequality, which requires only the variance
of Pr(d | s,h) with respect to the distribution
Pr(h | s). Third, we propose a variable elimi-
nation algorithm that computes this variance in
time and space that are exponential only in the
constrained treewidth of the given network. We
conclude with a number of concrete examples
that illustrate the utility of our proposed confi-
dence measure in quantifying the robustness of
threshold-based decisions.
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S1 S2

D X1 X2 D Pr(D|S1 =+, S2 =+)
+ 0.880952
− 0.119048

D Pr(D)
+ 0.5
− 0.5

D X1 Pr(X1|D)
+ + 0.9
+ − 0.1
− + 0.1
− − 0.9

Xi Si Pr(Si|Xi)
+ + 0.9
+ − 0.1
− + 0.1
− − 0.9

Figure 1: A simple Bayesian network, under
sensor readings {S1 =+, S2 =+}. Variables S1

and S2 represent noisy sensor readings, and they
have the same CPT Pr(Si|Xi). Variables X1

and X2 also have the same CPTs (only the one
for variable X1 is shown).

Table 1: Causal mechanisms for sensor readings
s = {S1 =+, S2 =+} for the network in Fig. 1.
Cases above threshold T = 0.6 are in bold.

h H1 H2 Pr(h|s1, s2) Pr(d|s1, s2,h)
1 t t 0.781071 0.90
2 p t 0.096429 0.82
3 l t 0.001071 0.10
4 t p 0.096429 0.90
5 p p 0.021429 0.50
6 l p 0.001190 0.10
7 t l 0.001071 0.90
8 p l 0.001190 0.18
9 l l 0.000119 0.10

2 An Introductory Example

Consider the Bayesian network in Figure 1,
which models a scenario involving a hypothesis
D of interest and two noisy sensors S1 and S2

that bear on this hypothesis. The network cap-
tures the false positive and false negative rates
of these sensors, where each sensor Si is meant
to measure the state of variable Xi. A typi-
cal usage of this and similar networks involves
the computation of our belief in the hypothesis
given some sensor readings, Pr(d | s1, s2). This
belief can then be the basis of a decision that
depends on whether this probability exceeds a
certain threshold, Pr(d | s1, s2) ≥ T . Scenarios
such as this are typical in applications such as
diagnosis (Hamscher et al., 1992), troubleshoot-
ing (Heckerman et al., 1995a), and probabilistic
planning (Littman et al., 1998).

Figure 1 shows a particular reading of two

sensors and the resulting belief Pr(D=+ |
S1 =+, S2 =+). If our threshold is T = 0.6,
then our computed belief confirms the decision
under consideration. This decision, however,
is based on the readings of two noisy sensors.
Suppose now that our model had explicated the
causal mechanisms that led to the sensor read-
ings we observed, as depicted in Table 1 (we
discuss how to obtain such a model in the next
section). This table depicts a distribution over
causal mechanisms Pr(h | s1, s2). Assuming a
particular causal mechanism h is the active one,
we also have a refined belief Pr(d | s1, s2,h)
on the hypothesis d. In fact, the original belief
Pr(d | s1, s2) can now be seen as the expecta-
tion of the refined beliefs with respect to the
distribution over causal mechanisms:

Pr(d|s1, s2) =
∑
h

Pr(d|s1, s2,h)Pr(h|s1, s2).

We show that this is the case in general, later.
Suppose now that we knew the specific causal

mechanism h that governs our sensor readings.
We would then be able to (and would pre-
fer to) make a decision based on the probabil-
ity Pr(d | s1, s2,h) instead of the probability
Pr(d | s1, s2), which again, is only an average
over possible mechanisms h. Consider for ex-
ample Table 1 which enumerates all nine causal
mechanisms. In only four of these cases does
the probability of the hypothesis pass the given
threshold (in bold), leading to the same deci-
sion. In the other five scenarios, a different deci-
sion would have been made. Clearly, the extent
to which this should be of concern will depend
on the likelihood of these last five scenarios. As
such, we propose to quantify the confidence in
our decision using the same-decision probability:
the probability that we would have made the
same decision had we known the causal mech-
anisms governing a sensor’s readings. For this
example, this probability is 0.975, indicating a
relatively robust decision.

3 Noisy Sensors

In this section, we show how we can augment a
sensor so that its causal mechanisms are mod-
eled explicitly. The ultimate goal is to construct
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models like the one in Table 1, which are needed
for defining the same-decision probability.

Consider a Bayesian network fragment X →
S, where S represents a sensor that bears on
variable X and suppose that both S and X take
values in {+,−}.1 Suppose further that we are
given the false positive fp and false negative fn
rates of the sensor:

Pr(S=+|X=−) = fp, Pr(S=−|X=+) = fn.

Our augmented sensor model is based on a func-
tional interpretation of the causal relationship
between a sensor S and the event X that it
bears on. This causal perspective in turn is
based on Laplace’s conception of natural phe-
nomena (Pearl, 2009, Section 1.4). In partic-
ular, we assume that the output of a sensor S
is a deterministic function that depends on the
state of X, and that the stochastic nature of
the sensor arises from the uncertainty in which
functional relationship manifests itself.

We propose to expand the above sensor model
into X → S ← H, where variable H is viewed
as a selector for one of the four possible Boolean
functions mapping X to S, which we ascribe the
labels {t, l, p, n}:

H X S Pr(S|H,X)
t + + 1
t − + 0
l + + 0
l − + 1

H X S Pr(S|H,X)
p + + 1
p − + 1
n + + 0
n − + 0

We observe that these Boolean function have
commonly used diagnostic interpretations, de-
scribing the behavior of a sensor. The state
H= t indicates the sensor is truthful, H= l in-
dicates it is lying, H=p indicates it is stuck
positive and H=n indicates it is stuck nega-
tive. Note that any stochastic model can be
emulated by a functional one, with stochastic
inputs (Pearl, 2009; Druzdzel and Simon, 1993).

To reason about our augmented sensor model
X → S ← H, we need to specify a prior distri-
bution Pr(H) over causal mechanisms. More-
over, we need to specify one that yields a model

1Our discussion focuses on sensors over binary vari-
ables, but generalizing to multi-valued variables is not
difficult; see also (Druzdzel and Simon, 1993).

equivalent to the original model X → S, when
variable H has been marginalized out:

Pr(S=+|X=−)
=
∑

H Pr(S=+|H,X=−)Pr(H) = fp (1)
Pr(S=−|X=+)
=
∑

H Pr(S=−|H,X=+)Pr(H) = fn (2)

There is not enough information in the given
Bayesian network to identify a unique prior
Pr(H). However, if we make some assumptions
about this prior, we may be able to pin down a
unique one. We make two such proposals here.

For our first proposal, assume that the proba-
bility Pr(H= l) that a sensor lies is zero, which
is a common assumption made in the diagnostic
community. This assumption, along with Equa-
tions 1 and 2, immediately commits us to the
following distribution over causal mechanisms:

H t p n l

Pr(H) 1− fp − fn fp fn 0

For our second proposal, consider the event
αp = {H=p∨H= l} which denotes the materi-
alization of a causal mechanism that produces a
false positive behavior by the sensor. That is, if
αp holds, the sensor will report a positive read-
ing when variable X is negative. Moreover, the
event αn = {H=n ∨H= l} denotes the materi-
alization of a causal mechanism that produces
a false negative behavior by the sensor. Now,
if we further assume that the false positive and
negative mechanisms of the sensor are indepen-
dent, we get Pr(αp, αn) = Pr(αp)Pr(αn). Since
αp, αn is equivalent to H= l, we now get

Pr(H= l) = fpfn. (3)

This assumption, with Equations 1 and 2, com-
mits us to the following CPT:

H Pr(H)
t (1− fp)(1− fn)
p fp(1− fn)
n (1− fp)fn
l fpfn

The assumption is similar to parameter inde-
pendence used in learning Bayesian networks
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Table 2: Causal mechanisms for sensor readings
s = {S1 =+, S2 =−} for the network in Fig. 1.
Cases above threshold T = 0.6 are in bold.

h H1 H2 Pr(h|s1, s2) Pr(d|s1, s2,h)
1 t t 0.268893 0.90
2 p t 0.298770 0.18
3 l t 0.029877 0.10
4 t n 0.298770 0.90
5 p n 0.066393 0.50
6 l n 0.003689 0.10
7 t l 0.029877 0.90
8 p l 0.003689 0.82
9 l l 0.000041 0.10

(Heckerman et al., 1995b).2 Interestingly, un-
der this assumption (and fp + fn < 1), as the
probabilities of H=p and H=n go to zero (i.e.,
the sensor does not get stuck), the probability
of H= l also goes to zero, therefore, implying
that the sensor must be truthful.

Note that the two assumptions discussed
above become equivalent as the false positive
and negative rates of a sensor approach zero.
In fact, as we shall illustrate later, the same-
decision probability is almost the same when
these rates are small, which is the more inter-
esting case. We stress here, however, that the
same decision-probability, as a notion, is inde-
pendent of the specific assumption adopted —
and so are the corresponding computational re-
sults we shall present later on computing and
bounding this probability.

4 Beliefs Based On Noisy Sensors

Suppose now that we have observed the values
of n sensors. For a sensor with a positive read-
ing, the three possible states are {t, l, p}, since
the probability Pr(H=n) that a sensor is stuck-
negative is zero when we have a positive reading.
Similarly, for a sensor with a negative reading,
the three possible states are {t, l, n}. Hence, we
have (at most) 3n sensor states that have non-
zero probability. Each one of these 3n states

2Namely, using a Dirichlet prior on the CPT of S
in the original model X → S would basically assume
independent false positive and false negative rates.

are causal mechanisms, and each refers to a hy-
pothesis about which sensors are truthful, which
are lying and which are irrelevant. Table 1 de-
picts the nine causal mechanisms corresponding
to two positive sensor readings in the network
of Figure 1. The table also depicts the posterior
distribution over these mechanisms, suggesting
that the overwhelming leading scenario is the
one in which the two sensors are truthful (h1).
Table 2 depicts the nine causal mechanisms as-
suming two conflicting sensor readings.

Given a reading s of sensors S, and letting h
range over the causal mechanisms, we now have:

Pr(d | s) =
∑
h

Pr(d | h, s)Pr(h | s) (4)

=
∑
h

Q(h)Pr(h | s).

We thus view the probability Pr(d | s) as an ex-
pectation E[Q(H) ] with respect to the distribu-
tion Pr(H | s) over causal mechanisms, where
Q(h) = Pr(d | h, s).

Table 1 depicts the posterior over causal
mechanisms given two positive sensor readings
in the network of Figure 1. We have Pr(D=+ |
S1 =+, S2 =+) = 0.880952 in this case, which
one can easily verify as also being the expec-
tation of Pr(D=+ | S1 =+, S2 =+,h) with re-
spect to the distribution Pr(h | S1 =+, S2 =+).
Table 2 depicts another posterior over causal
mechanisms given two conflicting sensor read-
ings. We have Pr(D=+ | S1 =+, S2 =−) =
0.631147 in this case.

5 Same-Decision Probability

As mentioned in the introduction, one is usu-
ally interested in making a decision depending
on whether the probability of some hypothesis
d is no less than some threshold T . Assum-
ing that we know the correct causal mechanism
h governing the sensors readings s, we clearly
want to make this decision based on whether
the probability Q(h) = Pr(d | s,h) is no less
than threshold T . However, as we usually do
not know the correct causal mechanism, we end
up averaging over all such hypotheses, leading
to the expectation Pr(d | s), and then making
a decision depending on whether Pr(d | s) ≥ T .
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Our interest now is in quantifying our con-
fidence in such a decision given that we do
not know the correct causal mechanism. Since
Q(H) is a random variable, we propose to quan-
tify such a confidence using the following, which
we call the same-decision probability:

P(Q(H) ≥ T ) =
∑
h

[Q(h) ≥ T ]Pr(h | s), (5)

where [Q(h) ≥ T ] is an indicator function that
is 1 if Q(h) ≥ T and 0 otherwise. This is the
probability that we would have made the same
decision had we known the correct causal mech-
anisms governing the sensor readings.

Consider now Equation 5 in relation to Equa-
tion 4. Both equations define expectations with
respect to the same distribution Pr(h | s). In
Equation 4, the resulting expectation is the
probability Pr(d | s). In Equation 5, the ex-
pectation is the same-decision probability. One
key difference between the two expectations is
that the one in Equation 4 is invariant to the
specific distributions used for variables H, as
long as these distributions satisfy Equations 1
and 2. However, the expectation in Equation 5
— that is, the same-decision probability — is
indeed dependent on the specific distributions
used for variables H.

Consider now Table 1, which corresponds to
two positive sensor readings in Figure 1. As-
suming a threshold of T = 0.60, a decision
is confirmed given that we have Pr(D=+ |
S1 =+, S2 =+) = 0.880952 ≥ T . We make the
same decision, however, in only four of the nine
causal mechanisms. These probabilities add up
to 0.975; hence, the same-decision probability
is 0.975. Consider now Table 2, which corre-
sponds to two conflicting sensor readings. The
decision is also confirmed here since Pr(D=+ |
S1 =+, S2 =−) = 0.631147 ≥ T . Again, we
make the same decision in four causal mech-
anisms, although they are now less likely sce-
narios. The same-decision probability is only
0.601229, suggesting a smaller confidence in the
decision in this case.

Although computing the same-decision prob-
ability may be computationally difficult, the
one-sided Chebyshev inequality can be used to

bound it. According to this inequality, if V is
a random variable with expectation E[V ] = µ
and variance Var[V ] = σ2, then for any a > 0:

P(V ≥ µ− a) ≥ 1− σ2

σ2 + a2

Recall now that the probability Pr(d | s) is an
expectation E[Q(H) ] with respect to the distri-
bution Pr(H | s), where Q(h) = Pr(d | h, s).
Suppose that E[Q(H) ] ≥ T and a decision
has been confirmed accordingly. The same-
decision probability is simply the probability of
Q(H) ≥ T , where Q(H) is a random variable.
Using the Chebyshev inequality, we get the fol-
lowing bound on the same-decision probability:

P(Q(H) ≥ T ) ≥ 1− Var[Q(H) ]
Var[Q(H) ]+[Pr(d|s)−T ]2

Suppose now that E[Q(H) ] ≤ T and a deci-
sion has been confirmed accordingly. The same-
decision probability in this case is the probabil-
ity of Q(H) ≤ T . Using the Chebyshev inequal-
ity now to bound P(V ≤ µ + a), we get the
same bound for the same-decision probability
P(Q(H) ≤ T ). To compute these bounds, we
need the variance Var[Q(H) ]. We provide an
algorithm for this purpose in the next section.

6 Computing the Variance

Let S and H be any two disjoint sets of variables
in a Bayesian network, with neither set contain-
ing variable D. The probability Pr(d | s) can be
interpreted as an expectation of Q(h) = Pr(d |
s,h) with respect to a distribution Pr(h | s).
We propose in this section a general algorithm
for computing the variance of such expectations.

Consider now the variance:

Var[Q(H) ] = E[Q(H)2 ]− E[Q(H) ]2

=
[∑

h

Pr(d | h, s)2Pr(h | s)
]
− Pr(d | s)2

We need two quantities to compute this vari-
ance. First, we need the quantity Pr(d | s),
which can be computed using standard algo-
rithms for Bayesian network inference, such as
variable elimination (Zhang and Poole, 1996;
Dechter, 1996; Darwiche, 2009). The other
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Algorithm 1 Variance by Variable Elimination

input:
N : a Bayes net with distribution Pr
D, d: decision variable and decision state
S, s: set of sensor variables and readings
H: set of health variables for sensors S

output: a factor that contains
∑

h
Pr(d,h,s)2

Pr(h,s)

main:
1: S1 ← factors of N under observations d, s
2: S2 ← factors of N under observations s
3: Y ← all variables in N but variables H
4: π ← an ordering of variables Y
5: S1 ← ve(S1,Y, π)
6: S2 ← ve(S2,Y, π)
7: S ← {χa | χa = φ2

a
ψa

for φa ∈ S1, ψa ∈ S2}
8: π ← an ordering of variables H
9: S ← ve(S,H, π)

10: return
∏
ψ∈S ψ

quantity involves a summation over instantia-
tions h. Naively, we could compute this sum
by simply enumerating over all instantiations h,
using again the variable elimination algorithm
to compute the relevant quantities for each in-
stantiation h. However, the number of instan-
tiations h is exponential in the number of vari-
ables in H and will thus be impractical when
the number of such variables is large enough.

However, with a suitably augmented vari-

Algorithm 2 Variable Elimination [ve]

input:
S: set of factors
Y: variables to eliminate in factor set S
π: ordering of variable Y
output: factor set where variables Y are elim-
inated
main:

1: for i = 1 to length of order π do
2: Si ← factors in S containing variable π(i)
3: ψi ←

∑
π(i)

∏
ψ∈Si

ψ
4: S ← S − Si ∪ {ψi}
5: return S

able elimination algorithm, we can compute this
summation more efficiently, and thus the vari-
ance. First, consider the following alternative
form for the summation:∑

h Pr(d | h, s)2Pr(h | s) = 1
Pr(s)

∑
h

Pr(d,h,s)2

Pr(h,s) .

Note that the term Pr(s) is readily available
using variable elimination and can be computed
together with Pr(d | s). Hence, we just need
the sum

∑
h

Pr(d,h,s)2

Pr(h,s) , which, as we show next,
can be computed using an augmented version of
variable elimination.3

Let Y denote all variables in the Bayesian
network excluding variables H. If we set evi-
dence s and use variable elimination to sum out
variables Y, we get a set of factors that rep-
resents the following distribution: Pr(H, s) =∏
a ψa(Xa). Here, ψa are the factors remain-

ing from variable elimination after having elim-
inated variables Y.

We can similarly run the variable elimina-
tion algorithm with evidence s, d to obtain a
set of factors whose product represents the fol-
lowing distribution: Pr(H, d, s) =

∏
a φa(Xa).

Using the same variable ordering when elimi-
nating variables Y, we can ensure a one-to-one
correspondence between factors in both factor-
izations: each pair of factors ψa and φa will be
over the same set of variables Xa for a given
index a. For each instantiation h, d, s, we have

Pr(h, d, s)2

Pr(h, s)
=
∏
a

φa(xa)2

ψa(xa)
,

where xa is an instantiation of variables Xa con-
sistent with instantiation h, d, s. We now com-
pute a new set of factors χa(Xa) = φa(Xa)

ψa(Xa) and
run the variable elimination algorithm a third
time to eliminate variables H from the factors
χa(Xa). The result will be a trivial factor that
contains the quantity of interest.4

3Formally, our summation should be over instantia-
tions h where Pr(h, s) > 0. Note that if Pr(h, s) = 0
then Pr(d,h, s) = 0. Hence, if we define x/0 = 0, then
our summation is simply over all instantiations h. In
Algorithm 1, we thus define factor division such that
φa(xa)2/ψa(xa) = 0 when ψa(xa) = 0.

4According to the formulation of variable elimination
in (Darwiche, 2009), a trivial factor is a factor over the
empty set of variables and contains one entry. It results
from eliminating all variables from a set of factors.
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X1
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X3

Sa
1 Sb

1

Sa
2 Sb

2

Sa
3 Sb

3

Ha
1 Hb

1

Ha
2 Hb

2

Ha
3 Hb

3

D Pr(D)
+ 0.25
− 0.75

D X1 Pr(X1|D)
+ + 0.9
+ − 0.1
− + 0.1
− − 0.9

Figure 2: All sensors have fp = fn = .05. Vari-
ables Xi all have the same CPTs.

Algorithm 1 provides pseudo-code that im-
plements this procedure. Note that on Line 7,
there is a one-to-one correspondence between
the factors of S1 and S2 as we have a one-to-
one correspondence between the factors passed
to ve(S1,Y, π) and ve(S2,Y, π), and since each
call eliminates the same set of variables using
the same variable order. Algorithm 1 must
eliminate variables H last, so the complexity of
the algorithm is exponential in the constrained
treewidth (Darwiche, 2009). This is analogous
to the complexity of variable elimination for
computing MAP, where variables H are MAP
variables (Park and Darwiche, 2004).

7 Examples

Consider the Bayesian network in Figure 2,
which depicts a chain D,X1, X2, X3 with two
sensors Sai and Sbi attached to each node Xi.
Our goal here is to make a decision depend-
ing on whether Pr(D=+ | s) ≥ T for some
sensor reading s and threshold T = 0.5. We
will next consider a number of sensor readings,
each leading to the same decision but a differ-
ent same-decision probability. Our purpose is
to provide concrete examples of this probabil-
ity, and to show that it can discriminate among
sensor readings that not only lead to the same
decision, but also under very similar probabili-
ties for the hypothesis of interest. The examples
will also shed more light on the tightness of the
one-sided Chebyshev bound proposed earlier.

Our computations in this section assume
the independence between the mechanisms gov-

erning false positives and negatives, which is
needed to induce a distribution over causal
mechanisms (as in Section 3). We also pro-
vide the results under the second assumption
proposed where the lying causal mechanism has
zero probability (in brackets). As we discussed
earlier, we expect the two results to be very
close since the false positive and negative rates
are small, which is confirmed empirically here.

We start by observing that Pr(D=+) =
25%. Suppose now that we have a positive read-
ing for sensor Sa2 . We now have the hypothesis
probability Pr(D=+ | Sa2 =+) = 55.34% and
the decision is confirmed given our threshold.
The same-decision probability is 86.19%. From
now on, we will say that our decision confidence
is 86.19% in this case.

The following table depicts what happens
when we obtain another positive sensor reading.

Scenario 1 Scenario 2

sensor readings Sa
2 =+ Sa

2 =+ Sb
2 =+

hyp. prob. 55.34% 60.01%
dec. conf. 86.19%[85.96%] 99.22%[99.19%]

Note how the decision confidence has increased
significantly even though the change in the hy-
pothesis probability is relatively modest. The
following table depicts a scenario when we have
two more sensor readings that are conflicting.

Scenario 2 Scenario 3

readings
Sa

1 =+, Sb
1 =−

Sa
2 =+, Sb

2 =+ Sa
2 =+, Sb

2 =+
hyp. prob. 60.01% 60.01%
dec. conf. 99.22%[99.19%] 79.97%[80.07%]

Note how the new readings keep the hypothesis
probability the same, but reduce the decision
confidence significantly. This is mostly due to
raising the probability of some causal mecha-
nism under which we would make a different
decision. The following table depicts a conflict
between a different pair of sensors.

Scenario 3 Scenario 4

readings
Sa

1 =+, Sb
1 =−

Sa
2 =+, Sb

2 =+ Sa
2 =+, Sb

2 =+
Sa

3 =+, Sb
3 =−

hyp. prob. 60.01% 60.01%
dec. conf. 79.97%[80.07%] 99.48%[99.48%]

In this case, the sensor conflict increases the
same-decision probability slightly (from 99.22%
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in Scenario 2 to 99.48%).5 The next example
shows what happens when we get two negative
readings but at different sensor locations.

Scenario 5 Scenario 6

readings
Sa

1 =−, Sb
1 =−

Sa
2 =+, Sb

2 =+ Sa
2 =+, Sb

2 =+
Sa

3 =−, Sb
3 =−

hyp. prob. 4.31% 57.88%
dec. conf. 98.73%[98.70%] 95.25%[95.23%]

When the negative sensors are close to the hy-
pothesis, they reduce the hypothesis probabil-
ity significantly below the threshold, leading to
a high confidence decision. When the readings
are further away from the hypothesis (and domi-
nated by the two positive readings), they reduce
the hypothesis probability, yet keep it above
the threshold. The decision confidence is also
reduced, but remains relatively high. Finally,
consider the table below which compares the de-
cision confidence, the bound on the confidence,
and the variance used to compute the bound.

Scenario confidence bound variance
1 86.19% ≥ 15.53% 1.54 · 10−2

2 99.22% ≥ 90.50% 1.05 · 10−3

3 79.97% ≥ 11.05% 8.06 · 10−2

4 99.48% ≥ 88.30% 1.32 · 10−3

5 98.73% ≥ 98.02% 4.22 · 10−3

6 95.25% ≥ 34.73% 1.16 · 10−2

Note that our decision confidence is high when
our bound on the same-decision probability is
high. Moreover, the one-sided Chebyshev in-
equality may provide only weak bounds, which
may call for exact computation of the same-
decision probability. We computed this quan-
tity through exhaustive enumeration here, yet
an algorithm that is exponential only in the con-
strained treewidth could open new possibilities
for reasoning about threshold-based decisions.

8 Conclusion

We considered in this paper the robustness of
decisions based on probabilistic thresholds un-
der noisy sensor readings. In particular, we sug-
gested a confidence measure for threshold-based
decisions which corresponds to the probability

5Knowing that sensor Sb
3 is lying, or that Sa

3 is telling
the truth, is enough to confirm our decision given our
threshold. The conflicting sensor readings thus introduce
new scenarios under which the decision is confirmed, al-
though these scenarios are very unlikely.

that one would have made the same decision
if one had knowledge about a sensor’s causal
mechanisms. We used the one-sided Chebyshev
inequality to bound this probability, which re-
quires computing the variance of a conditional
probability with respect to the marginal distri-
bution over a subset of network variables. We
also proposed a variable elimination algorithm
for computing this variance, whose complexity
is exponential only in the constrained treewidth
of the given network. We finally provided a
number of concrete examples showing the utility
of our proposed confidence measure in quantify-
ing the robustness of threshold-based decisions.
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