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Abstract

The Dirichlet distribution is a statistical model that is deeply entrenched in the theory
and practice of learning and reasoning in Bayesian networks. While it is mathematically
convenient in certain situations, it imposes computational challenges in others, such as
in Bayesian parameter learning under incomplete data. We consider in this paper a
discretized variant of the continuous Dirichlet distribution. We show first how one can
model such a distribution compactly as a Bayesian network, which can be used as a sub-
model in other Bayesian networks. We analyze some of its theoretical properties, relating
the discrete variant to the original continous density. We further show how to represent
and perform exact inference efficiently in this model. We finally discuss some implications
that a discrete Dirichlet model may have in enabling the design of more sophisticated

models, and in enabling new ways to reason about them.

1 Introduction

Bayesian networks are prevalent in the artificial
intelligence and computer science communities,
and in these domains, the natural model is of-
ten the one over discrete variables. Driven by
the need to reason in these models, a significant
body of research has developed, giving rise to ef-
fective and powerful algorithms for both exact
and approximate inference in discrete Bayesian
networks (Darwiche, 2009).

In contrast, for the task of learning Bayesian
networks, one typically requires continuous vari-
ables representing, for example, possible net-
work parametrizations. The Dirichlet is a pop-
ular model for such distributions, and has cer-
tainly been the most influential distribution in
Bayesian learning (DeGroot, 1970; Heckerman,
1998). While they can be mathematically con-
venient in certain cases, the use of the Dirichlet
distributions can pose a computational barrier
In particular, the Dirich-
let distribution is the conjugate prior for the
parameters of a multinomial distribution, and
in the task of Bayesian parameter learning, a
Dirichlet prior leads to a Dirichlet posterior,
given complete data. However, in the case of in-

in other situations.

complete data, the posteriors are in general no
longer Dirichlet. To compute these posteriors,
we must marginalize over the hidden variables,
leading to a mixture of Dirichlets, which is both
analytically and computationally prohibitive.!
In such cases, we may appeal to variational ap-
proximations or Gibbs sampling, or otherwise
settle for maximum a Posteriori (MAP) param-
eter estimates (Heckerman, 1998).

Considering the vast body of research on rea-
soning in discrete models, and considering fur-
ther the increasing availability of computational
resources (in the form of many-core and mas-
sively parallel architectures, distributed com-
puting, cloud computing, etc.), posing such
problems in fully-discrete approximations may
become a compelling alternative. Towards this
end, we consider in this paper a discretized vari-
ant of the Dirichlet distribution. A naive dis-
cretization of this domain would enumerate a
set of candidate distributions, which may be
coming from a high-dimensional space. In con-

!Drawing samples from a Dirichlet distribution is an-
other difficulty, where in practice, approaches based on
rejection sampling are often used. This is another case
where a discrete Dirichlet has been considered as an al-
ternative to the continuous one (Matsui et al., 2010).



trast, we propose a natural but compact repre-
sentation of this domain that can be encoded
directly as a Bayesian network, allowing it to
be embedded naturally in other Bayesian net-
work models. We further show that this dis-
crete Dirichlet sub-model is further amenable
to exact inference, via a specialized belief prop-
agation procedure which we describe.

We also analyze the theoretical properties of
this discrete Dirichlet model, relating it to the
original continuous distribution. We conclude
by discussing some of the advantages, in terms
of both modeling and reasoning, that present
themselves by assuming a discrete representa-
tion of Dirichlet priors.

2 Preliminaries

Let X be a random variable taking on k pos-
sible values x;. Let the distribution over X be
parametrized by a vector Ox = (0s,,...,04,),
where each 6,, is a probability and ), 0,, = 1.
We shall refer to #x as a parameter set and
each 0., as a parameter. Given a specific pa-
rameter set #x we thus have the probability
Pr(X=z; | 0x=(0g,,...,0z,)) = 05,. Note
that when the symbol 6., appears in the con-
text of Ox, it refers to the i-th component of
the parameter set 0x .

The Dirichlet distribution is the one typically
used to specify a prior probability density over
parameter sets 0x:

k
p(HX:(Hxl,...,GIk)) = nH[ewi]wziil (1)
i=1

where the exponents 1, are hyper-parameters
of the Dirichlet, and 7 is a normalizing constant:
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where I' is the gamma function.

We next present a discrete approximation of
the Dirichlet distribution and discuss some of
its properties and advantages in later sections.

3 A Discretized Dirichlet

Suppose we discretize the space of a parameter
set 0x = (0g,,...,0s,) so that each parameter

O

Figure 1: A Bayesian network model for a dis-
crete Dirichlet distribution.
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6, takes a value from a finite set €2, of proba-
bilities. Let 2x be the values of parameter set
Ox = (0g,,...,0z,) such that each 6, € Qg
and 0, +... 4+ 0;, = 1. We can now define a
discrete analogue of the Dirichlet distribution:

k

: 79-Tk)) = /GH [gﬂﬁi]wzi_l (2)

i=1

PT(QX:(HM, .

for Ox € Qx where 3 is a normalizing constant.
The exponents 1, are the hyper-parameters of
the now discrete Dirichlet distribution.?

3.1 A Bayesian Network Micro-Model

We present now a Bayesian network micro-
model of the discrete analogue of the Dirichlet
we just described. This network fragment can
be embedded in any other discrete Bayesian net-
work model, and may be augmented further as
dictated by any prior knowledge available.

Let X be a variable with k values z1, ..., zp,
and that we want to specify a prior over its dis-
tribution. Figure 1 illustrates an example of our
model. We model each parameter 6, of the pa-
rameter set Ox = (0,,...,05,) as marginally
independent root variables. These parameter
variables serve as the prior for the CPT parame-
ters of variable X. We include another observed
variable S that enforces a constraint that the
parameter set fx normalizes to sum to one.

2Note that others have also investigated discretiza-
tions of the Dirichlet for other purposes, such as (Mat-
sui et al., 2010), who were interested in drawing samples
from a discrete Dirichlet. In contrast, we propose next
an explicit Bayesian network representation, and in Sec-
tion 5 we provide an exact inference algorithm for it.



First, each root variable 6,, has values in €2,
having the following CPT:

Pr(0z,) = o, [Hxi]wzfl7

where a,, is a normalizing constant:

ag, =1/ Y (0]

00, €%,

Next, variable X has values in {xy,...,zx, L},
where | is a new distinguished state capturing
invalid distributions that do not sum to one. Its
CPT is as follows:

o If 0, +...+0; =1, then

P?”(XIZL‘Z‘ ’ 91«1, .

, 0z, ) = 0, for all x;
Pr(X=110.4,...,0

cylz,) =0
o If otherwise 6, + ...+ 0,, # 1, then

Pr(X=xz;| 0.,

,0z,) =0 for all z;
Pr(X=1]0,,, 0

vxk)zl

Finally, variable S has two values: T represent-
ing valid parameter sets, and L representing in-
valid parameter sets. Its CPT is as follows:

PT’(SZT ’ XZ.%'Z')
Pr(S=1|X=x) = 0

for all z;, and

Pr(S=T|X=1) = 0
Pr(S=Ll]|X=1) = 1

The observation S=T represents a constraint
that parameter sets 6x must be valid, forcing
invalid parameter sets to have probability zero.

In the extended paper, we prove the following
key property of our proposed micro-model:

k

799% | S:T) = ﬁH [gﬁvi]wziil (3)
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Pr(0y,,...

which is precisely the distribution given in
Equation 2. This basically shows that once

we condition our micro-model on the observa-
tion S=T, the model induces a discrete Dirich-
let distribution on parameter sets. We exam-
ine the properties of this distribution further in
Section 4, where we show how it resembles the
continuous Dirichlet distribution in key aspects.

Before we proceed, we make some observa-
tions. First, observe that a naive discretiza-
tion would enumerate a finite set of parameter
sets Ox = {0u,,...,0s,}, which require an in-
tractably large selection to achieve a reasonable
coverage of the domain Qx. Although our vari-
able X has k parents, one for each parameter
0,, and the CPT has a number of entries that
is exponential in k, our representation remains
compact as we may leave the CPT of X defined
implicitly. Moreover, as our micro-model has a
polytree structure, we can in fact perform infer-
ence efficiently in this implicit representation,
as we show in Section 5.

3.2 An Example

Consider again our example from Figure 1. We
have assumed a random variable X with four
states 1, ..., x4, and a distribution over X has
four parameters in its parameter set:
(0zyy-..,0z,). Suppose then that each param-
eter can take on one of the n = 10 values in
0z, = {0.1,0.2,...,1.0}. Indeed, we can think
of % as a discretization granularity, and define
parameter domains such as Q,, = {2 | a €
{1,2,...,n}}. Using an exponent 1,, = 1, we
have the prior distribution over parameter val-
ues Pr(0;,=p) = 0.1 for all p € Q,. Using an
exponent 1, = 2, we have the prior distribution

Pr(0,,=p) = a-p where a = 312 15 = 5.5.

Ox =

4 Properties of the Discrete
Dirichlet

In this section, we examine the properties of
the discrete Dirichlet distribution of Equation 3,
comparing it to the original continuous distri-
bution of Equation 1. In particular, one of our
goals here is to confirm that the discrete Dirich-
let distribution behaves in a natural way, as
compared to the continuous version that it is
based on. When we make use of the original
continuous Dirichlet, we refer to a density p,



and when we make use of the discrete version,
we refer to a distribution Pr.

Expected Value. The first property of our
micro-model is its ability to explicitly represent
the expected value of each parameter 6, ;, which
is known as the Bayesian estimate (Heckerman,
1998). In particular, we prove the following in
the extended paper:

EX[ij] =Pr(X=z;|5=T)
= > O, -Pr(fx|S=T)

Gxeﬂx

which shows that we can recover the Bayesian
estimates of our parameter set fx directly from
the distribution of variable X conditioned on
observation S=T.

Expected Value: An Exact Case. In gen-
eral, the expected value of a parameter ¢, from
the discrete Dirichlet is only an approximation
for that of the continuous Dirichlet. However,
in the special case that the Dirichlet exponents
are all the same exponent 1, the expected value
is the same under both distributions:

(I 0 1
EX[ex]] 25:1 T,Z)xz k- ¢ k
which yields a parameter set 6x that is uni-
form.? Note that this holds even in the case the
discretization does not admit a uniform param-
eter set (ie., + ¢ Qy,); we will see an example
of this in Section 5.1.

Observed Data. Suppose now that we have
a data set D where we have observed N cases,
with N; cases observed for each value x; of vari-
able X. In the continuous case, we have the
posterior Dirichlet:

k
Nv',+ ac-_l
p(0x | D) o [T [0
i=1
which is a Dirichlet with exponents N; +1,,. In
the discretized case, assume that we have repli-
cated instances of the X variable, each shar-
ing the same parents in parent set fx. In the
3To sketch the proof, we note that if Y, = s, then
0., and sz are not otherwise distinguishable, so 1t must
be that the distribution Pr(f,, | S=T) is equivalent

to the distribution Pr(6,, | S=T). By Equation 7, it
follows that Ex[0.,] = Exf@z ] for all z;,x;.

J

extended paper, we show the following for the
discrete case

k
Pr(0x | D) oc [ ] 0¥
i=1
which is a discrete Dirichlet with exponents
N; + 1), therefore, resembling the continuous
distribution in this case.

Remember at this point that if we were us-
ing the Dirichlet for Bayesian parameter learn-
ing under incomplete data, the posterior is in
general not Dirichlet. Analogously, if we had
used a discrete Dirichlet. On the other hand,
the posterior in this latter case is still a discrete
distribution, which leaves us with more options
in terms of performing exact and approximate
inference, as we shall discuss in the next section.

5 Inference in a Discrete Dirichlet

In Section 3, we proposed an efficient represen-
tation for a discrete Dirichlet distribution, as-
suming that the CPT of variable X is implic-
itly defined. Taking advantage of the fact that
the network fragment is a polytree, and that we
can leave the CPT of X implicit, we propose
a belief propagation (BP) algorithm for exact
inference in our sub-model. The corresponding
message update equations can then be used in
a general belief propagation procedure for per-
forming (possibly approximate) inference in a
Bayesian network with discrete Dirichlet sub-
models. The inference procedure we describe
may also be used in other inference frameworks,
which we will discuss later in this section.

Our presentation will be similar in spirit to
inference using noisy-or CPTs. The noisy-or
model also has a compact representation that
is linear in the number of parents, and has an
efficient belief propagation procedure for per-
forming inference (Pearl, 1988, Section 4.3.2).

First, consider the following forms for the
message updates required for performing belief
propagation (BP) (Pearl, 1988):

mx(0z;) = Pr(0z;) (4)
Ax(0x;) = > [Tx@.) )

(0101 7~~~79mj 7-~~791k)EQX 175]



Here, mx(0:,) is the message passed from pa-
rameter node . to its child X, and Ax(0y,)
is the message that X passes to its parent 6.
Using these messages, we can compute the pos-
terior marginals:

Pr(6y,|S=T) o 7x (02,)Ax (6a,) (6)
Pr(X=u;|S=T) = 0. Pr(6s;|S=T) (7)

The key computational component in this pro-
cedure is for the message Ax(0.,), which re-
quires an efficient evaluation of terms of the fol-
lowing form:

fapy= > J]rx6:) (8)

b
9X1€Qx, el

Here, I is an index set I C {1,...,k} that se-
lects a subset of the states z; of variable X.
Moreover, parameter set 6y, contains the se-
lection of parameters 0,, for each index 7 € I.
Finally, Q&I denotes the domain of parame-
ter sets fx, that sum to p, ie., O0x, € Qg(j
iff 3 ,c;02, = p. For the case of Equation 5,
I'={1,...;k}\jand p=1—10,,.

We sketch in Appendix A how to compute
these summations efficiently. More specifically,
suppose that we have k parameters 6,,, and we
have n possible parameter values, i.e., [Q;.| = n.
We sketch in the Appendix how all messages
Ax(0z,) can be computed in time O(k - n?),
which is polynomial and avoids the exponential
(in k) computation required by standard belief
propagation. In an extended version of the pa-
per, we show how one can compute BP mes-
sages when this model is embedded in a network
where X has parents and children. The compu-
tation of these messages are similar in spirit,
and also rely primarily on Equation 8.

To conclude this section, we remark that the
inference equations we have identified in this
section (together with more general ones in an
extended version) can be used to perform in-
ference in a general Bayesian network that has
discrete Dirichlet sub-models embedded in it.
If this Bayesian network is also a polytree, the
equations can be used to perform exact infer-
ence using belief propagation, where we apply

updates according to Equations 4 and 5 for mes-
sages passed along edges in our discrete Dirich-
let sub-model. Analogously, we can perform
approximate inference in a network that is not
a polytree, by using loopy belief propagation
(Yedidia et al., 2003). These exact computa-
tions may also be used in approximate inference
frameworks based on performing exact inference
in approximate networks, such as variational
approximations (Jaakkola, 2001), and general-
izations of belief propagation based on struc-
tural relaxations (Choi and Darwiche, 2006;
Choi and Darwiche, 2009). The latter approach,
in particular, could assume a structural relax-
ation where discrete Dirichlet sub-models are
independent (where the relaxation is later com-
pensated for). In such an approach, one needs
only to perform exact inference independently
in each discrete Dirichlet sub-model.

5.1 Examples

Consider again our example from Figure 1 and
Section 3.2, where we are now interested in
the distribution Pr(fx | S=T) over parameter
sets, and the expected parameter values Ex[0x]
implied by it. Assuming we have Dirichlet ex-
ponents v, = 1 for all four z;, we have the
following distribution over parameter values:

0., | Pr(0s, | S=T) 6, | Pr(6,, | S=T)
0.1 33.33% 0.6 3.57%
0.2 25.00% 0.7 1.19%
0.3 17.86% 0.8 0.00%
0.4 11.90% 0.9 0.00%
0.5 7.14% 1.0 0.00%

for all four x;. Note that since each parameter
0., must be at least 0.1, and there are four pa-
rameters 6,, it is not possible for a parameter
to have a value of 0.8, 0.9 or 1.0. The expected
parameter values (the Bayesian estimates) are:

Ex[0r]= Y 04 -Pr(6x|S=T)=025
Ox€eNx

for all x;, which is the uniform distribution, and
also the expected parameter values given by the
original continuous Dirichlet.

As another example, if we have Dirichlet ex-
ponents 1, = 2, we have the following distri-
bution over parameter values:



On, | Pr(6,, | S=T) 6 | Pr(6, | S=T)
0.1 26.92% 0.6 2.10%
0.2 29.37% 0.7 0.41%
0.3 22.03% 0.8 0.00%
0.4 13.05% 0.9 0.00%
0.5 6.12% 1.0 0.00%

and again we have the parameter estimates
Ex[0x] = (25%,25%, 25%,25%), as would be
given by the continuous Dirichlet. Since this
is a small example, we can also compute the
MAP estimates argmax, Pr(0x | S=T), us-
ing a generic MAP algorithm, such as (Park and
Darwiche, 2004). For the continuous Dirich-
let, the expected value Ex[fx] with respect to
density p(fx) is equivalent to the MAP esti-
mates argmax, p(fx), in this case. The dis-
crete Dirichlet’s MAP estimates are not unique
here: there are (;1) = 6 MAP estimates for the
discrete Dirichlet, each having two parameters
0z, = 20.0% and two parameters 6., = 30.0%.
This is due, however, to the particular dis-
cretization we used which cannot represent a
uniform distribution. If we use, e.g., 20 discrete
states, the discrete Dirichlet has a unique and
uniform MAP estimate.

Suppose now we have exponents (1,2,3,4).
The continuous Dirichlet yields expected pa-
rameter values Ex[0x] = (10%, 20%, 30%, 40%).
Varying the number of discrete states n used
in our discretization, we arrive at the following,
increasingly accurate parameter estimates from
the discrete Dirichlet (compared to the contin-
uous ones):

n=10 (15.05%, 20.11%, 27.86%, 36.98%)
n=20 (12.38%, 19.77%, 29.08%, 38.77%)
n=50 (10.92%, 19.84%, 29.67%, 39.56%)
n=100 (10.46%, 19.91%, 29.84%, 39.79%)
n=1000 (10.05%, 19.99%, 29.98%, 39.98%)

Note that by n = 47 (not shown), the maximum
absolute error is less than 1%.

Consider now a network x — X — Z where
fx is a continuous Dirichlet, and where we have
observed Z=7z. Note that if X is unobserved,
the posterior p(fx | Z=z) is in general only a
mixture of Dirichlet’s, which are generally un-
wieldy, both analytically and computationally
(Heckerman, 1998). In contrast, if we represent
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Figure 2: The error introduced by discretiza-
tion. On the z-axis, we vary the number of dis-
crete states (in powers of 2), and on the y-axis
we vary the strength of the link X — Z.

this network using our discrete Dirichlet, each
variable 0,, in our parameter set is just another
discrete variable in a discrete Bayesian network,
which we can approach using many of the tools
and algorithms available to us, such as belief
propagation, as we described earlier. In this
sense, the discrete Dirichlet yields an approxi-
mation to the above mixture of Dirichlet’s.

We evaluate the quality of this approxima-
tion in Figure 2, which depicts the absolute
maximum error seen in the discrete Dirichlet’s
parameter estimates as compared to those ob-
tained from the mixture of continuous Dirich-
lets. We assume here that variable X has two
states and that we have observed only Z=z.
We vary: (1) on the horizontal axis, the num-
ber of discrete states n used for the parameter
domains Qg, = {% | a € {1,2,...,n}}; and (2)
on the vertical axis, the strength of link X — Z:

Pr(Z=z|X=ux)
log
Pr(Z=z|X=ux9)

which is the log Bayes factor for the event
X =1z and observation Z =z. Note that for the
continuous Dirichlet, we have only one hidden
variable X, so it is still tractable to enumerate
over all cases X =x; to compute p(fx | Z=z2).

In Figure 2, we plot the contours where the
number of discrete states n and the log Bayes



factor yield a maximum absolute error of E, for
different errors FZ2. We used Dirichlet exponents
Yy, = 1 and ¢, = 1. We observe a few gen-
eral trends. First, as we increase the number of
discrete states n, we find the error decreases, as
expected. Second, as we increase the strength of
the link X — Z, we find that the error tends to
increase. Third, if the link X — Z is vacuous,
the discrete Dirichlet’s parameter estimates are
exact (they recover the uniform distribution).
We note also that using only 2° = 32 discrete
states, the errors E for the range of y considered
are below 1%.

6 Discussion

Continuous distributions (such as Dirichlet and
logistic normal distributions) have been an in-
tegral part of learning Bayesian networks. The
use of continuous distributions, however, can
limit both the scalability and representational
power of these models. On scalability, these
distributions constrain the class of algorithms
one can use to perform learning and inference
with the models. On the representational side,
they provide restrictions on what can be mod-
eled as the result must fit into one of the known
distributions (such as Dirichlet).

A sound and principled procedure for design-
ing purely, or more, discrete models could po-
tentially broaden the use and scope of learn-
ing. Topics models are a particularly relevant
example (Blei and Lafferty, 2009), where there
is significant interest in augmenting and design-
ing new models, to enable new analysis and
queries. One of the challenges, however, is that
one generally needs to design new algorithms
for learning and inference when one is dealing
with a new or augmented model. In contrast,
consider two points: (1) practitioners are al-
ready in general well-versed in discrete model-
ing, and would more easily be able to incor-
porate prior knowledge for their particular ap-
plications (Niculescu, 2005), and (2) there is a
great body of research devoted to reasoning in
discrete Bayesian networks that we can imme-
diately take advantage of.

In this paper, we have laid some of the

Figure 3: Another micro-model, enforcing the
constraint that parameters 6., sum to one. We
maintain the cumulative sum of the parameters
0., in the variables s;,. We clamp the end of
the chain s, to 1 as evidence. The state 1 now
indicates a sum that has surpassed the value 1.

groundwork for a discrete model of the Dirich-
let distribution, targeting the longer-term goals
of developing compelling alternatives for learn-
ing and modeling Bayesian networks. Given the
Bayesian network micro-model for the Bayesian
network, and the exact and efficient algorithm
for reasoning in it, we are now in a position to
start developing new learning algorithms, for-
mulated in terms of performing (approximate)
inference in a meta-network for Bayesian pa-
rameter learning (Darwiche, 2009), as we dis-
cussed in Section 5.

A Inference: Proof Sketch

We sketch here how to efficiently compute the
messages Ax (0;;) of Equation 5, which is the
central computational component for perform-
ing exact inference in the discrete Dirichlet sub-
model. Our approach is based on message pass-
ing in an augmented network where every node
has at most two parents. Consider first a net-
work where we marginalize out variable X:

Pr(S=T |6x)=> Pr(S=T|X)Pr(X | x)

X
= > Pr(X|6x)

X£L

since Pr(S=T | X=1) = 0, and 1 otherwise
for all X =x;. If 0x € Qx (it sums to one), then

k k
Y Pr(X=xi|0x)=> 0, =1
=1

=1



and zero otherwise (when 0x ¢ Qx). Variable
S now has parameter nodes 6., as direct par-
ents. We now augment the variable S, which
enforces the sum-to-one constraint, into a chain
that enforces this constraint by accumulating
the sum of the parameters 6,,; see Figure 3.
Here, Pr(sy, | Sz, 1,0z,) = 1iff 84, = S5, +0z,,
and Pr(sg, | 0z,) =1 iff s5, = 0,,.

Consider now a message passed from s, to
Sz41, for some 1 <i < k:

7r3xi+1 (Sil'i )

= Z ZPT(5w¢|3w¢71aewi)ﬂszi(sxiq)ﬂszi(em)
Sw;_q 9051‘

= Z s, (Cr )Wszi (0z;) (9)

s2;_1 T02; =50,

since Pr(sg, | Sy y,0z,) = 01if 55, | + 6y, #

Sz;- By recursively substituting this equation

for messages s, (sz,_,), we find that:

Z H Msa; (99”1)

Tswsiq (82:) =

which is a summation of the form in Equation 8.
We can then compute Equation 8 for a given [
and p by permuting the variables in our net-
work so that indices I appear at the head of the
chain. To compute all of the messages of Equa-
tion 5, however, we need only perform message-
passing once in the network of Figure 3, since
one can show that the messages A5, (65,) will
be the messages Ax(0,) that we desire.

Computing a message takes (at most) O(n)
time for each of its O(n) entries (as in Equa-
tion 9). There are 2k — 1 edges in this model,
so to compute all messages of Equation 8, we
require only O(k - n?) time.
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