
7

Inference in Bayesian Networks: A Historical Per-
spective
ADNAN DARWICHE

1 Introduction
Judea Pearl introduced Bayesian networks as a representational device in the early 1980s,
allowing one to systematically and locally assemble probabilistic beliefs into a coherent
whole. While some of these beliefs could be read off directly from the Bayesian network,
many were implied by this representation and required computational work to be made
explicit. Computing and explicating such beliefs has been the subject of much research
and became known as the problem of inference in Bayesian networks. This problem is
critical to the practical utility of Bayesian networks as the computed beliefs form the basis
of decision making, which typically dictates the need for Bayesian networks in the first
place.

Over the last few decades, the interest in inference algorithms for Bayesian networks re-
mained great and has witnessed a number of shifts in emphasis with regards to the adopted
computational paradigms and the type of queries addressed. My goal in this paper is to
provide a historical perspective on this line of work and the associated shifts, where we
shall see the key role that Judea Pearl has played in initiating and inspiring many of the
technical developments that have formed and continue to form the basis of work in this
area.

2 Starting with trees
It all began with trees — and polytrees! These are network structures that permit only
one undirected path between any two nodes in the network; see Figure 1. If each node
has at most one parent, we have a tree. Otherwise, we have a polytree. Pearl’s first infer-
ence algorithm — and the very first algorithm for Bayesian networks — was restricted to
trees [Pearl 1982] and was immediately followed by a generalization that became known as
the polytree algorithm [Kim and Pearl 1983; Pearl 1986b]. The goal here was to compute
a probability distribution for each node in the network given some evidence, a task which
is known as computing node marginals.

The polytree algorithm was based on a message-passing computational paradigm, where
nodes in the network send messages to a neighboring node after they have received mes-
sages from all other neighbors. Each message can be viewed as summarizing results from
one part of the network and passing them on to the rest of the network. Messages that
communicated information from parents to their children were said to quantify the causal

Adnan Darwiche

Figure 1. From left to right: a tree, a polytree, and a multiply–connected network.

support from parents to these children. On the other hand, messages that communicated
information from children to their parents were said to quantify the diagnostic support
from children to parents. The notions of causal and diagnostic supports were rooted in the
causal interpretation of Bayesian network structures that Pearl insisted on, where parents
are viewed as direct causes of their children. According to this interpretation, the distribu-
tion associated with a node in the Bayesian network is called the belief in that node, and
is a function of the causal support it receives from its direct causes, the diagnostic support
it receives from its direct effects, and the local information available about that node. This
is why the algorithm is also known as the belief propagation algorithm, a name which is
more common today.

The polytree algorithm has had considerable impact and is of major historical signifi-
cance for a number of reasons. First, it was the very first exact inference algorithm for this
class of Bayesian networks. Second, its time and space complexity were quite modest be-
ing linear in the size of the network. Third, the algorithm formed the basis for a number of
other algorithms, both exact and approximate, that will be discussed later. In addition, the
algorithm provided a first example of reading off independence information from a network
structure, and then using it to decompose a complex computation into smaller and indepen-
dent computations. It formally showed the importance of independence, as portrayed by a
network structure, in driving computation and in reducing the complexity of inference.

One should also note that, according to Pearl, this algorithm was motivated by the work
of [Rumelhart 1976] on reading comprehension, which provided compelling evidence that
text comprehension must be a distributed process that combines both top-down and bottom-
up inferences. This dual mode of inference, so characteristic of Bayesian analysis, did not
match the capabilities of the ruling paradigms for uncertainty management in the 1970s.
This led Pearl to develop the polytree algorithm [Pearl 1986b], which, as mentioned earlier,
appeared first in [Pearl 1982] with a restriction to trees, and then in [Kim and Pearl 1983]
for polytrees.

Inference in Bayesian Networks: A Historical Perspective

Figure 2. Networks and corresponding loop-cutsets (bold circles).

3 On to more general structures
Soon after the polytree algorithm was introduced, the search began for algorithms that
can handle arbitrary network structures. Since polytrees were also referred to as singly–
connected networks, arbitrary network structures were said to be multiply–connected; see
Figure 1. One of the central ideas for handling these networks is based on the technique of
conditioning. That is, one can set variable X to some value x and then solve the problem
under that particular condition X = x. If this is repeated for all values of X , then one
can recover the answer to the original problem by assembling the results obtained from
the individual cases. The main value of this technique is that by conditioning variables
on some values, one can simplify the problem. In Bayesian networks, one can effectively
delete edges that are outgoing from a node once the value of that node is known, therefore,
creating a simplified structure that can be as informative as the original structure in terms
of answering queries.

Pearl used this observation to propose the algorithm of loop-cutset conditioning [Pearl
1986a; Pearl 1988], which worked by conditioning on enough network variables to render
the network structure singly–connected. The set of variables that needed to be conditioned
on is called a loop–cutset; see Figure 2. The loop–cutset conditioning algorithm amounted
then to a number of invocations to the polytree algorithm, where this number is exponential
in the size of the cutset — one invocation for each instantiation of the variables constituting
the cutset. A key attraction of this algorithm is its modest space requirements, as it did
not need much space beyond that used by the polytree algorithm. The problem with the
algorithm, however, was in its time requirements when the size of the loop-cutset was large
enough. The algorithm proved impractical in such a case and the search continued for
alternative conditioning algorithms that could handle multiply–connected structures more
efficiently.

The very first algorithm that found widespread use on multiply–connected networks was
the jointree algorithm, also known as the tree clustering algorithm [Lauritzen and Spiegel-
halter 1988]. This algorithm proved quite effective and remains practically influential un-

Adnan Darwiche

A

B C

D E

F

G H

ABD

ACEDFG

ADF AEF

EFH

Figure 3. A Bayesian network structure and its corresponding jointree (tree of clusters).

til today — for example, it is the algorithm of choice in commercial implementations of
Bayesian network inference. One way of understanding this algorithm is as a version of the
polytree algorithm, invoked on a tree clustering of the multiply–connected network. For an
example, consider Figure 3 which depicts a DAG and its corresponding tree of clusters —
this is technically known as a jointree or a tree decomposition [Robertson and Seymour
1986]. One thing to notice here is that each cluster is a set of variables in the original net-
work. The jointree algorithm works by passing messages across the tree of clusters, just as
in the polytree algorithm. However, the size of these messages and the amount of work it
takes to propagate them is now tied to the size of clusters.

The jointree is not an arbitrary tree of clusters as it must satisfy some conditions to
legitimize the message passing algorithm. In particular, every node and its parents in the
Bayesian network must belong to some tree cluster. Moreover, if a variable appears in two
clusters, it must also appear in every cluster on the path connecting them. Ensuring these
conditions may lead to clusters that are large. There is a graph–theoretic notion, known as
treewidth, which puts a lower bound on the size of largest cluster [Robertson and Seymour
1986]. In particular, if the treewidth of the DAG is w, then any jointree of the DAG must
have a cluster whose size is at least w + 1.1 In some sense, the treewidth can be viewed as
a measure of how similar a DAG structure is to a tree structure as it puts a lower bound on
the width of any tree clustering (jointree) of the DAG.

The connection between the complexity of inference algorithms and treewidth is actually
the central complexity result that we have today for exact inference [Dechter 1996]. In
particular, given a jointree whose width is w, node marginals can be computed in time and
space that is exponential only in w. Note that a network treewidth of w guarantees the
existence of such a jointree, but finding it is generally known to be hard. Hence, much

1In graph theory, treewidth is typically defined for undirected graphs. The treewidth of a DAG as used here
corresponds to the treewidth of its moralized graph: one which is obtained by connecting every pair of nodes that
share a child in the DAG and then dropping the directionality of all edges.

Inference in Bayesian Networks: A Historical Perspective

A B C D E

A B C D E

C D E

B

C

Figure 4. Decomposing a Bayesian network by conditioning on variable B and then on
variable C.

work on this topic concerns the construction of jointrees with minimal width using both
heuristics and complete search methods (see [Darwiche 2009] for a survey).

4 More computational paradigms
Since a typical implementation of the jointree algorithm will indeed use as much time and
space as is suggested by the complexity analysis, we will not be able to rely on the jointree
algorithm in the case where we do not find a jointree whose width is small enough. To
overcome this treewidth barrier, research on inference algorithms continued in a number of
directions.

With regards to work on conditioning algorithms, the main breakthrough in this regard
was based on observing that one can employ conditioning in other and more effective ways
than loop–cutset conditioning. For example, one can condition on enough variables to
split the network into disconnected sub–networks, which can then be solved independently.
These sub–networks need not be polytrees, as each one of them can be solved recursively
using the same method, until sub–networks reduce to a single node each; see Figure 4. With
appropriate caching schemes to avoid solving the same sub–network multiple times, this
method of recursive conditioning can be applied with the same complexity as the jointree
algorithm. In particular, one can guarantee that the space and time requirements of the
algorithm are at most exponential in the treewidth of underlying network structure. This
result assumes that one has access to a decomposition structure, known as a dtree, which is
used to control the decomposition process at each level of the recursive process [Darwiche
2001]. Similar to a jointree, finding an optimal dtree (i.e., one that realizes the treewidth
guarantee on complexity) is hard. Yet, one can easily construct such a dtree given an
optimal jointree, and vice versa [Darwiche 2009].

Even though recursive conditioning and the jointree algorithm are equivalent from this
complexity viewpoint, recursive conditioning provided some new contributions to infer-
ence. On the theoretical side, it showed that conditioning as an inference paradigm can
indeed reach the same complexity as the jointree algorithm — a question that was open

Adnan Darwiche

for some time. Second, the algorithm provided a flexible paradigm for time-space trade-
offs: by simply controlling the degree of caching, the space requirements of the algorithm
can be made to range from being only linear in the network size to being exponential in
the network treewidth (given an appropriate dtree). Moreover, the algorithm provided a
convenient framework for exploiting local structure as we shall discuss later.

On another front, and in the continued search of an alternative for the jointree algorithm,
a sequence of efforts culminated into what is known today as the variable elimination algo-
rithm [Zhang and Poole 1994; Dechter 1996]. According to this algorithm, one maintains
the probability distribution of the Bayesian network as a set of factors (initially the set of
CPTs) and then successively eliminates variables from this set one variable at a time.2 The
elimination of a variable can be implemented by simply combining all factors that mention
that variable and then removing the variable from the combined factor. After eliminating
a variable, the resulting factors represent a distribution over all remaining (un-eliminated)
variables. Hence, by repeating this elimination process, one can obtain the marginal distri-
bution over any subset of variables, including, for example, marginals over single variables.

The main attraction of this computational paradigm is its simplicity — at least as com-
pared to the initial formulations of the jointree algorithm. Variable elimination, however,
turned out to be no more efficient than the jointree algorithm in the worst case. In particu-
lar, the ideal time and space complexities of the algorithm also depend on the treewidth —
in particular, they are exponential in treewidth when computing the marginal over a single
variable. To achieve this complexity, however, one needs to use an optimal order for elim-
inating variables [Bertele and Brioschi 1972]. Again, constructing an optimal elimination
order that realizes the treewidth complexity is hard in general. Yet, one can easily construct
such an optimal order from an optimal jointree or dtree, and vice versa.

Even though variable elimination proved to have the same treewidth complexity as the
jointree algorithm, it better explained the semantics of the jointree algorithm, which can
now be understood as a sophisticated form of variable elimination. In particular, one can
interpret the jointree algorithm as a refinement on variable elimination in which: (1) mul-
tiple variables can be eliminated simultaneously instead of one variable at a time; (2) a
tree structure is used to control the elimination process and to save the results of inter-
mediate elimination steps. In particular, each message passed by the jointree algorithm
can be interpreted as the result of an elimination process, which is saved for re-use when
computing marginals over different sets of variables [Darwiche 2009]. As a result of this
refinement, the jointree algorithm is able to perform successive invocations of the variable
elimination algorithm, for computing multiple marginals, while incurring the cost of only
one invocation, due mainly to the re-use of results across multiple invocations.

Given our current understanding of the variable elimination and jointree algorithms, one
now speaks of only two main computational paradigms for exact probabilistic inference:
conditioning algorithms (including loop-cutset conditioning and recursive conditioning)
and elimination algorithms (including variable elimination and the jointree algorithm).

2A factor is a function that maps the instantiations of some set of variables into numbers; see Figure 5. In this
sense, each probability distribution is a factor and so is the marginal of such a distribution on any set of variables.

Inference in Bayesian Networks: A Historical Perspective

X Y Z f(.)

F F F 0.9

F F T 0.1

F T F 0.9

F T T 0.1

T F F 0.1

T F T 0.9

T T F 0.5

T T T 0.5

X

Z

.1 .9

Y

.5

Z

Figure 5. A factor over binary variables X, Y, Z with a tabular representation (left) and an
ADD representation (right).

5 Beating the treewidth barrier with local structure

Assuming that we ignore the probabilities that quantify a Bayesian network, the treewidth
guarantee is the best we have today on the complexity of exact inference. Moreover, the
treewidth determines the best-case performance we can expect from the standard algo-
rithms based on conditioning and elimination.

It has long been believed though that exploiting the local structure of a Bayesian network
can speed up inference to the point of beating the treewidth barrier, where local structure
refers to the specific properties attained by the probabilities quantifying the network. One
of the main intuitions here is that local structure can imply independence that is not visible
at the structural level and this independence may be utilized computationally [Boutilier
et al. 1996]. Another insight is that determinism in the form of 0/1 probabilities can also
be computationally useful as it allows one to prune possibilities from consideration [Jensen
and Andersen 1990]. There are many realizations of these principles today. For elimination
algorithms — which rely heavily on factors and their operations — local structure permits
one to have more compact representations of these factors than representations based on
tables [Zhang and Poole 1996], leading to a more efficient implementation of the elimina-
tion process. One example of this would be the use of Algebraic Decision Diagrams [R.I.
Bahar et al. 1993] and associated operations to represent and manipulate factors; see Fig-
ure 5. For conditioning algorithms, local structure reduces the number of cases one needs
to consider during inference and the number of sub-computations one needs to cache. As
an example of the first, suppose that we have an and-gate whose output and one of its inputs
belong to a loop cutset. When conditioning the output on 1, both inputs must be 1 as well.
Hence, there is no need to consider multiple values for the input in this case during the

Adnan Darwiche

conditioning process [Allen and Darwiche 2003]. This would no longer be true, however,
if we had an or-gate. Moreover, the difference between the two cases is only visible if we
exploit the local structure of corresponding Bayesian networks.

Another effective technique for exploiting local structure, which proved to be a turn-
ing point in speeding up inference, is based on encoding Bayesian networks using logi-
cal constraints and then applying logical inference techniques to the resulting knowledge
base [Darwiche 2002]. One can indeed efficiently encode the network structure and some
of its local structure, including determinism, using knowledge bases in conjunctive normal
form (CNF). One can then either compile the CNF to produce a circuit representation of
the Bayesian network (see below), or apply model counting techniques and use the results
to recover answers to probabilistic queries [Sang, Beame, and Kautz 2005].

Realizations of the above techniques became practically viable long after the initial ob-
servations about local structure, but have allowed one to reason efficiently with some net-
works whose treewidth can be quite large (e.g., [Chavira, Darwiche, and Jaeger 2006]).
Although there is some understanding of the kind of networks that tend to lend themselves
to these techniques, we still do not have strong theoretical results that characterize these
classes of networks and the savings that one may expect from exploiting their local struc-
ture. Moreover, not enough work exists on complexity measures that are sensitive to both
network structure and parameters (the treewidth is only sensitive to structure).

One step in this direction has been the use of arithmetic circuits to compactly represent
the probability distributions of Bayesian networks [Darwiche 2003]. This representation
is sensitive to both network topology and local structure, therefore, allowing for compact
circuit representations in some cases where the treewidth of the network can be quite large;
see Figure 6. Given a circuit representation, inference can be performed quite efficiently
through simple circuit evaluation and differentiation techniques. Hence, the size of a circuit
representation can be viewed as an indicator of the complexity of inference with respect to
the given network. Again, however, we do not have enough theoretical results to broadly
predict the size of these circuit representations or bound the complexity of constructing
them.3

6 More queries for Bayesian networks
Pearl introduced another computational problem for Bayesian networks, known as the MPE
for Most Probable Explanations. The goal here is to find the most likely instantiation of the
network variables, given that some of these variables are fixed to some given value. Pearl
actually proposed the first algorithm for this purpose, which was a variation on the polytree
algorithm [Pearl 1987a].

A more general problem is MAP which stands for Maximum a Posteriori hypothesis.
This problem searches for an instantiation of a subset of the network variables that is most
probable. Interestingly, MAP and MPE are complete for two different complexity classes,
which are also distinct from the class to which node marginals is complete for. In particular,

3Note, however, that an arithmetic circuit can always be constructed in time which is exponential only in the
treewidth, given a jointree of corresponding width.

Inference in Bayesian Networks: A Historical Perspective

A

B C

A Pr(A)

true .5

false .5

A B Pr(B|A)

true true 1

true false 0

false true 0

false false 1

A C Pr(C|A)

true true .8

true false .2

false true .2

false false .8

+

* *

+ +

*** *

.2 .8

*

.5

a! a!b!

c! c!

b!

Figure 6. A Bayesian network and a corresponding arithmetic circuit.

given the standard assumptions of complexity theory, MPE is the easiest and MAP is the
most difficult, with node marginals in the middle.4

The standard techniques based on variable elimination and conditioning can solve MPE
and MAP as well [Dechter 1999]. MPE can be solved with the standard treewidth guar-
antee. MAP, however, has a worse complexity in terms of what is known as constrained
treewidth, which depends on both the network topology and MAP variables (that is, vari-
ables for which we are trying to find a most likely instantiation of) [Park and Darwiche
2004]. The constrained treewidth can be much larger than treewidth, depending on the set
of MAP variables.

MPE and MAP problems have search components which lend themselves to branch-
and-bound techniques [Kask and Dechter 2001]. Over the years, many sophisticated MPE
and MAP bounds have been introduced, allowing branch-and-bound solvers to prune the
search space more effectively. Consequently, this allows one to solve some MPE and MAP

4The decision problems for MPE, node marginals, and MAP are NP –complete, PP –complete, and NP PP –
complete, respectively.

Adnan Darwiche

problems efficiently, even when the network treewidth or constrained treewidth are rela-
tively high. In fact, only relatively recently did practical MAP algorithms surface, due to
some innovative bounds that were employed in branch-and-bound algorithms [Park and
Darwiche 2003].

MPE algorithms have traditionally received more attention than MAP algorithms. Re-
cently, techniques based on LP relaxations, in addition to reductions to the MAXSAT prob-
lem, have been employed successfully for solving MPE. LP relaxations are based on the
observation that MPE has a straightforward formulation in terms of integer programming,
which is known to be hard [Wainwright, Jaakkola, and Willsky 2005; Yanover, Meltzer,
and Weiss 2006]. By relaxing the integral constraints, the problem becomes a linear pro-
gram, which is tractable but provides only a bound for MPE. Work in this area has been
focused on techniques that compensate partially for the lost integral constraints using larger
linear programs, and on developing refined algorithms for handling the resulting “special-
ized” linear programs.5 The MAXSAT problem has also been receiving a lot of attention in
the logic community [Bonet, Levy, and Manyà 2007; Larrosa, Heras, and de Givry 2008],
which developed effective techniques for this purpose. In fact, reductions of certain MPE
problems (those with excessive logical constraints) to MAXSAT seem to be the state of the
art for some problems in this category.

7 Approximations may be good enough
In addition to work on exact inference algorithms for Bayesian networks, much work has
also been dedicated to approximate inference algorithms which are generally more efficient
but settle for less than accurate answers. Interestingly enough, the two major paradigms for
approximate inference as practiced today were also initiated by Judea Pearl.

In particular, immediately after proposing the polytree algorithm, Pearl also proposed
the use of Gibbs sampling as a method for approximate inference in Bayesian networks [Pearl
1987b]. This paper started a tradition in applying MCMC techniques for solving Bayesian
networks and is considered as the founding paper in this direction. Further stochastic sim-
ulation methods were also proposed after realizing that sampling from Bayesian networks
can be done easily by simply traversing the network structure [Henrion 1988].

In his seminal book on Bayesian networks [Pearl 1988], Pearl also proposed applying
the belief propagation (polytree) algorithm to networks that have an arbitrary structure (in
Exercise 4.7). This proposal required some initialization of network messages and entailed
that a node may have to keep sending messages to each of its neighbors until conver-
gence is reached (i.e., the messages are no longer changing); see Figure 7. Interestingly
enough, such an algorithm, which is now known as loopy belief propagation (LBP), tends
to converge, yielding good approximations to a variety of problems. In fact, this particu-
lar algorithm was found to correspond to a state–of–the–art algorithm used in the channel
coding community and today is widely viewed as a key method of choice for approximate
inference [Frey and MacKay 1997].

5In the community working on LP relaxations and related methods, “MAP” is used to mean “MPE” as we
have discussed it in this article.

Inference in Bayesian Networks: A Historical Perspective

B

A

D

C

E

1 2

3 4

56

7

8

9

10

Figure 7. A Bayesian network annotated with an ordering of LBP messages (leading to a
sequential message passing schedule).

This connection and the viability of LBP as an approximation algorithm came to light
around the mid 1990s, almost a decade after Pearl first suggested the algorithm. Work on
LBP and related methods has been dominating the field of approximate inference for more
than a decade now. One of the central questions was: if LBP converges, what is it con-
verging to? This question was answered in a number of ways [Minka 2001; Wainwright,
Jaakkola, and Willsky 2003; Choi and Darwiche 2006], but the first characterization was
put forth in [Yedidia, Freeman, and Weiss 2000]. According to this characterization, one
can understand LBP as approximating the distribution of a Bayesian network by a distribu-
tion that has a polytree structure [Yedidia, Freeman, and Weiss 2003]. The iterations of the
algorithm can then be interpreted as searching for the node marginals of that approximate
distribution, while minimizing the KL–divergence between the original and approximate
distributions.

LBP has actually two built-in components. The first corresponds to a particular ap-
proximation that it seeks, which is formally characterized as discussed before. The second
component is a particular method for seeking the approximation, through a process of
message passing. One can try to seek the same approximation using other optimization
methods, which has also been the subject of much research. Even the message passing
scheme leaves a lot of room for variation, which is captured formally using the notion of a
message passing schedule — for example, messages can be passed sequentially, in parallel,
or combinations therefore. One therefore talks about the “convergence” properties of such
algorithms, where the goal is to seek methods that have better convergence properties.

LBP turns out to be an example of a more general class of approximation algorithms that
poses the approximate inference problem as a constrained optimization problem. These
methods, which are sometimes known as variational algorithms, assume a tractable class
of distributions, and seeks to find an instance in this class that best fits the original dis-
tribution [Jordan et al. 1999; Jaakkola 2001]. For example, we may want to assume an
approximating Bayesian network that is fully-disconnected, and that the distribution it in-

Adnan Darwiche

duces should have as small a KL–divergence as possible, when compared to the distribution
being approximated. The goal of the constrained optimization problem is then to find the
CPT parameters of the approximate network that minimizes the KL–divergence between
it and the original network (subject to the appropriate normalization constraints). Work in
this area typically varies across two dimensions: proposing forms for the approximating
distribution, and devising methods for solving the corresponding optimization problem.
Moreover, by varying these two dimensions, we are given access to a spectrum of approxi-
mations, where we are able to trade the quality of an approximation with the complexity of
computing it.

8 Closing Remarks
During the first decade or two after Pearl’s introduction of Bayesian networks, inference
research was very focused on exact algorithms. The efforts on these algorithms slowed
down towards the mid to late 1990s, to pick up again early in the century. The slowdown
was mostly due to the treewidth barrier, at a time where large enough networks were being
constructed to make standard algorithms impractical at that time. The main developments
leading to the revival of exact inference algorithms has been the extended reach of condi-
tioning methods, the deeper understanding of elimination methods, and the more effective
exploitation of local structure. Even though these developments have increased the reach of
exact algorithms considerably, we still do not understand the extent to which this reach can
be pushed further. In particular, the main hope appears to be in further utilization of local
structure to speed up inference, but we clearly need better theories for providing guarantees
on such speedups and a better characterization of the networks that lend themselves to such
techniques.

On the approximate inference side, stochastic simulation methods witnessed a surge
after the initial work on this subject, with continued interest throughout, yet not to the
level enjoyed recently by methods based on belief propagation and related methods. This
class of algorithms remains dominant, with many questions begging for answers. On the
theoretical side, we do not seem to know enough on when approximations tend to give
good answers, especially that this seems to be tied not only to the given network but also
to the posed query. On the practical side, we have yet to translate some of the theoretical
results on generalizations of belief propagation — which provides a spectrum that tradeoffs
approximation quality with computational resources — into tools that are used routinely by
practitioners.

There has been a lot of progress on inference in Bayesian networks since Pearl first made
this computational problem relevant. There is clearly a lot more to be done as we seem to
always exceed the ability of existing algorithms by building more complex networks. In
my opinion, however, what is greatly missed since Pearl’s initial work on this subject is his
insistence on semantics, where he spared no effort in establishing connections to cognition,
and in grounding the most intricate mathematical manipulations in human intuition. The
derivation of the polytree algorithm stands as a great example of this research methodology,
as it provided high level and cognitive interpretations of almost all intermediate computa-

Inference in Bayesian Networks: A Historical Perspective

tions performed by the algorithm. It is no wonder then that the polytree algorithm not only
started the area of inference in Bayesian networks a few decades ago, but it also remains a
basis for some of the latest developments and inspirations in this area of research.

Acknowledgments: I wish to thank Arthur Choi for many valuable discussions while
writing this article.

References
Allen, D. and A. Darwiche (2003). New advances in inference by recursive conditioning.

In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp. 2–10.

Bertele, U. and F. Brioschi (1972). Nonserial Dynamic Programming. Academic Press.

Bonet, M. L., J. Levy, and F. Manyà (2007). Resolution for max-sat. Artif. Intell. 171(8-
9), 606–618.

Boutilier, C., N. Friedman, M. Goldszmidt, and D. Koller (1996). Context-specific in-
dependence in Bayesian networks. In Uncertainty in Artificial Intelligence: Pro-
ceedings of the Twelfth Conference (UAI-96), San Francisco, pp. 115–123. Morgan
Kaufmann Publishers.

Chavira, M., A. Darwiche, and M. Jaeger (May 2006). Compiling relational Bayesian
networks for exact inference. International Journal of Approximate Reasoning 42(1–
2), 4–20.

Choi, A. and A. Darwiche (2006). An edge deletion semantics for belief propagation and
its practical impact on approximation quality. In Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI), pp. 1107–1114.

Darwiche, A. (2001). Recursive conditioning. Artificial Intelligence 126(1-2), 5–41.

Darwiche, A. (2002). A logical approach to factoring belief networks. In Proceedings of
KR, pp. 409–420.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks. Journal
of the ACM 50(3), 280–305.

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cambridge
University Press.

Dechter, R. (1996). Bucket elimination: A unifying framework for probabilistic infer-
ence. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence
(UAI), pp. 211–219.

Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113, 41–85.

Frey, B. J. and D. J. C. MacKay (1997). A revolution: Belief propagation in graphs with
cycles. In NIPS, pp. 479–485.

Henrion, M. (1988). Propagating uncertainty in Bayesian networks by probalistic logic
sampling. In Uncertainty in Artificial Intelligence 2, New York, N.Y., pp. 149–163.
Elsevier Science Publishing Company, Inc.

Adnan Darwiche

Jaakkola, T. (2001). Tutorial on variational approximation methods. In D. Saad and
M. Opper (Eds.), Advanced Mean Field Methods, Chapter 10, pp. 129–160. MIT
Press.

Jensen, F. and S. K. Andersen (1990, July). Approximations in Bayesian belief universes
for knowledge based systems. In Proceedings of the Sixth Conference on Uncertainty
in Artificial Intelligence (UAI), Cambridge, MA, pp. 162–169.

Jordan, M. I., Z. Ghahramani, T. Jaakkola, and L. K. Saul (1999). An introduction to
variational methods for graphical models. Machine Learning 37(2), 183–233.

Kask, K. and R. Dechter (2001). A general scheme for automatic generation of search
heuristics from specification dependencies. Artificial Intelligence 129, 91–131.

Kim, J. and J. Pearl (1983). A computational model for combined causal and diagnostic
reasoning in inference systems. In Proceedings IJCAI-83, Karlsruhe, Germany, pp.
190–193.

Larrosa, J., F. Heras, and S. de Givry (2008). A logical approach to efficient max-sat
solving. Artif. Intell. 172(2-3), 204–233.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local computations with probabilities
on graphical structures and their application to expert systems. Journal of Royal
Statistics Society, Series B 50(2), 157–224.

Minka, T. P. (2001). A family of algorithms for approximate Bayesian inference. Ph.D.
thesis, MIT.

Park, J. and A. Darwiche (2004). Complexity results and approximation strategies for
MAP explanations. Journal of Artificial Intelligence Research 21, 101–133.

Park, J. D. and A. Darwiche (2003). Solving MAP exactly using systematic search. In
Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence (UAI–
03), Morgan Kaufmann Publishers San Francisco, California, pp. 459–468.

Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchical ap-
proach. In Proceedings American Association of Artificial Intelligence National
Conference on AI, Pittsburgh, PA, pp. 133–136.

Pearl, J. (1986a). A constraint-propagation approach to probabilistic reasoning. In
L. Kanal and J. Lemmer (Eds.), Uncertainty in Artificial Intelligence, pp. 357–369.
Amsterdam, North Holland.

Pearl, J. (1986b). Fusion, propagation, and structuring in belief networks. Artificial In-
telligence 29, 241–288.

Pearl, J. (1987a). Distributed revision of composite beliefs. Artificial Intelligence 33(2),
173–215.

Pearl, J. (1987b). Evidential reasoning using stochastic simulation of causal models.
Artificial Intelligence 32, 245–257.

Inference in Bayesian Networks: A Historical Perspective

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc., San Mateo, California.

R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi
(1993). Algebraic Decision Diagrams and Their Applications. In IEEE /ACM Inter-
national Conference on CAD, Santa Clara, California, pp. 188–191. IEEE Computer
Society Press.

Robertson, N. and P. D. Seymour (1986). Graph minors. II. Algorithmic aspects of tree-
width. J. Algorithms 7, 309–322.

Rumelhart, D. (1976). Toward an interactive model of reading. Technical Report CHIP-
56, University of California, La Jolla, La Jolla, CA.

Sang, T., P. Beame, and H. Kautz (2005). Solving Bayesian networks by weighted model
counting. In Proceedings of the Twentieth National Conference on Artificial Intelli-
gence (AAAI-05), Volume 1, pp. 475–482. AAAI Press.

Wainwright, M. J., T. Jaakkola, and A. S. Willsky (2003). Tree-based reparameterization
framework for analysis of sum-product and related algorithms. IEEE Transactions
on Information Theory 49(5), 1120–1146.

Wainwright, M. J., T. Jaakkola, and A. S. Willsky (2005). Map estimation via agreement
on trees: message-passing and linear programming. IEEE Transactions on Informa-
tion Theory 51(11), 3697–3717.

Yanover, C., T. Meltzer, and Y. Weiss (2006). Linear programming relaxations and belief
propagation — an empirical study. Journal of Machine Learning Research 7, 1887–
1907.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2000). Generalized belief propagation. In
NIPS, pp. 689–695.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2003). Understanding belief propagation
and its generalizations. In G. Lakemeyer and B. Nebel (Eds.), Exploring Artificial
Intelligence in the New Millennium, Chapter 8, pp. 239–269. Morgan Kaufmann.

Zhang, N. L. and D. Poole (1994). A simple approach to Bayesian network computa-
tions. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelli-
gence (UAI), pp. 171–178.

Zhang, N. L. and D. Poole (1996). Exploiting causal independence in Bayesian network
inference. Journal of Artificial Intelligence Research 5, 301–328.

