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Abstract. We present in this paper a framework of approximate prob-
abilistic inference which is based on three simple concepts. First, our
notion of an approximation is based on “relaxing” equality constraints,
for the purposes of simplifying a problem so that it can be solved more
readily. Second, is the concept of “compensation,” which calls for im-
posing weaker notions of equality to compensate for the relaxed equality
constraints. Third, is the notion of “recovery,” where some of the relaxed
equality constraints are incrementally recovered, based on an assessment
of their impact on improving the quality of an approximation. We discuss
how this framework subsumes one of the most influential algorithms in
probabilistic inference: loopy belief propagation and some of its gener-
alizations. We also introduce a new heuristic recovery method that was
key to a system that successfully participated in a recent evaluation of
approximate inference systems, held in UAI’10. We further discuss the
relationship between this framework for approximate inference and an
approach to exact inference based on symbolic reasoning.

1 Introduction

In this survey-style paper, we highlight two frameworks for probabilistic in-
ference, one for exact probabilistic inference and the second for approximate
probabilistic inference.

The framework for approximate probabilistic inference is based on perform-
ing exact inference on an approximate model, which is obtained by relaxing
equivalence constraints in the original model. The framework allows one to im-
prove the resulting approximations by compensating for the relaxed equivalences,
which can be realized through the enforcement of weaker notions of equivalence.
One can improve the approximations even further by recovering equivalence
constraints in the relaxed and compensated model. Interestingly, the influential
algorithm of loopy belief propagation [34, 37] can be characterized in terms of
relaxing and compensating for equivalence constraints [7, 9]. The third step of
recovery can be used here to find even better approximations, which correspond
to some forms of generalized belief propagation.

The framework for exact probabilistic inference that we shall survey is based
on reducing probabilistic inference into a process of enforcing certain properties
on propositional knowledge bases. In particular, if we encode the Bayesian net-
work into an appropriate logical form [17], the problem of exact probabilistic



2 Arthur Choi and Adnan Darwiche

inference can be reduced to one of compiling the knowledge base into a tractable
form that satisfies two properties, known as decomposability and determinism
[14, 16, 20]. The resulting framework has an ability to perform exact probabilis-
tic inference on models that are beyond the reach of more traditional algorithms
for exact inference [18, 4, 3]. Moreover, this framework can significantly increase
the effectiveness of the framework for approximate inference that we mentioned
earlier, which requires an exact inference engine, although such integration has
not been realized in practice yet.

These two frameworks for exact and probabilistic inference have been vali-
dated in practice: notably, they have formed the basis of systems successfully
employed in (respectively) exact and approximate inference evaluations con-
ducted by the Uncertainty in Artificial Intelligence (UAI) community in 2006,
2008 and 2010 [2, 19, 23]. We survey these two frameworks in this paper, high-
lighting some of the relevant results along the way. Moreover, we shall introduce
a new recovery heuristic that was particularly key to the success of a solver em-
ployed in the UAI’10 approximate inference evaluation. We finally conclude with
a discussion on the pending advances that are needed to allow one to effectively
use the framework for exact inference as a basis for the one on approximate
inference, which we call relax, compensate and then recover.

2 Exact probabilistic inference

Consider the Bayesian network in Figure 1(a). There are a variety of algorithms
available for performing exact inference in such networks, including variable
elimination [39, 21], the jointree algorithm [27, 30] and recursive conditioning
[15], which have running time complexities that are generally exponential in a
model’s treewidth. In the first part of this paper, we will be more concerned with
another approach to exact probabilistic inference that is based on knowledge
compilation, which among other advantages, can be used to tackle networks
having large treewidth.

Consider Figure 1(b) where we “encode” the Bayesian network of Figure 1(a)
as a propositional knowledge base, in conjunctive normal form (CNF), aug-
mented with weights. Figure 1(c) further shows an equivalent, but more useful,
representation in negation normal form (NNF), which is a DAG whose internal
nodes are labeled with disjunctions and conjunctions, and whose leaf nodes are
labeled with literals or the constants true and false.

Previous work has shown that if one has an ability to convert CNF to an
NNF satisfying two key properties, decomposability and determinism, then one
has the ability to perform probabilistic inference efficiently on a wide range of
probabilistic representations [18, 4, 3]. Moreover, the latter can be performed in
time linear in the NNF size, assuming the NNF satisfies decomposability and
determinism, such as the NNF in Figure 1(c).1 In this case, the NNF represents

1 An NNF is decomposable (called a DNNF) iff each of its conjunctions is decom-
posable, i.e., its conjuncts share no variables. A DNNF is deterministic (called a
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(c) NNF that satisfies decomposability and determinism.

Fig. 1. Bayesian network inference as weighted model counting.

an arithmetic circuit for the Bayesian network: the leaf nodes input the net-
work parameters and any given evidence, the or-nodes represent additions, and
the and-nodes represent multiplications. A simple upward evaluation pass then
computes the probability of evidence.

To illustrate this formulation more concretely, we note that the CNF ∆ in
Figure 1(b) “encodes” the Bayesian network of Figure 1(a) as follows. For any
event α, the weighted model count of ∆ ∧ α equals the probability of event α
according to the Bayesian network. Since the NNF in Figure 1(c) is equivalent
to the CNF ∆, probabilistic inference on the Bayesian network can now be per-
formed through weighted model counting on the NNF (a linear-time operation).
Hence, to implement probabilistic reasoning, all one needs computationally is
an ability to enforce decomposability and determinism, since Bayesian networks
can be easily encoded as CNFs [4, 3].

d-DNNF) iff each of its disjunctions is deterministic, i.e., if each pair of its disjuncts
is mutually exclusive. For more on decomposability and determinism, and knowledge
compilation in general, see [14, 16, 20].
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This approach has a number of advantages, as compared to more traditional
approaches to exact probabilistic inference, and these advantages have been real-
ized in practice. For example, systems based on this approach have successfully
participated in the two evaluations of exact probabilistic inference conducted
for UAI’06 and UAI’08 (the UAI’10 evaluation focused on approximate infer-
ence systems, which we consider again in the following section).

A system that utilizes the approach we described was submitted to UAI’06
by the Automated Reasoning Group at UCLA, and was the only system to solve
all given benchmarks [2]. At UAI’08, it was again the only one to solve a large
class of very difficult networks that are synthesized from relational models [19].

The key advantage of the described approach is that it exploits local structure
(i.e., the structure of parameters that quantify the network) in addition to the
global structure (i.e., network topology). The relational network suite mentioned
earlier in connection to UAI’08 has an average clique size that is greater than 50.
Given the current state of the art in exact probabilistic inference, any method
that does not exploit local structure would have to be exponential in treewidth
[4, 3] and is therefore not feasible on such networks.

We remark that the above approach to exact inference applies equally to
different probabilistic representations, such as Bayesian networks, Markov net-
works, and factor graphs. The only difference between all these representations
is that each requires its own “encoding” into a propositional knowledge base.
Hence, to apply this approach practically to a new probabilistic representation
all one needs to do is provide an “encoder” of that representation into an appro-
priate propositional knowledge base. This approach has been successfully applied
in other domains as well. For example, it has been recently used by database
researchers to identify tractable classes of probabilistic databases, by showing
that the knowledge bases they lead to have tractable compilations that satisfy
decomposability and determinism [28].

Finally, the ace system, which was successfully employed at the UAI’06
and UAI’08 inference evaluations as we just described, is available online.2 It is
based on two components: An encoder of Bayesian networks into CNFs, and a
compiler called c2d which converts CNFs into NNFs that satisfy decomposabil-
ity and determinism.3 Indeed, these are two of the key dimensions of applying
this approach to exact probabilistic inference in practice: (1) efficiently encod-
ing the probabilistic representations to CNF, and (2) developing more efficient
compilers for enforcing decomposability and determinism. More recently, a new
open-source compiler, called dsharp, was released by the University of Toronto,4

which is claimed to be one-to-two orders of magnitude more efficient than c2d
on some benchmarks.

2 The ace system is available at http://reasoning.cs.ucla.edu/ace/
3 The c2d compiler is available at http://reasoning.cs.ucla.edu/c2d/
4 The dsharp system is available at http://www.haz.ca/research/dsharp/
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(a) Pairwise MRF with equiva-
lence constraint X ≡ Y .
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(b) Relaxing the equivalence con-
straint of 2(a).

Fig. 2. Relaxing an equivalence constraint in a pairwise MRF.

3 Approximate Probabilistic Inference

Consider now the problem of approximate probabilistic inference. In particular,
consider formulating approximate inference as exact inference in an approximate
model.5 In this section, we shall present a particular perspective on this approach
that we call relax, compensate and then recover, which is quite special in a
number of ways:

– It defines the approximate model specifically as the result of relaxing equiva-
lence constraints in the original model and then compensating for the relaxed
equivalences.

– It subsumes a number of well-known approximation schemes, including the
influential algorithm of loopy belief propagation [34, 37, 7, 9].

– It was successfully employed in the UAI’10 evaluation of approximate prob-
abilistic inference, where it was the leading system in two of the most time-
constrained categories evaluated [23].

We will now provide a concrete description of each part of this relax, compensate
and then recover framework. We further conclude this section by introducing a
critical technique that was introduced for the UAI’10 evaluation.

3.1 Relax

Consider Figure 2(a), which depicts a pairwise MRF with an edge that represents
an equivalence constraint between variables X and Y . Relaxing this equivalence
5 This approach includes mean-field and other variational approximations [29, 26, 25],

but as we shall highlight, it also includes approximations such as loopy belief prop-
agation [34, 37] and mini-buckets [22] as well.
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(c) Relaxing the equiva-
lence constraints of 3(b).

Fig. 3. Introducing and then relaxing equivalence constraints.

constraint amounts to dropping this edge and its corresponding potential from
the model. The resulting model in Figure 2(b) is sparser (a tree in particular)
and, hence, is more amenable to exact inference algorithms.

More generally, any pairwise MRF can be made as sparse as needed by re-
laxing enough equivalence constraints. Namely, if the original model does not
contain equivalence constraints, one can always introduce them, as shown in
Figure 3(b), to relax them later, as in Figure 3(c). For example, we can replace
an edge X—Y with a chain X—Ŷ—Y where the original potential ψ(X,Y ) is
now over variables X and Ŷ , and where potential ψ(Y, Ŷ ) represents an equiva-
lence constraint Y ≡ Ŷ (where variable Y and Ŷ have the same states).

In sum, one has fine control over the sparsity (treewidth) of a given model
through only the relaxation of equivalence constraints, which in turn translates
to fine control over the amount of work that exact inference algorithms will need
to perform on the relaxed model. This is a general technique for controlling the
difficulty of exact inference on all kinds of models, whether probabilistic or even
symbolic as shown in [12, 13]. We shall highlight a few such examples later in
this section.

3.2 Compensate

We have shown in [6] that performing exact inference on relaxed models leads to
approximations that coincide with those computed by the mini-bucket elimina-
tion algorithm [22].

One can obtain better approximations, however, by compensating for a re-
laxed equivalence X ≡ Y . Broadly defined, compensation refers to imposing a
weaker notion of equivalence in lieu of the relaxed equivalence (for example,
ensuring that X and Y have the same probability in the approximate model).
In pairwise MRFs, compensating for an equivalence constraint X ≡ Y is done
by adding additional potentials ψ(X) and ψ(Y ), while choosing the values of
these potentials carefully. Other models, such as Bayesian networks, suggest dif-
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(a) A pairwise MRF. (b) Relaxing all equiva-
lence constraints.

(c) Messages of LBP.

Fig. 4. Compensating for relaxations, and loopy belief propagation.

ferent mechanics for compensation, but the goal is always the same: Imposing a
weaker notion of equivalence between variables X and Y . We have proposed a
number of compensation schemes in previous work and with respect to different
representations [5, 7, 8, 13, 12].

One particular scheme, however, stands out. This scheme is derived while
assuming that relaxing the equivalence constraintX ≡ Y will split the model into
two independent components, one containing variable X and another containing
variable Y . Under this assumption, one can find unique values of potentials ψ(X)
and ψ(Y ) that guarantee the correctness of all marginal probabilities over single
variables. In particular, we should assign the new auxiliary potentials ψ(X) and
ψ(Y ) so that the resulting model satisfies the following condition:

Pr ′(X) = Pr ′(Y ) = αψ(X)ψ(Y ) (1)

where Pr ′ denotes the distribution induced by the simplified model. This condi-
tion states that after relaxing an equivalence constraint X ≡ Y , the marginals
Pr ′(X) and Pr ′(Y ) (and the marginals constructed from the new potentials)
should at least be equivalent in the simplified model, a weaker notion of equiv-
alence [7, 9].

In a tree, every equivalence satisfies the desired assumption (that it splits a
model into two independence components) and, hence, this compensation scheme
leads to exact node marginals in this case. But when applied to arbitrary models,
one is no longer guaranteed correctness (which is to be expected). The surprise,
however, is that if all equivalence constraints are relaxed from an arbitrary model
(see Figure 4), the approximations returned under this compensation scheme
correspond precisely to the ones computed by the influential algorithm of loopy
belief propagation [7, 9].

The weaker notion of equivalence given by Equation 2 happens to be equiva-
lent to the following local property on the parameters ψ(X) and ψ(Y ) introduced
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for the compensation:

ψ(X) = α
∂Z ′

∂ψ(Y )
and ψ(Y ) = α

∂Z ′

∂ψ(X)
(2)

where Z ′ denotes the partition function (normalizing constant) of the compen-
sated model, and α is a normalizing constant for the parameters ψ(X) and
ψ(Y ). Equation 2 can also be viewed as update equations, suggesting an itera-
tive method that searches for parameters ψ(X) and ψ(Y ) [7]. Starting with an
initial approximation at iteration t = 0 (say, with uniform parameters), we can
compute parameters ψt(X) and ψt(Y ) for an iteration t > 0 by performing exact
inference in the approximate network of the previous iteration t − 1, comput-
ing the right-hand sides of Equation 2. We repeat this process until all of our
parameter updates converge (if ever), in which case we have a model satisfying
Equation 2, and equivalently Equation 1.

In Bayesian Networks. As we described for pairwise Markov random fields,
we can introduce and then relax equivalence constraints to simplify a Bayesian
network. In particular, we can replace any edge U → X with a chain U → Û →
X, where U → Û denotes an equivalence constraint U ≡ Û .

To compensate for the relaxation of an equivalence constraint U ≡ Û (i.e.,
the deletion of the edge U → Û), we first add an observed variable Ŝ as a child
of U . We then need to specify the CPTs ΘÛ and ΘŜ|U for variables Ŝ and Û , so
that the resulting network satisfies a weaker notion of equivalence. A condition
analogous to the one given in Equation 1 will also produce an approximation
corresponding to loopy belief propagation, but for Bayesian networks [7].

In Factor Graphs. We can introduce and then relax equivalence constraints
in factor graphs as well. For a factor graph with a factor ψ(X), we can replace a
variable X in the set X with a clone X̂, and then introduce a factor ψ(X, X̂) rep-
resenting an equivalence constraint X ≡ X̂. When we now relax this equivalence
constraint, we are effectively disassociating the factor ψ(X) from the variable X,
simplifying the topology of the factor graph. To compensate for this relaxation,
we can introduce auxiliary factors ψ(X) and ψ(X̂), which we use to enforce a
weaker notion of equivalence like the one given in Equation 1. In this case, we
again identify an approximation corresponding to loopy belief propagation, now
for factor graphs.

In Weighted CNF Models. The same approach to approximate probabilis-
tic inference can be applied to tasks in logical reasoning as well. Consider for
example the following weighted CNF over three variables A,B and C:

{(a ∨ b, w1), (b̄ ∨ c, w2), (c̄ ∨ d,w3)}.

where each clause is assigned a non-negative weight wi. It is also straightforward
to augment such models to an equivalent one where equivalence constraints can
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be relaxed. For example, we can replace the variable C appearing as a literal
in the third clause with a clone variable C ′, and add an equivalence constraint
C ≡ C ′, giving us:

{(a ∨ b, w1), (b̄ ∨ c, w2), (c̄′ ∨ d,w3), (C ≡ C ′,∞)}.

Here, the equivalence constraint C ≡ C ′ is a hard constraint (having “infinite”
weight) that ensures C and C ′ take the same value. When we remove, in this
example, the equivalence constraint C ≡ C ′, we have a relaxed formula composed
of two independent models: {(a ∨ b, w1), (b̄ ∨ c, w2)} and {(c̄′ ∨ d,w3)}.

We can introduce four auxiliary clauses into the relaxation:

{(c, w4), (c̄, w5), (c′, w6), (c̄′, w7)}

with four auxiliary weights that we can use to compensate for the relaxation
of the equivalence constraint C ≡ C ′. How we compensate for the relaxation of
course depends on the query that we are interested in. In the case of weighted
Max-SAT, it is possible to specify a weaker notion of equivalence so that the
weighted Max-SAT solution of the simpler, compensated model is an upper-
bound on the weighted Max-SAT solution of the original [13].

3.3 Recover

Now that we have discussed the relaxation and compensation components of this
framework — what about recovery?

As described thus far, our framework leaves out the question of which equiva-
lence constraints to relax. Answering this question intelligently typically requires
inference, which is not possible — otherwise, we would not be thinking about
relaxing equivalence constraints to start with. Instead of thinking about relaxing
constraints, however, our framework calls for thinking about recovering them.
That is, we can start by relaxing too many equivalence constraints, to reach,
say, a tree model. We can then perform inference on the resulting compensated
model to try to identify those equivalence constraints whose relaxation has been
most damaging, and then recover these constraints. The recovery process can
be incremental. That is, as we recover more and more equivalence constraints,
we expect our approximate model to improve, leading to better decisions about
which equivalence constraints to recover. This incremental process stops when
we have recovered enough constraints to make the model inaccessible to exact
inference algorithm.

We have proposed a number of recovery heuristics in previous work [7, 11, 10,
9]. In the following, we highlight a few of these heuristics. The heuristics that we
do highlight have been designed for the particular form of compensation based on
the condition of Equation 1, which characterizes loopy belief propagation when
we have relaxed enough equivalence constraints to simplify the model to a tree
[7]. Thus, when we start with a tree model, we start with loopy belief propagation
as a base approximation, hopefully identifying improved approximations as we
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recover equivalence constraints.6 We shall also introduce a new heuristic that was
developed for and successfully employed at the latest evaluation of approximate
inference systems conducted by UAI’10 [23].

Mutual Information. Remember the case where we relax an equivalence con-
straint X ≡ Y that splits a model into two independent components: one con-
taining variable X and the other containing variable Y . In this case, we can
effectively compensate for the relaxation (by enforcing the weaker notion of
equivalence in Equation 1), and guarantee the correctness of the marginal prob-
abilities for each variable. Thus, we would see no benefit in recovering an equiv-
alence constraint that had split a model into two independent components. On
the other hand, if variables X and Y remain highly dependent on each other,
after relaxing the constraint X ≡ Y , then our compensation scheme may in fact
be over-compensating, since it expected that they would be independent.

Thus, we proposed in [7] to use the mutual information between variables
X and Y as a way to rank equivalence constraints to recover. More specifi-
cally, we compute the mutual information between X and Y in the compensated
model and recover first those equivalence constraints with highest mutual in-
formation. After recovering a few equivalence constraints, we can continue by
re-scoring and re-ranking the other equivalence constraints, recovering them in
an adaptive fashion. In [7], we found empirically that it was possible to identify
a small set of equivalence constraints that can effectively improve the quality of
an approximation without impacting much the complexity of inference.

Focused Recovery. The mutual information heuristic we just described is
based on a property (that relaxing an equivalence constraint splits the model
into two) that guarantees exact marginals for every variable in the model. This
approach can provide good approximations (even exact) for many variables, but
may still provide only poor approximations for others. One must then ask if
this is the ideal approach when one is interested only in a particular query
variable. Indeed, from query-to-query, ones focus may change from one sub-
model to another, while varying observations may render different parts of the
model irrelevant. Ideally, one would like to target the approximation so as to
maximize the accuracy of the probabilities one is truly interested in, giving less
weight to those parts of the model that are only weakly relevant to the query at
hand.

In [10], we proposed a more refined mutual information heuristic that fo-
cuses recovery on targeted query variables. It is based on simple independence
conditions that can guarantee the exactness of a specific variable’s marginal in
6 Each time we recover constraints, we update the compensation so that the resulting

network again satisfies Equation 1. In this case, the resulting approximations cor-
respond to iterative joingraph propagation approximations [37, 1, 32, 7]. From this
perspective, our relax, compensate and then recover framework can also be seen as a
way to find good joingraphs, and thus as a concrete way to design iterative joingraph
and generalized belief propagation approximations.



Relax, Compensate and then Recover 11

the case where a single equivalence constraint is relaxed. This in turn leads to
a more refined mutual information heuristic based on the query variable Q and
the variables X and Y of the equivalence constraint X ≡ Y relaxed. When used
in an adaptive recovery process, we found empirically that a focused approach
to approximation can indeed be more effective than an unfocused approach.

Residual Recovery. Finally, we introduce now a new heuristic that was critical
to the success of a system based on this relax, compensate and then recover
framework, at the UAI’10 approximate inference evaluation [23]. Our solver won
first place in the most demanding categories of 20-second response time, for both
probability of evidence and marginal probabilities. It also won second place in
four other categories, for 20-minute and 1-hour response time (by a very thin
margin). The system used was quite simple, as we have described thus far: relax
enough equivalence constraints to reach a tree, and then incrementally recover
equivalence constraints until the time allotted is up.

The recovery heuristic, which we refer to as “residual recovery”, was inspired
in part by the residual belief propagation algorithm [24]. Consider that the pri-
mary failure mode of loopy belief propagation is its failure to converge in certain
cases. In these cases, even if loopy belief propagation is made to converge (using
convergent alternatives), it has been observed that the quality of the approx-
imation is often not good anyways; for more on loopy belief propagation and
convergence, see e.g., [38, 33, 24]. On the other hand, when loopy belief propa-
gation is able to converge naturally, then the quality of the approximation tends
to be good, at least in practice.

Our “residual recovery” heuristic thus seeks to recover first those equivalence
constraints that cause the most difficulty in the iterative process of compensa-
tion. Namely, we measure how close each equivalence constraint X ≡ Y is to
satisfying Equation 1, during the iterative process of compensation.7 We then
simply recover first the most problematic equivalence constraints, the ones that
are furthest from convergence.

There are a number of advantages of the residual recovery heuristic:

– It encourages faster convergence during the iterative process of compensation
(analogous to message passing in loopy belief propagation and iterative join-
graph propagation). This translates directly into improved efficiency (fewer
iterations required).

– Assuming that improved convergence behavior indicates improved approx-
imation quality, we can expect our heuristic to have a positive impact on
approximation quality as well.

– The heuristic is extremely efficient, and introduces little overhead to the
overall relax, compensate and then recover process. In fact, the computations
required to rank equivalence constraints are already required by the iterative
compensation process to determine convergence.

7 In the UAI’10 evaluation, we used a 3-way symmetric KL–divergence to measure
how close an equivalence constraint was to converging.
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The original mutual information heuristic we discussed, while still tending to
identify better equivalence constraints to recover (in terms of the accuracy of
the resulting approximation), is still relatively expensive [11]. A good, but more
efficient heuristic, is more critical in time-constrained situations such as the strict
20-second response time categories that our system won in the UAI’10 evaluation
[23].

4 Discussion

The performance of our system in the UAI’10 approximate inference evaluation
was clearly a strong demonstration of the practical effectiveness of the relax, com-
pensate and then recover framework. The latest public release of the SamIam sys-
tem is available at http://reasoning.cs.ucla.edu/samiam/, which includes
an implementation of this framework based on the mutual-information recovery
heuristic described earlier; the “residual recovery” heuristic used in UAI’10 will
be included in an upcoming release.

The system we employed in the UAI’10 approximate inference evaluation
used only standard jointree algorithms for exact inference in the simplified model.
Since the relax, compensate and then recover framework requires only a black-
box for exact reasoning in the simplified model, one can in principle employ
other inference engines as well. The ace system is particularly attractive for this
purpose, given its strong performance in the UAI’06 and UAI’08 exact inference
evaluations. However, to fully exploit this system, or other systems based on the
same principle, in this framework for approximate inference, one requires some
more advances that we are currently pursuing.

Consider for example our more recent efforts on knowledge compilation, based
on a refinement of the decomposability property called structured decomposabil-
ity [35, 36]. The property allows for an efficient conjoin operation between knowl-
edge bases that satisfy structured decomposability. The relax, compensate and
then recover framework stands to benefit immensely from this conjoin operation,
as recovery corresponds to a process where we conjoin equivalence constraints
with an existing knowledge base. Thus, it allows one to smoothly recover equiv-
alence constraints without having to re-initiate exact inference each time an
equivalence constraint is recovered.

The suggested integration between the two inference approaches that we dis-
cussed in this paper could also admit more sophisticated and accurate approx-
imations. Using a black-box inference engine that is exponential in treewidth,
such as the jointree algorithm, limits one’s ability to recover equivalence con-
straints as one is limited to approximate models that have low enough treewidth.
On the other hand, one can direct the relax, compensate and then recover pro-
cess towards approximate models that are efficiently compilable by systems such
as ace even if they have a large treewidth. This is the subject of current work.



Relax, Compensate and then Recover 13

References

1. Aji, S.M., McEliece, R.J.: The generalized distributive law and free energy min-
imization. In: Proceedings of the 39th Allerton Conference on Communication,
Control and Computing. pp. 672–681 (2001)

2. Bilmes, J.: Results from the evaluation of probabilistic inference systems at UAI-06
(2006), http://ssli.ee.washington.edu/~bilmes/uai06InferenceEvaluation/

results

3. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artificial Intelligence 172(6–7), 772–799 (April 2008)

4. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian networks
for exact inference. International Journal of Approximate Reasoning 42(1–2), 4–20
(May 2006)

5. Choi, A., Chan, H., Darwiche, A.: On Bayesian network approximation by edge
deletion. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intel-
ligence (UAI). pp. 128–135. Arlington, Virginia (2005)

6. Choi, A., Chavira, M., Darwiche, A.: Node splitting: A scheme for generating
upper bounds in bayesian networks. In: Proceedings of the 23rd Conference on
Uncertainty in Artificial Intelligence (UAI). pp. 57–66 (2007)

7. Choi, A., Darwiche, A.: An edge deletion semantics for belief propagation and its
practical impact on approximation quality. In: Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI). pp. 1107–1114 (2006)

8. Choi, A., Darwiche, A.: A variational approach for approximating Bayesian net-
works by edge deletion. In: Proceedings of the 22nd Conference on Uncertainty in
Artificial Intelligence (UAI). pp. 80–89 (2006)

9. Choi, A., Darwiche, A.: Approximating the partition function by deleting and then
correcting for model edges. In: Proceedings of the 24th Conference on Uncertainty
in Artificial Intelligence (UAI). pp. 79–87 (2008)

10. Choi, A., Darwiche, A.: Focusing generalizations of belief propagation on targeted
queries. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI). pp. 1024–1030 (2008)

11. Choi, A., Darwiche, A.: Many-pairs mutual information for adding structure to
belief propagation approximations. In: Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (AAAI). pp. 1031–1036 (2008)

12. Choi, A., Darwiche, A.: Relax then compensate: On max-product belief propaga-
tion and more. In: Proceedings of the Twenty-Third Annual Conference on Neural
Information Processing Systems (NIPS). pp. 351–359 (2009)

13. Choi, A., Standley, T., Darwiche, A.: Approximating weighted Max-SAT problems
by compensating for relaxations. In: Proceedings of the 15th International Con-
ference on Principles and Practice of Constraint Programming (CP). pp. 211–225
(2009)

14. Darwiche, A.: Decomposable negation normal form. Journal of the ACM 48(4),
608–647 (2001)

15. Darwiche, A.: Recursive conditioning. Artificial Intelligence 126(1-2), 5–41 (2001)

16. Darwiche, A.: A compiler for deterministic, decomposable negation normal form.
In: Proceedings of the Eighteenth National Conference on Artificial Intelligence
(AAAI). pp. 627–634. AAAI Press, Menlo Park, California (2002)

17. Darwiche, A.: A logical approach to factoring belief networks. In: Proceedings of
KR. pp. 409–420 (2002)



14 Arthur Choi and Adnan Darwiche

18. Darwiche, A.: A differential approach to inference in bayesian networks. Journal
of the ACM 50(3), 280–305 (2003)

19. Darwiche, A., Dechter, R., Choi, A., Gogate, V., Otten, L.: Results from the prob-
ablistic inference evaluation of UAI-08 (2008), http://graphmod.ics.uci.edu/

uai08/Evaluation/Report

20. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264 (2002)

21. Dechter, R.: Bucket elimination: A unifying framework for probabilistic inference.
In: Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence
(UAI). pp. 211–219 (1996)

22. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. J.
ACM 50(2), 107–153 (2003)

23. Elidan, G., Globerson, A.: Summary of the 2010 UAI approximate inference chal-
lenge (2010), http://www.cs.huji.ac.il/project/UAI10/summary.php

24. Elidan, G., McGraw, I., Koller, D.: Residual belief propagation: Informed schedul-
ing for asynchronous message passing. In: Proceedings of the 22nd Conference in
Uncertainty in Artificial Intelligence (2006)

25. Geiger, D., Meek, C., Wexler, Y.: A variational inference procedure allowing inter-
nal structure for overlapping clusters and deterministic constraints. J. Artif. Intell.
Res. (JAIR) 27, 1–23 (2006)

26. Jaakkola, T.: Tutorial on variational approximation methods. In: Saad, D., Opper,
M. (eds.) Advanced Mean Field Methods, chap. 10, pp. 129–160. MIT Press (2001)

27. Jensen, F.V., Lauritzen, S., Olesen, K.: Bayesian updating in recursive graphi-
cal models by local computation. Computational Statistics Quarterly 4, 269–282
(1990)

28. Jha, A., Suciu, D.: Knowledge compilation meets database theory: Compiling
queries to decision diagrams. In: Proceedings of the 14th International Conference
on Database Theory (2011), to appear.

29. Jordan, M.I., Ghahramani, Z., Jaakkola, T., Saul, L.K.: An introduction to varia-
tional methods for graphical models. Machine Learning 37(2), 183–233 (1999)

30. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. Journal of Royal
Statistics Society, Series B 50(2), 157–224 (1988)

31. Lowd, D., Domingos, P.: Approximate inference by compilation to arithmetic
circuits. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R., Culotta,
A. (eds.) Advances in Neural Information Processing Systems 23. pp. 1477–1485
(2010)

32. Mateescu, R., Kask, K., Gogate, V., Dechter, R.: Join-graph propagation algo-
rithms. J. Artif. Intell. Res. (JAIR) 37, 279–328 (2010)

33. Mooij, J.M., Kappen, H.J.: Sufficient conditions for convergence of the sum-product
algorithm. IEEE Transactions on Information Theory 53(12), 4422–4437 (2007)

34. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

35. Pipatsrisawat, K., Darwiche, A.: New compilation languages based on structured
decomposability. In: Proceedings of the Twenty-Third AAAI Conference on Arti-
ficial Intelligence (AAAI). pp. 517–522 (2008)

36. Pipatsrisawat, K., Darwiche, A.: Top-down algorithms for constructing structured
DNNF: Theoretical and practical implications. In: Proceedings of the 19th Euro-
pean Conference on Artificial Intelligence. pp. 3–8 (2010)



Relax, Compensate and then Recover 15

37. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its
generalizations. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence
in the New Millennium, chap. 8, pp. 239–269. Morgan Kaufmann (2003)

38. Yuille, A.L.: Cccp algorithms to minimize the bethe and kikuchi free energies:
Convergent alternatives to belief propagation. Neural Computation 14(7), 1691–
1722 (2002)

39. Zhang, N.L., Poole, D.: Exploiting causal independence in bayesian network infer-
ence. Journal of Artificial Intelligence Research 5, 301–328 (1996)


