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Abstract

We propose a distance measure between two probability distributions, which al-
lows one to bound the amount of belief change that occurs when moving from
one distribution to another. We contrast the proposed measure with some well
known measures, including KL–divergence, showing some theoretical properties on
its ability to bound belief changes. We then present two practical applications of the
proposed distance measure: sensitivity analysis in belief networks and probabilistic
belief revision. We show how the distance measure can be easily computed in these
applications, and then use it to bound global belief changes that result from either
the perturbation of local conditional beliefs or the accommodation of soft evidence.
Finally, we show that two well known techniques in sensitivity analysis and be-
lief revision correspond to the minimization of our proposed distance measure and,
hence, can be shown to be optimal from that viewpoint.

Key words: probabilistic reasoning, uncertainty, belief revision

1 Introduction

We propose in this paper a distance measure which allows one to bound the
amount of belief change that results from transforming one probabilistic state
of belief into another. Specifically, given a probability distribution Pr repre-
senting an initial state of belief, and a distribution Pr′ representing a new
state of belief, we define a distance measure which allows us to tightly bound
belief change as follows: 1/k ≤ O′(α | β)/O(α | β) ≤ k. Here, k is a constant

? A shorter version of this paper appeared in the Proceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI-02), pages 539-545.
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that depends on the proposed distance, α and β are arbitrary events, O(α | β)
is the odds of event α given β with respect to Pr, and O′(α | β) is the odds of
event α given β with respect to Pr′. We show a number of theoretical results
about the proposed measure and then present two of its key applications.

On the theoretical side, we prove that our proposed measure satisfies the three
properties of distance. We also contrast our distance measure with classical
measures, including KL–divergence [13] where we present some results on its
ability to bound belief changes. Specifically, we show that belief change be-
tween two states of belief can be unbounded, even when their KL–divergence
tends to zero. We show, however, that KL–divergence can be used to bound
the average change in beliefs as opposed to the worst–case change in beliefs.

On the practical side, we present two main applications of our proposed dis-
tance measure. The first application is sensitivity analysis in belief networks,
an area which concerns itself with bounding global belief change that results
from applying a local perturbation to a belief network [14,1,4,3,12,2,16]. We
show three key results here. First, we show that if Pr is the distribution
induced by a belief network N , and if Pr′ is the distribution induced by a be-
lief network N ′ that results from changing some conditional probability table
(CPT) in N , then the distance between Pr and Pr′ can be computed locally
by only examining the changed CPT. Second, we use our distance measure to
provide a bound on global belief change that results from a local CPT change,
and show that our bound generalizes and provides more insights into the
bound given by Chan and Darwiche recently [2]. Finally, we use our proposed
distance measure to prove the optimality of a prevalent, but formally unjus-
tified, technique in the literature on sensitivity analysis relating to changing
the CPTs of multivalued variables [14,12,4].

The second application we consider for our distance measure is in belief revi-
sion [6]. Here, we show how our distance measure can be used to bound belief
change that results from incorporating uncertain evidence according to both
Jeffrey’s rule [9] and Pearl’s method of virtual evidence [15]. We actually prove
the optimality of Jeffrey’s rule with regards to minimizing belief change and,
finally, consider the application of our distance measure to quantifying the
strength of evidence, as measured by the amount of belief change it induces.

Proofs of all theorems in this paper can be found in Appendix A.

2 A probabilistic distance measure

Our proposed measure is defined between two probability distributions.

2



Definition 2.1 Let Pr and Pr′ be two probability distributions over the same
set of worlds w. We define a measure D(Pr, Pr′) as follows:

D(Pr, Pr′)
def
= ln max

w

Pr′(w)

Pr(w)
− ln min

w

Pr′(w)

Pr(w)
,

where we will define, 0/0
def
= 1 and ∞/∞ def

= 1 in this paper.

We will say that two probability distributions Pr and Pr′ have the same
support, if for every world w, Pr(w) = 0 iff Pr′(w) = 0. Note that if two
distributions Pr and Pr′ do not have the same support, D(Pr, Pr′) = ∞.

Our first result on the defined measure is that it satisfies the three properties
of distance, hence, it is a distance measure.

Theorem 2.1 Let Pr, Pr′ and Pr′′ be three probability distributions over the
same set of worlds. The distance measure given in Definition 2.1 satisfies these
three properties:

Positiveness: D(Pr, Pr′) ≥ 0, and D(Pr, Pr′) = 0 iff Pr = Pr′;
Symmetry: D(Pr, Pr′) = D(Pr′, P r);
Triangle Inequality: D(Pr, Pr′) + D(Pr′, P r′′) ≥ D(Pr, Pr′′).

The interest in the defined distance measure stems from two reasons. First, it
can be easily computed in a number of practical situations which we discuss in
later sections. Second, it allows us to bound the difference in beliefs captured
by two probability distributions.

Theorem 2.2 Let Pr and Pr′ be two probability distributions over the same
set of worlds. Let α and β be two events. We then have:

e−D(Pr,Pr′) ≤ O′(α | β)

O(α | β)
≤ eD(Pr,Pr′),

where O(α | β) = Pr(α | β)/Pr(α | β) is the odds of event α given β with
respect to Pr, and O′(α | β) = Pr′(α | β)/Pr′(α | β) is the odds of event α
given β with respect to Pr′. 1 The bound is tight in the sense that for every
pair of distributions Pr and Pr′, there are events α and β such that:

O′(α | β)

O(α | β)
= eD(Pr,Pr′);

O′(α | β)

O(α | β)
= e−D(Pr,Pr′).

1 Of course, we must have Pr(β) 6= 0 and Pr′(β) 6= 0 for the odds to be defined.
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Fig. 1. The bounds of Pr′(α | β), as given by Inequality 2, plotted against the initial
belief p = Pr(α | β) for several different values of distance d = D(Pr, Pr′): d = .1
(top left), d = 1 (top right), d = 2 (bottom left), and d = 3 (bottom right).

We can express the bound of Theorem 2.2 in two other useful forms. First, we
can use logarithms:

| ln O′(α | β)− ln O(α | β)| ≤ D(Pr, Pr′). (1)

Second, we can use probabilities instead of odds:

p e−d

p (e−d − 1) + 1
≤ Pr′(α | β) ≤ p ed

p (ed − 1) + 1
, (2)

where p = Pr(α | β) is the initial belief in α given β, and d = D(Pr, Pr′)
is the distance. The bounds of Pr′(α | β) are plotted against p for several
different values of d in Figure 1.

In the applications we shall discuss next, Pr is a distribution which represents
some initial state of belief, and Pr′ is a distribution which represents a new
state of belief. The new state of belief results form applying some kind of local
change to the initial state. Examples include the change in some conditional
belief or the incorporation of new evidence. Our goal is then to assess the global
impact of such local belief changes. According to Theorem 2.2, if we are able
to compute the distance measure D(Pr, Pr′), then we can bound global belief
change in a very precise sense. For example, we can use Inequality 2 to compute
the bound on any query Pr′(α | β). We will later show two applications from
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sensitivity analysis and belief revision where the distance measure can be
computed efficiently.

3 Comparisons with existing measures

Before we discuss the applications of our proposed distance measure, we first
need to settle a major question: Can we bound belief change in the sense given
above using one of the classical probabilistic measures? We show next that this
is not possible using at least two of the most commonly used measures: KL–
divergence and Euclidean distance. We show, however, that KL–divergence
can be used to provide an average–case bound on belief changes and we also
provide a relationship between that bound and ours.

We start first with Kullback–Leibler (KL) divergence, which is one of the most
common measures for comparing probability distributions [13].

Definition 3.1 Let Pr and Pr′ be two probability distributions over the same
set of worlds w. The KL–divergence between Pr and Pr′ is defined as:

KL(Pr, Pr′)
def
= −∑

w

Pr(w) ln
Pr′(w)

Pr(w)
.

The first thing to note about KL–divergence 2 is that it is incomparable with
our distance measure.

Example 3.1 Consider the following distributions, Pr, Pr′ and Pr′′, over
worlds w1, w2 and w3:

Pr(w1) = .50, P r(w2) = .25, P r(w3) = .25;

Pr′(w1) = .50, P r′(w2) = .30, P r′(w3) = .20;

Pr′′(w1) = .43, P r′′(w2) = .32, P r′′(w3) = .25.

Computing the KL–divergence and our distance measure gives us:

KL(Pr, Pr′) = .0102, KL(Pr, Pr′′) = .0137;

D(Pr, Pr′) = .405, D(Pr, Pr′′) = .398.

2 Note that KL–divergence is asymmetric, and is thus technically not a distance
measure.
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Therefore, according to KL–divergence, Pr′ is closer to Pr than Pr′′, while
according to our distance measure, Pr′′ is closer to Pr than Pr′.

The next example shows that we can make the KL–divergence arbitrarily close
to 0, while keeping some odds ratio arbitrarily close to some constant k. Hence,
KL–divergence cannot be used to bound belief changes as permitted by our
proposed measure.

Example 3.2 Consider the following distributions, Pr and Pr′, over worlds
w1, w2 and w3:

Pr(w1) = p, Pr(w2) = q − p, Pr(w3) = 1− q;

Pr′(w1) = kp, Pr′(w2) = q − kp, Pr′(w3) = 1− q;

where p, q and k are constants, with 0 ≤ p ≤ q ≤ 1 and 0 ≤ k ≤ q/p. The
KL–divergence between Pr and Pr′ is:

KL(Pr, Pr′) = −p ln k − (q − p) ln
q − kp

q − p
.

Assume we have events α = w1 and β = w1, w2. The odds ratio of α given β
between Pr and Pr′ is:

O′(α | β)

O(α | β)
=

k(q − p)

q − kp
.

We can see that as p approaches 0, the KL–divergence also approaches 0, while
the odds ratio O′(α | β)/O(α | β) approaches k.

This example shows that we can make the KL–divergence arbitrarily close to
0, while keeping some odds ratio arbitrarily close to some constant k. In this
example, we condition on event β, which has a probability of q that can be
arbitrarily large. However, the probability of α, which is p according to Pr and
kp according to Pr′, is very small. Hence, although we have Pr′(α)/Pr(α) = k,
this ratio is ignored by KL–divergence because the term −p ln k is very small
as p approaches 0. More generally, the “contribution” of a world w to KL–
divergence is equal to −Pr(w) ln(Pr′(w)/Pr(w)). Therefore for a fixed ratio
Pr′(w)/Pr(w), this “contribution” becomes closer to 0 as Pr(w) decreases,
and becomes infinitesimal when Pr(w) approaches 0.

Another popular measure to compare two probability distributions is the Eu-
clidean distance.
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Definition 3.2 Let Pr and Pr′ be two probability distributions over the same
set of worlds w. The Euclidean distance between Pr and Pr′ is defined as:

ED(Pr, Pr′)
def
=

∑
w

√
(Pr′(w)− Pr(w))2.

That is, when computing the Euclidean distance, we add up the squared dif-
ferences between pairs of probability values. Therefore, this measure has the
same problem as KL–divergence: even if there is a large relative difference for
the probability of a world with respect to Pr and Pr′, it will be ignored if this
probability is very small. Consequently, we cannot provide any guarantee on
the ratio O′(α | β)/O(α | β), no matter how small the Euclidean distance is
(unless it is zero).

To summarize, neither KL–divergence nor Euclidean distance can be used to
provide guarantees on the ratio O′(α | β)/O(α | β), as we did in Theorem 2.2
using our distance measure.

Finally, we note that our distance measure is an improvement over comput-

ing the L-infinity metric L∞(ln Pr, ln Pr′)
def
= maxw | ln Pr′(w)− ln Pr(w)|,

because our distance measure is computed from both the maximum and mini-
mum values of ln Pr′(w)− ln Pr(w). If L∞(ln Pr, ln Pr′) = x, we can conclude
that −x ≤ ln Pr′(w) − ln Pr(w) ≤ x for any w, and prove the following two
guarantees. First, if α and β are two events, we have e−2x ≤ O′(α | β)/O(α |
β) ≤ e2x. Second, our distance measure is bounded such that D(Pr, Pr′) ≤ 2x.
However, the first guarantee is also a direct result of the second guarantee, and
by computing the exact value of the distance measure D(Pr, Pr′), we can ob-
tain a bound that is no worse than the bound obtained from L∞(ln Pr, ln Pr′).
Therefore, our distance measure should always be preferred.

3.1 KL-divergence as an average–case bound

Even though KL–divergence cannot be used to bound belief changes as dis-
cussed above, it can still be used to offer a bound but on the average change
in beliefs. This is given by the following theorem.

Theorem 3.1 Let Pr and Pr′ be two probability distributions over the same
set of worlds. Let α and β be two events. We then have:

KL(Pr, Pr′)

≥−Pr(β)

(
Pr(α | β) ln

Pr′(α | β)

Pr(α | β)
+ (1− Pr(α | β)) ln

1− Pr′(α | β)

1− Pr(α | β)

)
,
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Fig. 2. The bounds of Pr′(α | β), as given by Theorem 3.1, plotted against
the initial belief p = Pr(α | β), for different values of KL(Pr, Pr′) and
Pr(β): KL(Pr, Pr′) = .005 and Pr(β) = 1 (top left), KL(Pr, Pr′) = .02 and
Pr(β) = 1 (top right), KL(Pr, Pr′) = .005 and Pr(β) = .1 (bottom left), and
KL(Pr, Pr′) = .02 and Pr(β) = .1 (bottom right).

or alternatively, in odds:

KL(Pr, Pr′) ≥ Pr(β)

(
ln

O′(α | β) + 1

O(α | β) + 1
− O(α | β)

O(α | β) + 1
ln

O′(α | β)

O(α | β)

)
,

where O(α | β) = Pr(α | β)/Pr(α | β) is the odds of event α given β with
respect to Pr, and O′(α | β) = Pr′(α | β)/Pr′(α | β) is the odds of event α
given β with respect to Pr′.

According to this theorem, the KL–divergence can be used to provide a guar-
antee on the new odds value O′(α | β) in terms of the original odds value
O(α | β). However, the provided guarantee depends on the probability of event
β, where the quality of the guarantee degrades as the probability decreases.
This echoes Example 3.2, where we can get a constant log–odds change even
when the KL–divergence approaches 0, because the probability Pr(β) also ap-
proaches 0. To give better insights into the guarantee offered by Theorem 3.1,
we plot in Figure 2 the bounds it provides for different values of KL(Pr, Pr′)
and Pr(β).

One can also provide a bound on the change in odds of α | β which is indepen-
dent of the probability of β by taking an average over all possible probabilities
of β, but that would be an average–case bound as opposed to the worst–case
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bound provided by our measure.

3.2 Bayes factor

One useful term that can help us further understand our distance measure and
its relation to KL–divergence is the Bayes factor [7,8,10], defined as follows.

Definition 3.3 If Pr and Pr′ are two probability distributions, and α and β
are two events, the Bayes factor (or odds factor), FPr′,P r(α : β), is defined as
the ratio of new-to-old odds:

FPr′,P r(α : β)
def
=

Pr′(α)/Pr′(β)

Pr(α)/Pr(β)
.

Our distance measure given in Definition 2.1 can be expressed using the Bayes
factor:

D(Pr, Pr′) = ln max
wi,wj

FPr′,P r(wi : wj).

Therefore, our distance measure can be regarded as the logarithm of the max-
imum Bayes factor of any two worlds between the two distributions. Conse-
quently, it can be used to bound the Bayes factor of any two events between
the two distributions.

Theorem 3.2 Let Pr and Pr′ be two probability distributions over the same
set of worlds. Let γ1 and γ2 be two events. We then have:

e−D(Pr,Pr′) ≤ FPr′,P r(γ1 : γ2) ≤ eD(Pr,Pr′).

Theorem 2.2 is a special case of Theorem 3.2, when we substitute the following
terms: γ1 = α | β and γ2 = α | β.

While our distance measure provides us a worst–case bound of Bayes factors,
the KL–divergence can be perceived as an average–case bound of Bayes factors,
as shown by the next theorem.

Theorem 3.3 If α is an arbitrary event, and γ1, . . . , γn is a set of mutually
exclusive and exhaustive events, we then have:

0 ≤ ∑

i

Pr(γi) ln FPr′,P r(α : γi)− ln
Pr′(α)

Pr(α)
≤ KL(Pr, Pr′).
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Fig. 3. The bound of KL–divergence KL(Pr, Pr′) as a function of the distance
measure d = D(Pr, Pr′), as given in Theorem 3.4.

If instead of an arbitrary partition γ1, . . . , γn, we are given the set of worlds
w, then we will get the following equality relation:

KL(Pr, Pr′) =
∑
w

Pr(w) ln FPr′,P r(α : w)− ln
Pr′(α)

Pr(α)
.

Theorem 3.3 gives us a bound on the weighted sum of the logarithms of the
Bayes factors using KL–divergence.

To further relate the two bounds, we ask an interesting question: If we are
given the value of our distance measure between two distributions, can we put
a bound on the KL–divergence between them? The following theorem provides
us the answer.

Theorem 3.4 Given two distributions Pr and Pr′, where D(Pr, Pr′) = d >
0, we have:

KL(Pr, Pr′) ≤ −1− ln
d

ed − 1
+

d

ed − 1
.

The plot of the bound of Theorem 3.4 against d is shown in Figure 3. Hence,
the smaller d is, the more we can say about the KL–divergence as we can
get a tighter bound. If we view our distance measure as providing a worst–
case bound on belief changes, and KL–divergence as providing an average–
case bound on such changes, it is then not surprising that we can say more
about the average–case bound (KL–divergence) as the worst–case bound (our
distance measure) is less dramatic.

We close this section with some further comments on the suitability of the
average–case versus worst–case bounds:

(1) Average–case bounds have proved to be useful in learning algorithms,
while worst–case bounds are more important in common-sense reasoning,
where conditioning on unlikely events is not uncommon.
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(2) Even in learning algorithms, worst–case analysis can be useful if it gives
us tight results.

4 Applications to sensitivity analysis

We now consider a major application of our distance measure to sensitivity
analysis in belief networks [14,1,12,4,2]. A belief network is a graphical prob-
abilistic model, composed of two parts: a directed acyclic graph where nodes
represent variables, and a set of conditional probability tables (CPTs), one for
each variable [15,11]. The CPT for variable X with parents U defines a set of
conditional beliefs of the form θx|u = Pr(x | u), where x is a value of variable
X, u is an instantiation of parents U, and θx|u is the probability value of x
given u, and is called a network parameter.

One of the key questions with respect to belief networks is this: what can we
say about the global effect of changing some parameter θx|u to a new value
θ′x|u? That is, what is the effect of such a local parameter change on the value
of some arbitrary query Pr(α | β)?

Our earlier results [2] have provided a partial answer to this question, for
the case where: variable X is binary (it has only two values, x and x); α is
the value y of some variable Y ; β is the instantiation e of some variables E,
and neither θx|u nor θ′x|u is extreme (equal to 0 or 1). Specifically under these
conditions, we have shown that:

| ln O′(y | e)− ln O(y | e)| ≤
∣∣∣∣∣∣
ln

θ′x|u
θ′x|u

− ln
θx|u
θx|u

∣∣∣∣∣∣
. (3)

Using the above bound, we provided a formalization of a number of intuitions
relating to the sensitivity of probabilistic queries to changes in network pa-
rameters. We will now show how our distance measure can be used to derive a
generalization of the above bound, which applies without any of the previously
mentioned restrictions.

Suppose that our initial belief network is N and it induces a probability distri-
bution Pr. By changing the CPT for variable X, we produce a new belief net-
work N ′ that induces a probability distribution Pr′. If we are able to compute
the distance between Pr and Pr′, D(Pr, Pr′), we can then use Theorem 2.2 to
provide a guarantee on the global effect of the local CPT change. As it turns
out, the distance can be computed locally as given by the following theorem.

Theorem 4.1 Let N and N ′ be belief networks which induce distributions Pr
and Pr′ respectively, and let X be a variable with parents U in network N .
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Suppose that N ′ is obtained from N by changing the conditional probability
distribution of variable X given parent instantiation u from ΘX|u to Θ′

X|u, i.e.
we change parameter θx|u to θ′x|u for every value x. If Pr(u) > 0, then:

D(Pr, Pr′) = D(ΘX|u, Θ′
X|u).

The above theorem shows that the distance between the global probability
distributions induced by networks N and N ′ is exactly the distance between
the local distributions of X given u, assuming that all other local distributions
in N and N ′ are the same.

Theorem 4.1 is of great practical importance as it allows us to invoke Theo-
rem 2.2 to provide a generalized sensitivity analysis formula for belief networks.

Corollary 4.1 Let N and N ′ be belief networks which induce distributions
Pr and Pr′ respectively, and let X be a variable with parents U in network
N . Suppose that N ′ is obtained from N by changing the conditional probability
distribution of variable X given parent instantiation u from ΘX|u to Θ′

X|u, i.e.
we change parameter θx|u to θ′x|u for every value x. If Pr(u) > 0, then:

e
−D(ΘX|u,Θ′

X|u) ≤ O′(α | β)

O(α | β)
≤ e

D(ΘX|u,Θ′
X|u)

.

The bound given by Inequality 3 is a special case of Corollary 4.1, when X
has only two values x and x. In this case, the distance D(ΘX|u, Θ′

X|u) is equal
to:

D(ΘX|u, Θ′
X|u) =

∣∣∣∣∣ln
θ′x|u
θx|u

− ln
θ′x|u
θx|u

∣∣∣∣∣

=

∣∣∣∣∣∣
ln

θ′x|u
θ′x|u

− ln
θx|u
θx|u

∣∣∣∣∣∣
.

We have therefore generalized their results on sensitivity analysis to arbitrary
events and belief networks. We have also relaxed the condition that neither
θx|u nor θ′x|u can be extreme.

4.1 Comparison with KL–divergence

Suppose now that we want to compute the KL–divergence between two belief
networks under the same circumstances. We have:

KL(Pr, Pr′) = Pr(u)KL(ΘX|u, Θ′
X|u).
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We can see that to compute the KL–divergence between two belief networks
due to a single parameter change, we need to know the probability Pr(u).
Hence, the KL–divergence cannot be obtained locally as it would require a
global computation to obtain Pr(u). This is not necessary when we compute
our distance measure as given in Theorem 4.1. Hence, we have two differences
between our distance measure and KL–divergence in this regard. One is se-
mantical in which our measure can be used to bound worst–case belief changes,
while KL–divergence can be used to bound average–case belief changes. The
second difference is computational where our measure can be computed in
constant time under local changes, while the KL–divergence cannot.

4.2 Changing parameters of multi–valued variables

We now close this section with a final application of our distance measure.
Suppose X is a variable with parents U, values x1, x2 and x3, and parameters
θx1|u = .6, θx2|u = .3 and θx3|u = .1. Suppose further that we want to change
the parameter θx1|u = .6 to θ′x1|u = .8. As a result, we will need to change
the other parameters θx2|u and θx3|u so that the sum of all three parameters
remains to be 1. Because X is multivalued, there are infinitely many ways
to change the other two parameters and the question is: which one of them
should we choose? One popular scheme, which we will call the proportional
scheme, distributes the mass 1 − θ′x1|u = 1 − .8 = .2 among the other two
parameters proportionally to their initial values. That is, the new parameters
will be θ′x2|u = .2(.3/.4) = .15 and θ′x3|u = .2(.1/.4) = .05. This scheme
has been used in all approaches to sensitivity analysis we are familiar with
[14,12,4], yet without justification. As it turns out, we can use our distance
measure to prove the optimality of this scheme in a very precise sense.

Theorem 4.2 When changing a parameter θx|u to θ′x|u for a multivalued vari-
able X, the proportional scheme, i.e. the one that sets θ′xi|u = (1−θ′x|u)(θxi|u/(1−
θx|u)) for all xi 6= x, leads to the smallest distance between the original and
new distributions of X, which is given by:

D(ΘX|u, Θ′
X|u) =

∣∣∣∣∣ln
θ′x|u
θx|u

− ln
θ′x|u
θx|u

∣∣∣∣∣

=

∣∣∣∣∣∣
ln

θ′x|u
θ′x|u

− ln
θx|u
θx|u

∣∣∣∣∣∣
,

where we define θ′x|u = 1− θ′x|u and θx|u = 1− θx|u.

Theorem 4.2 thus justifies the use of the proportional scheme on the grounds
that it leads to the tightest bound on the amount of associated belief change.
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5 Applications to belief revision

The problem of probabilistic belief revision can be defined as follows. We
are given a probability distribution Pr, which captures a state of belief and
assigns a probability p to some event γ. We then obtain evidence suggesting a
probability of q 6= p for γ. Our goal is to change the distribution Pr to a new
distribution Pr′ such that Pr′(γ) = q. There are two problems here. First,
usually there are many choices for Pr′. Which one should we adopt? Second,
if we decide to choose the new state of belief Pr′ according to some specific
method, can we provide any guarantee on the amount of belief change that
will be undergone as a result of moving from Pr to Pr′?

As for the first question, we will consider two methods for updating a prob-
ability distribution in the face of new evidence: Jeffrey’s rule [9] and Pearl’s
method of virtual evidence [15]. As for the second question, we will show next
that we can indeed provide interesting guarantees on the amount of belief
change induced by both methods. We present the guarantees first and then
some of their applications.

5.1 Jeffrey’s rule

We start with Jeffrey’s rule for accommodating uncertain evidence.

Definition 5.1 Let Pr be a probability distribution over worlds w, and let
γ1, . . . , γn be a set of mutually exclusive and exhaustive events that are assigned
probabilities p1, . . . , pn, respectively, by Pr. Suppose we want to change Pr to a
new distribution Pr′ such that the probabilities of γ1, . . . , γn become q1, . . . , qn,
respectively. Jeffrey’s rule defines the new distribution Pr′ as follows:

Pr′(w)
def
= Pr(w)

qi

pi

, if w |= γi.

The main result we have about Jeffrey’s rule is that the distance between
probability distributions Pr and Pr′ can be computed directly from the old
and new probabilities of γ1, . . . , γn. This immediately allows us to invoke The-
orem 2.2 as we show next.

Theorem 5.1 Let Pr and Pr′ be two distributions, where Pr′ is obtained by
applying Jeffrey’s rule to Pr as given in Definition 5.1. We then have:

D(Pr, Pr′) = ln max
i

qi

pi

− ln min
i

qi

pi

.
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We immediately get the following bound.

Corollary 5.1 If O and O′ are the odds functions before and after applying
Jeffrey’s rule as given in Definition 5.1, then:

e−d ≤ O′(α | β)

O(α | β)
≤ ed,

where d = ln maxi (qi/pi)− ln mini (qi/pi).

To consider an example application of Corollary 5.1, we use a simple example
from Jeffrey [9].

Example 5.1 Assume that we are given a piece of cloth, where its color can
be one of: green (cg), blue (cb), or violet (cv). We also want to know whether
in the next day, the cloth will be sold (s), or not sold (s). Our original state
of belief is given by the probability distribution of the worlds Pr:

Pr(s, cg) = .12, P r(s, cb) = .12, P r(s, cv) = .32,

P r(s, cg) = .18, P r(s, cb) = .18, P r(s, cv) = .08.

Therefore, our original state of belief on the color of the cloth (cg, cb, cv) is
given by the distribution (.3, .3, .4). Assume that we now inspect the cloth
by candlelight, and we want to revise our state of belief on the color of the
cloth to the new distribution (.7, .25, .05) using Jeffrey’s rule. The distance
between the original and new distributions of the worlds can be computed by
simply examining the original and new distributions on the color variable as
given by Theorem 5.1. Specifically, the distance between the two distributions is
ln(.7/.3)− ln(.05/.4) = 2.93. We can now use this distance to provide a bound
on the change in any of our beliefs. Consider for example our belief that the
cloth is green given that it is sold tomorrow, Pr(cg | s), which is initially .214.
Suppose we want to find the bound on the change in this belief induced by the
new evidence. Given Corollary 5.1 and Inequality 2, we have:

.0144 ≤ Pr′(cg | s) ≤ .836,

which suggests that a dramatic change in belief is possible in this case. If we
actually apply Jeffrey’s rule, we get the new distribution Pr′:

Pr′(s, cg) = .28, P r′(s, cb) = .10, P r′(s, cv) = .04,

P r′(s, cg) = .42, P r′(s, cb) = .15, P r′(s, cv) = .01,
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according to which Pr′(cg | s) = .667, which does suggest a dramatic change.
On the other hand, if the new evidence on the color of the cloth is given by
the distribution (.25, .25, .50) instead, the distance between the old and new
distributions will be .406, and our bound will be: .153 ≤ Pr′(cg | s) ≤ .290,
which is obviously much tighter as this evidence is much weaker.

Alternatively, we can compute the KL–divergence after applying Jeffrey’s rule:

KL(Pr, Pr′) =
∑

i

−pi ln
qi

pi

.

Hence for Jeffrey’s rule, one can obtain locally both the average–case bounds
and the worst–case bounds on the amount of belief change.

We close this section by showing that Jeffrey’s rule commits to a probability
distribution which minimizes our distance measure. Hence, Jeffrey’s rule leads
to the strongest bound on the amount of belief change. 3

Theorem 5.2 The new distribution Pr′ obtained by applying Jeffrey’s rule
to an initial distribution Pr is optimal in the following sense. Among all pos-
sible distributions that assign probabilities q1, . . . , qn to events γ1, . . . , γn, Pr′

minimizes the distance from Pr, according to the measure defined in Defini-
tion 2.1. 4

5.2 Pearl’s method of virtual evidence

We now consider Pearl’s method of virtual evidence. According to this method,
we also have a new evidence η that bears on a set of mutually exclusive and
exhaustive events γ1, . . . , γn, but the evidence is not specified as a set of new
probabilities for these events. Instead, for each γi, i 6= 1, we are given a number
λi which is interpreted as the ratio Pr(η | γi)/Pr(η | γ1). That is, λi represents
the likelihood ratio that we would obtain evidence η given γi, compared with
given γ1. Note that under this interpretation, we must have λ1 = 1.

Definition 5.2 Let Pr be a probability distribution over worlds w, and let
γ1, . . . , γn be a set of mutually exclusive and exhaustive events that are assigned
probabilities p1, . . . , pn, respectively, by Pr. Suppose we want to change Pr to a
new distribution Pr′ to incorporate virtual evidence η, specified by λ1, . . . , λn,

3 It has been previously proven that the probability distribution obtained by Jef-
frey’s rule also minimizes the KL–divergence [5]. Hence, our result strengthens this
previously known result as it shows that Jeffery’s rule lead to the strongest worst–
case and average–case bounds on belief changes.
4 Note that this distribution Pr′ is not necessarily unique.
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with λ1 = 1 and λi = Pr(η | γi)/Pr(η | γ1) if i 6= 1. Pearl’s method of virtual
evidence defines the new distribution Pr′ as follows:

Pr′(w)
def
= Pr(w)

λi∑
j pjλj

, if w |= γi.

Again, we can easily compute the distance between distributions Pr and Pr′

using only local information.

Theorem 5.3 Let Pr and Pr′ be two distributions, where Pr′ is obtained
from Pr by accommodating virtual evidence as given by Definition 5.2. We
then have:

D(Pr, Pr′) = ln max
i

λi − ln min
i

λi.

This immediately gives us the following bound.

Corollary 5.2 If O and O′ are the odds functions before and after applying
Pearl’s method as given in Definition 5.2, then:

e−d ≤ O′(α | β)

O(α | β)
≤ ed,

where d = ln maxi λi − ln mini λi.

For the special case where our evidence η bears only on ¬γ versus γ, with
λ = Pr(η | γ)/Pr(η | ¬γ), the above bound reduces to | ln O′(α | β)− ln O(α |
β)| ≤ | ln λ|. Therefore, the bound is tighter when λ is closer to 1. Clearly,
when λ = 1, the evidence is trivial and the two distributions are the same.

Alternatively, we can compute the KL–divergence due to applying virtual
evidence:

KL(Pr, Pr′) =
∑

i

−pi ln
λi∑

j pjλj

.

Note, however, that to compute the KL–divergence, we need to know pi =
Pr(γi), which is not available locally from simply examining the virtual evi-
dence. Hence, although we can use KL–divergence to offer average–case bounds
on belief changes induced by the method of virtual evidence, we cannot do
this in constant time as is possible using our proposed distance measure.

Consider the following example from Pearl [15].
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Example 5.2 On any given day, there is a burglary on any given house with
probability Pr(b) = 10−4, while the alarm of Mr. Holmes’ house will go off
if there is a burglary with probability Pr(a | b) = .95, and go off if there is
no burglary with probability Pr(a | b) = .01. One day, Mr. Holmes’ receives
a call from his neighbor, Mrs. Gibbons, saying she may have heard the alarm
of his house going off. Mr. Holmes concludes that there is an 80% chance
that Mrs. Gibbons did hear the alarm going off. According to Pearl’s method,
this evidence can be interpreted as: λ = Pr(η | a)/Pr(η | a) = 4. Therefore,
the distance between the original distribution Pr, and the new distribution
Pr′ which results from incorporating the virtual evidence, is | ln λ| = | ln 4| =
1.386. We can use this distance to bound the change in any of our beliefs. In
particular, we may want to bound the new probability that there was a burglary
at Mr. Holmes’ house. Inequality 2 gives us:

2.50× 10−5 ≤ Pr′(b) ≤ 4.00× 10−4.

If we actually apply Pearl’s method, we get Pr′(b) = 3.85× 10−4.

Our distance measure is then useful for approximate reasoning given soft ev-
idence, as we can use the bound to approximate the probability of any event
after the accommodation of such evidence. The approximation itself takes con-
stant time to compute since we only need to compute the distance measure
and apply Inequality 2. We stress, however, that the bound becomes trivial in
the case of hard evidence since the initial and new distributions no longer have
the same support in this case, making the distance between them infinitely
large.

We close this section by a final application of our distance measure, relating
to the notion of evidence strength.

Example 5.3 Going back to Example 5.1, we ask: What kind of evidence will
assure us that our belief in the cloth being green given that it is sold tomorrow,
which is now at .214, would not exceed .3? Inequality 2 can be used in this case
to obtain a sufficient condition on the strength of evidence which will ensure
this. Specifically, Inequality 2 gives us:

.214 e−d

.214 (e−d − 1) + 1
≤ Pr′(cg | s) ≤ .214 ed

.214 (ed − 1) + 1
.

To ensure that Pr′(cg | s) ≤ .3, we must find a distance d that equates the
above upper bound to .3. A value of d = .454 has this property. Hence, any
piece of evidence which has a distance of no more than .454 from the current
distribution on color, (.3, .3, .4), would guarantee that Pr′(cg | s) does not
exceed .3. Following are some pieces of evidence which satisfy this condition:
(.25, .25, .5), (.25, .3, .45) and (.35, .3, .35).
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6 Conclusion

We proposed a distance measure between two probability distributions, which
allows one to bound the amount of belief change that occurs when moving
from one distribution to the other. We also contrasted the proposed measure
with some well known measures, including KL–divergence. We then presented
two practical applications of the proposed distance measure: sensitivity anal-
ysis in belief networks and probabilistic belief revision. We showed how the
distance measure can be easily computed in these applications, and then used
it to bound global belief changes that result from either the perturbation of
local conditional beliefs or the accommodation of soft evidence. Finally, we
showed that two well known techniques in sensitivity analysis and belief re-
vision correspond to the minimization of our proposed distance measure and,
hence, can be shown to be optimal from that viewpoint.
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A Proofs

Proof of Theorem 2.1 The distance measure given in Definition 2.1 satis-
fies these three properties:

Positiveness: Obviously, we have D(Pr, Pr′) ≥ 0 and D(Pr, Pr) = 0. We
can easily see that maxw (Pr′(w)/Pr(w)) ≥ 1 and minw (Pr′(w)/Pr(w)) ≤ 1,
since

∑
w Pr′(w) =

∑
w Pr(w) = 1. When D(Pr, Pr′) = 0, we must have

maxw (Pr′(w)/Pr(w)) = minw (Pr′(w)/Pr(w)) = 1. Therefore, Pr(w) =
Pr′(w) for all w, and thus Pr = Pr′.
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Symmetry: Since maxw (Pr′(w)/Pr(w)) = minw (Pr(w)/Pr′(w)) and minw (Pr′(w)/Pr(w)) =
maxw (Pr(w)/Pr′(w)), we can easily see that D(Pr, Pr′) = D(Pr′, P r).

Triangle inequality: Let Pr′′(wi)/Pr(wi) = maxw (Pr′′(w)/Pr(w)) and Pr′′(wj)/Pr(wj) =
minw (Pr′′(w)/Pr(w)). Since ln(Pr′′(wi)/Pr(wi)) = ln(Pr′′(wi)/Pr′(wi)) −
ln(Pr′(wi)/Pr(wi)), we have:

D(Pr, Pr′′)

= ln max
w

Pr′′(w)

Pr(w)
− ln min

w

Pr′′(w)

Pr(w)

= ln
Pr′′(wi)

Pr(wi)
− ln

Pr′′(wj)

Pr(wj)

=

(
ln

Pr′′(wi)

Pr′(wi)
− ln

Pr′(wi)

Pr(wi)

)
−

(
ln

Pr′′(wj)

Pr′(wj)
− ln

Pr′(wj)

Pr(wj)

)

=

(
ln

Pr′(wj)

Pr(wj)
− ln

Pr′(wi)

Pr(wi)

)
+

(
ln

Pr′′(wi)

Pr′(wi)
− ln

Pr′′(wj)

Pr′(wj)

)

≤
(

ln max
w

Pr′(w)

Pr(w)
− ln min

w

Pr′(w)

Pr(w)

)
+

(
ln max

w

Pr′′(w)

Pr′(w)
− ln min

w

Pr′′(w)

Pr′(w)

)

= D(Pr, Pr′) + D(Pr′, P r′′).2

Proof of Theorem 2.2 If Pr and Pr′ do not have the same support, we
have D(Pr, Pr′) = ∞, and thus −∞ = e−D(Pr,Pr′) ≤ O′(α | β)/O(α | β) ≤
eD(Pr,Pr′) = ∞. If they have the same support, let rw = Pr′(w)/Pr(w). The
odds ratio O′(α | β)/O(α | β) can be expressed as:

O′(α | β)

O(α | β)
=

Pr′(α | β)/Pr′(α | β)

Pr(α | β)/Pr(α | β)

=
Pr′(α, β)/Pr′(α, β)

Pr(α, β)/Pr(α, β)

=
(
∑

w|=α,β Pr′(w))/(
∑

w|=α,β Pr′(w))

(
∑

w|=α,β Pr(w))/(
∑

w|=α,β Pr(w))

=
(
∑

w|=α,β rwPr(w))/(
∑

w|=α,β rwPr(w))

(
∑

w|=α,β Pr(w))/(
∑

w|=α,β Pr(w))
.

We now introduce maxw rw and minw rw to get the upper bound of the odds
ratio:

O′(α | β)

O(α | β)
≤ ((maxw rw)

∑
w|=α,β Pr(w))/((minw rw)

∑
w|=α,β Pr(w))

(
∑

w|=α,β Pr(w))/(
∑

w|=α,β Pr′(w))
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=
maxw rw

minw rw

.

Similarly, we can also get the lower bound on the odds ratio:

O′(α | β)

O(α | β)
≥ ((minw rw)

∑
w|=α,β Pr(w))/((maxw rw)

∑
w|=α,β Pr(w))

(
∑

w|=α,β Pr(w))/(
∑

w|=α,β Pr′(w))

=
minw rw

maxw rw

.

We note that the bounds can be expressed using our distance measure:

eD(Pr,Pr′) =
maxw Pr′(w)/Pr(w)

minw Pr′(w)/Pr(w)
=

maxw rw

minw rw

;

e−D(Pr,Pr′) =
minw Pr′(w)/Pr(w)

maxw Pr′(w)/Pr(w)
=

minw rw

maxw rw

.

Therefore, we have e−D(Pr,Pr′) ≤ O′(α | β)/O(α | β) ≤ eD(Pr,Pr′). If both
O′(α | β) and O(α | β) takes on either 0 or ∞, the theorem still holds because

0/0
def
= 1 and ∞/∞ def

= 1.

The bound is tight in the sense that for every pair of distributions Pr and
Pr′, there are events α = wi and β = wi or wj, where rwi

= maxw rw and
rwj

= minw rw, such that:

O′(α | β) =

∑
w|=α,β rwPr(w)

∑
w|=α,β rwPr(w)

=
rwi

Pr(wi)

rwj
Pr(wj)

.

Since O(α | β) = Pr(wi)/Pr(wj) and eD(Pr,Pr′) = (maxw rw)/(minw rw) =
rwi

/rwj
, we have O′(α | β)/O(α | β) = eD(Pr,Pr′). Similarly, we can get O′(α |

β)/O(α | β) = e−D(Pr,Pr′).2

Proof of Theorem 3.1 To obtain the largest probability change for the
conditional event α | β given some KL–divergence, the new probability distri-
bution Pr′ needs to satisfy the following three properties:

• For all w |= α, β, Pr′(w) = Pr(w)(Pr′(α | β)/Pr(α | β)).
• For all w |= α, β, Pr′(w) = Pr(w)(Pr′(α | β)/Pr(α | β)).
• For all w |= β, Pr′(w) = Pr(w), i.e., Pr′(β) = Pr(β).
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Under these three conditions, we have the following equality:

KL(Pr, Pr′)

=−Pr(α, β) ln
Pr′(α, β)

Pr(α, β)
− Pr(α, β) ln

Pr′(α, β)

Pr(α, β)

=−Pr(β)

(
Pr(α | β) ln

Pr′(α | β)

Pr(α | β)
+ Pr(α | β) ln

Pr′(α | β)

Pr(α | β)

)
.

Since this is the case where we get the largest probability change, the following
inequality must be satisfied:

KL(Pr, Pr′)

≥−Pr(β)

(
Pr(α | β) ln

Pr′(α | β)

Pr(α | β)
+ (1− Pr(α | β)) ln

1− Pr′(α | β)

1− Pr(α | β)

)
.

We can now plug in Pr′(α | β) = O′(α | β)/(O′(α | β) + 1) and Pr(α | β) =
O(α | β)/(O(α | β) + 1), and after simplification, we get:

KL(Pr, Pr′) ≥ Pr(β)

(
ln

O′(α | β) + 1

O(α | β) + 1
− O(α | β)

O(α | β) + 1
ln

O′(α | β)

O(α | β)

)
.2

Proof of Theorem 3.2 Similar to the proof of Theorem 2.2, by replacing
α, β with γ1, and α, β with γ2.2

Proof of Theorem 3.3 If γ1, . . . , γn is a set of mutually exclusive and
exhaustive events, we have:

∑

i

Pr(γi) ln FPr′,P r(α : γi) =
∑

i

Pr(γi) ln
Pr′(α)/Pr(α)

Pr′(γi)/Pr(γi)

=
∑

i

Pr(γi) ln
Pr′(α)

Pr(α)
−∑

i

Pr(γi) ln
Pr′(γi)

Pr(γi)

= ln
Pr′(α)

Pr(α)

∑

i

Pr(γi)−
∑

i

Pr(γi) ln
Pr′(γi)

Pr(γi)

= ln
Pr′(α)

Pr(α)
−∑

i

Pr(γi) ln
Pr′(γi)

Pr(γi)
.

We also note the following inequality about KL–divergence:

KL(Pr, Pr′) =
∑
w

−Pr(w) ln
Pr′(w)

Pr(w)
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≥∑

i

−Pr(γi) ln
Pr′(γi)

Pr(γi)

≥ 0.

Therefore, we have:

ln
Pr′(α)

Pr(α)
≤ ∑

i

Pr(γi) ln FPr′,P r(α : γi) ≤ ln
Pr′(α)

Pr(α)
+ KL(Pr, Pr′),

or:

0 ≤ ∑

i

Pr(γi) ln FPr′,P r(α : γi)− ln
Pr′(α)

Pr(α)
≤ KL(Pr, Pr′).

If instead of an arbitrary partition γ1, . . . , γn, we are given the set of worlds
w, then we will get the following equality relation:

∑
w

Pr(w) ln FPr′,P r(α : w)− ln
Pr′(α)

Pr(α)
= KL(Pr, Pr′).2

Proof of Theorem 3.4 To prove this theorem, we first establish two lem-
mas:

Lemma A.1 Given two distributions Pr and Pr′, and a set of worlds S+,
where ∀w∈S+Pr′(w) > Pr(w), let rmax = maxw∈S+ (Pr′(w)/Pr(w)). We have
the following inequality:

∑

w∈S+

−Pr(w) ln
Pr′(w)

Pr(w)
≤ −Pr′(S+)− Pr(S+)

rmax − 1
ln rmax. (A.1)

Lemma A.2 Given two distributions Pr and Pr′, and a set of worlds S−,
where ∀w∈S−Pr′(w) < Pr(w), let rmin = minw∈S− (Pr′(w)/Pr(w)). We have
the following inequality:

∑

w∈S−

−Pr(w) ln
Pr′(w)

Pr(w)
≤ −Pr′(S−)− Pr(S−)

rmin − 1
ln rmin. (A.2)

We use induction to prove Lemma A.1. Lemma A.2 can be proved similarly.

Assume S = {w}, where Pr′(w) > Pr(w). We have rmax = Pr′(w)/Pr(w).
Therefore:

−Pr(w) ln
Pr′(w)

Pr(w)
=−rmaxPr(w)− Pr(w)

rmax − 1
ln rmax
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=−Pr′(w)− Pr(w)

rmax − 1
ln rmax.

Therefore, Inequality A.1 is satisfied for the set S.

Now we are given sets S1, . . . , Sn, where Si ∩ Sj = ∅ for all Si, Sj, i 6= j, and
∀w∈Si

Pr′(w) > Pr(w) for all Si. Assume that Inequality A.1 is true for all Si,
i.e. if ri = maxw∈Si

(Pr′(w)/Pr(w)), we have:

∑

w∈Si

−Pr(w) ln
Pr′(w)

Pr(w)
≤ −Pr′(Si)− Pr(Si)

ri − 1
ln ri.

We want to prove that Inequality A.1 is also true for S+ =
⋃n

i=1 Si. First, we
note that if p ≥ q > 1, we get −(ln p)/(p − 1) ≥ −(ln q)/(q − 1). Now let
rmax = maxw∈S+ (Pr′(w)/Pr(w)). Since rmax ≥ ri > 1 for all i, we have:

∑

w∈S+

−Pr(w) ln
Pr′(w)

Pr(w)
=

n∑

i=1

∑

w∈Si

−Pr(w) ln
Pr′(w)

Pr(w)

≤
n∑

i=1

−Pr′(Si)− Pr(Si)

ri − 1
ln ri

≤
n∑

i=1

−Pr′(Si)− Pr(Si)

rmax − 1
ln rmax

=−
∑n

i=1 (Pr′(Si)− Pr(Si))

rmax − 1
ln rmax

=−Pr′(S+)− Pr(S+)

rmax − 1
ln rmax.

This proves that Inequality A.1 is also true for S+. Therefore, by induction,
Lemma A.1 is true.

We now proceed with the proof of Theorem 3.4. Given distributions Pr and
Pr′, we divide all worlds into three subsets: S+, where ∀w∈S+Pr′(w) > Pr(w);
S−, where ∀w∈S−Pr′(w) < Pr(w); and S0, where ∀w∈S0Pr′(w) = Pr(w). It is
obvious that we must have Pr′(S+)− Pr(S+) = −(Pr′(S−)− Pr(S−)). If we
are given rmax = maxw (Pr′(w)/Pr(w)) and rmin = minw (Pr′(w)/Pr(w)),
then the KL–divergence between Pr and Pr′ is bounded by:

KL(Pr, Pr′) =
∑
w

−Pr(w) ln
Pr′(w)

Pr(w)

=
∑

w∈S+

−Pr(w) ln
Pr′(w)

Pr(w)
+

∑

w∈S−

−Pr(w) ln
Pr′(w)

Pr(w)
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+
∑

w∈S0

−Pr(w) ln
Pr′(w)

Pr(w)

≤−Pr′(S+)− Pr(S+)

rmax − 1
ln rmax − Pr′(S−)− Pr(S−)

rmin − 1
ln rmin

= (Pr′(S+)− Pr(S+))

(
ln rmin

rmin − 1
− ln rmax

rmax − 1

)
.

We first maximize Pr′(S+) − Pr(S+) with respect to rmax and rmin. The
constraints we have are Pr′(S+)/Pr(S+) ≤ rmax, Pr′(S−)/Pr(S−) ≥ rmin,
and Pr(S+) + Pr(S−) = Pr′(S+) + Pr′(S−) ≤ 1. The solution we get is:

Pr′(S+)− Pr(S+) ≤ (rmax − 1)(1− rmin)

rmax − rmin

.

Therefore:

KL(Pr, Pr′)≤
(

(rmax − 1)(1− rmin)

rmax − rmin

) (
ln rmin

rmin − 1
− ln rmax

rmax − 1

)

=
(1− rmax) ln rmin − (1− rmin) ln rmax

rmax − rmin

.

We now maximize this term with respect to d = ln rmax − ln rmin. The max-
imum value is attained at rmax = edd/(ed − 1) and rmin = d/(ed − 1). The
maximum KL–divergence value is thus given by:

KL(Pr, Pr′)≤ (1− edd
ed−1

) ln d
ed−1

− (1− d
ed−1

) ln edd
ed−1

edd
ed−1

− d
ed−1

=
(ed − 1− edd) ln d

ed−1
− (ed − 1− d)(d + ln d

ed−1
)

(ed − 1)d

=
−(ed − 1)d ln d

ed−1
− (ed − 1− d)d

(ed − 1)d

=− ln
d

ed − 1
− ed − 1− d

ed − 1

=−1− ln
d

ed − 1
+

d

ed − 1
.2

Proof of Theorem 4.1 We first prove the following lemma.

Lemma A.3 Assume that we change parameter θx|u to θ′x|u for every value x,
and Pr(u) > 0. For all xi where θ′xi|u > 0 or θxi|u > 0, there must exist some
w |= xi,u such that it satisfies the condition Pr′(w)/Pr(w) = θ′xi|u/θxi|u. For
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all other worlds w that do not satisfy this condition, we must have Pr′(w) =
Pr(w), and thus Pr′(w)/Pr(w) = 1. 5

First we note that Pr′(u) = Pr(u) > 0. For any world w, either w |= u, or
w |= xi,u for some xi. We consider the different cases of w.

• If w |= u, we must have Pr′(w) = Pr(w), because we are only changing
parameters θx|u.

• If w |= xi,u, we consider four cases of xi:
· If θ′xi|u = θxi|u = 0, Pr′(xi,u) = Pr(xi,u) = 0. Therefore, for all worlds

w |= xi,u, Pr′(w) = Pr(w) = 0.
· If θ′xi|u = 0 and θxi|u > 0, Pr′(xi,u) = 0 and Pr(xi,u) > 0. Therefore,

for all worlds w |= xi,u, either Pr′(w) = Pr(w) = 0; or Pr′(w) = 0 and
Pr(w) > 0, giving us Pr′(w)/Pr(w) = 0 = θ′xi|u/θxi|u. Moreover, because
Pr(xi,u) > 0, there must exist some w |= xi,u such that Pr(w) > 0, and
thus satisfying the condition Pr′(w)/Pr(w) = θ′xi|u/θxi|u.

· If θ′xi|u > 0 and θxi|u = 0, Pr′(xi,u) > 0 and Pr(xi,u) = 0. Therefore,
for all worlds w |= xi,u, either Pr′(w) = Pr(w) = 0; or Pr′(w) > 0 and
Pr(w) = 0, giving us Pr′(w)/Pr(w) = ∞ = θ′xi|u/θxi|u. Moreover, because
Pr′(xi,u) > 0, there must exist some w |= xi,u such that Pr′(w) > 0,
and thus satisfying the condition Pr′(w)/Pr(w) = θ′xi|u/θxi|u.

· If θ′xi|u > 0 and θxi|u > 0, Pr′(xi,u) > 0 and Pr(xi,u) > 0. Therefore,
for all worlds w |= xi,u, either Pr′(w) = Pr(w) = 0; or Pr′(w) > 0
and Pr(w) > 0, giving us Pr′(w)/Pr(w) = θ′xi|u/θxi|u. Moreover, be-
cause Pr′(xi,u) > 0 and Pr(xi,u) = 0, there must exist some w |= xi,u
such that Pr′(w) > 0 and Pr(w) > 0, and thus satisfying the condition
Pr′(w)/Pr(w) = θ′xi|u/θxi|u.

Therefore Lemma A.3 is correct, and we can conclude maxw(Pr′(w)/Pr(w)) =
maxxi

(θ′xi|u/θxi|u) and minw(Pr′(w)/Pr(w)) = minxi
(θ′xi|u/θxi|u). Consequently,

we have D(Pr, Pr′) = D(ΘX,u, Θ′
X,u).2

Proof of Theorem 4.2 Let Θ′
X|u be the distribution generated by the pro-

portional scheme, where θ′xi|u = (1− θ′x|u)(θxi|u/(1− θx|u)) for all xi 6= x, and
Θ′′

X|u be an arbitrary distribution with θ′′x|u = θ′x|u. We want to prove that
D(ΘX|u, Θ′′

X|u) ≥ D(ΘX|u, Θ′
X|u).

• If θx|u = 1 and θ′′x|u = θ′x|u < 1, we must have D(ΘX|u, Θ′′
X|u) = ∞. 6

5 Either Pr′(w) = Pr(w) > 0; or Pr′(w) = Pr(w) = 0, and thus

Pr′(w)/Pr(w)
def
= 1.

6 Here, we will define the proportional scheme as making θ′xi|u = θ′xj |u for all

xi, xj 6= x, since we have 0/0
def
= 1.
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• If θx|u = 0 and θ′′x|u = θ′x|u > 0, we must have both D(ΘX|u, Θ′
X|u) = ∞ and

D(ΘX|u, Θ′′
X|u) = ∞.

• We now consider the case where θx|u 6= 0 and θx|u 6= 1. We first assume that
θ′′x|u = θ′x|u > θx|u. For Θ′

X|u, we have maxxi
(θ′xi|u/(θxi|u) = θ′x|u/θx|u and

minxi
(θ′xi|u/θxi|u) = (1− θ′x|u)/(1− θx|u). If ΘX|u and Θ′′

X|u do not have the
same support, we have D(ΘX|u, Θ′′

X|u) = ∞ ≥ D(ΘX|u, Θ′
X|u). If they have

the same support, we have the following inequality:

1− θ′′x|u
1− θx|u

=

∑
xi 6=x θ′′xi|u∑
xi 6=x θxi|u

=

∑
xi 6=x θxi|u(θ′′xi|u/θxi|u)

∑
xi 6=x θxi|u

≥
∑

xi 6=x θxi|u(mini (θ
′′
xi|u/θxi|u))

∑
xi 6=x θxi|u

= min
i

θ′′xi|u
θxi|u

.

Thus for Θ′′
X|u, we have maxxi

(θ′′x|u/θxi|u) ≥ θ′′x|u/θx|u = θ′x|u/θx|u = maxxi
(θ′xi|u/θxi|u)

and minxi
(θ′′xi|u/θxi|u) ≤ (1 − θ′′x|u)/(1 − θx|u) = (1 − θ′x|u)/(1 − θx|u) =

minxi
(θ′xi|u/θxi|u). Therefore, we have:

D(ΘX|u, Θ′′
X|u) = ln max

xi

θ′′xi|u
θxi|u

− ln min
xi

θ′′xi|u
θxi|u

≥ ln max
xi

θ′xi|u
θxi|u

− ln min
xi

θ′xi|u
θxi|u

= D(ΘX|u, Θ′
X|u).

We can prove the above result for the similar case of θ′′x|u = θ′x|u < θx|u.

Therefore, the proportional scheme gives us the smallest distance, and this
distance is equal to:

D(ΘX|u, Θ′
X|u) =

∣∣∣∣∣ln
θ′x|u
θx|u

− ln
1− θ′x|u
1− θx|u

∣∣∣∣∣

=

∣∣∣∣∣∣
ln

θ′x|u
θ′x|u

− ln
θx|u
θx|u

∣∣∣∣∣∣
,

where θx|u = 1− θx|u and θ′x|u = 1− θ′x|u.2

Proof of Theorem 5.1 If p1, . . . , pn and q1, . . . , qn do not have the same
support, we can easily prove that the distributions Pr and Pr′ also do not have
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the same support, and thus D(Pr, Pr′) = ln maxi (qi/pi)−ln mini (qi/pi) = ∞.

Otherwise, from Jeffrey’s rule, we have Pr′(w)
def
= Pr(w)(qi/pi), if w |= γi.

Therefore, we have Pr′(w)/Pr(w) = qi/pi, if w |= γi. Consequently, we have:

D(Pr, Pr′) = ln max
w

Pr′(w)

Pr(w)
− ln min

w

Pr′(w)

Pr(w)

= ln max
i

qi

pi

− ln min
i

qi

pi

.2

Proof of Theorem 5.2 Let Pr′ be the distribution generated by Jeffrey’s
rule, while Pr′′ be any distribution that satisfies the constraint, Pr′′(γi) =
Pr′(γi) = qi for all i = 1, . . . , n. We want to prove that D(Pr, Pr′′) ≥
D(Pr, Pr′).

If Pr and Pr′′ do not have the same support, we have D(Pr, Pr′′) = ∞ ≥
D(Pr, Pr′). If they have the same support, let qj/pj = maxi (qi/pi) and
qk/pk = mini (qi/pi). We now introduce rmax = maxw (Pr′′(w)/Pr(w)), and
write the following inequality:

rmaxpj = rmaxPr(γj)

=
∑

w|=γj

rmaxPr(w)

≥ ∑

w|=γj

Pr′′(w)

Pr(w)
Pr(w)

=
∑

w|=γj

Pr′′(w)

= Pr′′(γj)

= qj.

This gives us rmax ≥ qj/pj. We can similarly introduce rmin = minw (Pr′′(w)/Pr(w)),
and write the following inequality:

rminpk = rminPr(γk)

=
∑

w|=γk

rminPr(w)

≤ ∑

w|=γk

Pr′′(w)

Pr(w)
Pr(w)

=
∑

w|=γk

Pr′′(w)

= Pr′′(γk)
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= qk.

This gives us rmin ≤ qk/pk. Therefore, the distance between Pr and Pr′′ is:

D(Pr, Pr′′) = ln max
w

Pr′′(w)

Pr(w)
− ln min

w

Pr′′(w)

Pr(w)

= ln rmax − ln rmin

≥ ln
qj

pj

− ln
qk

pk

= ln max
i

qi

pi

− ln min
i

qi

pi

= D(Pr, Pr′).

Therefore, the distribution Pr′ gives us the smallest distance.2

Proof of Theorem 5.3 From Pearl’s method of virtual evidence, we have

Pr′(w)
def
= Pr(w)(λi/(

∑
j pjλj)), if w |= γi. Therefore, we have Pr′(w)/Pr(w) =

λi/(
∑

j pjλj), if w |= γi. Consequently, we have:

D(Pr, Pr′) = ln max
w

Pr′(w)

Pr(w)
− ln min

w

Pr′(w)

Pr(w)

= ln max
i

λi∑
j pjλj

− ln min
i

λi∑
j pjλj

= ln max
i

λi − ln min
i

λi.2
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