
Basing Decisions on Sentences in Decision Diagrams

Yexiang Xue∗
Department of Computer Science

Cornell University
yexiang@cs.cornell.edu

Arthur Choi and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
{aychoi,darwiche}@cs.ucla.edu

Abstract

The Sentential Decision Diagram (SDD) is a recently
proposed representation of Boolean functions, contain-
ing Ordered Binary Decision Diagrams (OBDDs) as
a distinguished subclass. While OBDDs are character-
ized by total variable orders, SDDs are characterized
by dissections of variable orders, known as vtrees. De-
spite this generality, SDDs retain a number of proper-
ties, such as canonicity and a polytimeApply opera-
tor, that have been critical to the practical success of
OBDDs. Moreover, upper bounds on the size of SDDs
were also given, which are tighter than comparable up-
per bounds on the size of OBDDs. In this paper, we an-
alyze more closely some of the theoretical properties of
SDDs and their size. In particular, we consider the im-
pact of basing decisions on sentences (using dissections
as in SDDs), in comparison to basing decisions on vari-
ables (using total variable orders as in OBDDs). Here,
we identify a class of Boolean functions where basing
decisions on sentences using dissections of a variable
order can lead to exponentially more compact SDDs,
compared to OBDDs based on the same variable order.
Moreover, we identify a fundamental property of the de-
compositions that underlie SDDs and use it to show how
certain changes to a vtree can also lead to exponential
differences in the size of an SDD.

Introduction
A new representation of Boolean functions was recently pro-
posed, called the Sentential Decision Diagram, with a num-
ber of interesting properties (Darwiche 2011). First, the no-
tion of decisions performed on variables in Ordered Binary
Decision Diagrams (OBDDs) is generalized to a notion of
decisions performed on sentences in Sentential Decision Di-
agrams (SDDs). Second, as total variable orders characterize
OBDDs (Bryant 1986), a special type of ordered trees, called
vtrees, characterize SDDs. Despite this generality, SDDs are
still able to maintain a number of properties that have been
critical to the success of OBDDs in practice. For example,
SDDs support an efficientApply operation as in OBDDs,

∗Part of this research was conducted while the author was a
visiting student at the University of California, Los Angeles.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and they are also canonical, under restrictions similar to re-
ductions in OBDDs.

On the theoretical side, an upper bound was identified on
the size of SDDs (based on treewidth) that is tighter than the
corresponding upper bound on the size of OBDDs (based on
pathwidth) (Darwiche 2011). In this paper, we investigate
more closely some further theoretical properties of SDDs.
In particular, we examine the impact that branching on sen-
tences can have on the size of SDDs, as opposed to branch-
ing on variables in OBDDs.

First, we consider a way to obtain vtrees for an SDD, by
dissectingvariable orders for OBDDs. We identify a class
of Boolean functions, where certain variable orders lead to
exponentially large OBDDs, but where certain dissections
of the same variable order lead to SDDs of only linear size,
suggesting that the ability to branch on sentences may be
a powerful one. In the process, we provide a more general
result, where we give a simple algorithm for constructing
SDDs of linear size, when the Boolean function of interest
corresponds to a tree-structured circuit.

Next, we identify a fundamental property of the decompo-
sitions that underlie SDDs and use it to prove further proper-
ties of SDDs. For example, we show that simply swapping a
pair of children in a vtree can sometimes lead to exponential
differences in SDD size.

These results have an interesting implication on the po-
tential of SDDs in practice, as a generalization of OBDDs.
This implication is based on three observations. First, since
OBDDs with a particular variable order correspond to SDDs
with a restricted type of vtree, the search space over SDDs
has embedded in it the search space of OBDDs. Next, effec-
tive dynamic variable re-ordering heuristics have been crit-
ical to the practical success of OBDDs. Finally, dissecting
a variable order can result in an exponentially more com-
pact SDD. As a result, effective algorithms that dynamically
search for good vtrees (i.e., variable orders and their dissec-
tions) could potentially further extend the reach and practi-
cal use of decision diagrams.

Technical Preliminaries
We start with some technical and notational preliminaries.
Upper case letters (e.g.,X) will be used to denote variables
and lower case letters to denote their instantiations (e.g., x).
Bold upper case letters (e.g.,X) will be used to denote sets

of variables and bold lower case letters to denote their in-
stantiations (e.g.,x).

A Boolean functionf over variablesZ maps each instan-
tiationz to 0 or 1. Theconditioningof f on instantiationx,
written f |x, is asub-functionthat results from setting vari-
ablesX to their values inx. A function f essentially de-
pendson variableX iff f |X 6= f |¬X. We write f(Z) to
mean thatf can only essentially depend on variables inZ.
A trivial function maps all its inputs to0 (denotedfalse) or
maps them all to1 (denotedtrue).

Consider a Boolean functionf(X,Y) with disjoint sets
of variablesX andY. If

f(X,Y) = (p1(X) ∧ s1(Y)) ∨ . . . ∨ (pn(X) ∧ sn(Y))

then the set{(p1, s1), . . . , (pn, sn)} is called an(X,Y)-
decompositionof functionf as it allows one to express func-
tion f in terms of functions onX and onY (Pipatsrisawat
and Darwiche 2010). The ordered pairs(pi, si) are calledel-
ementsof the decomposition. Moreover, ifpi∧pj = false for
i 6= j, eachpi is consistent (6= false), and the disjunction of
all pi is valid (= true), then we call{(p1, s1), . . . , (pn, sn)}
an (X,Y)-partition of functionf (Darwiche 2011). In this
case, eachpi is called aprime and eachsi is called asub.
We say an(X,Y)-partition iscompressediff its subs are dis-
tinct, i.e.,si 6= sj for i 6= j. Finally, the size of a decomposi-
tion, or partition, is the number of its elements. Note that by
definition,false can never be a prime in an(X,Y)-partition.
In addition, iftrue is prime, then it is the only prime.

For example,{(A,B), (¬A, false)} and {(A,B)} are
both(A,B)-decompositions off = A ∧ B. However, only
the first is an(A,B)-partition. Decompositions{(true, B)}
and{(A,B), (¬A,B)} are both(A,B)-partitions off =
B, while only the first is compressed.

Note that(X,Y)-partitions generalize Shannon decom-
positions, which fall as a special case whenX contains a
single variable. OBDDs result from the recursive applica-
tion of Shannon decompositions, leading to decision nodes
that branch on the states of a single variable (i.e., literals). As
we show next, SDDs result from the recursive application of
(X,Y)-partitions, leading to decision nodes that branch on
the state of a set of variables (i.e., arbitrary sentences).

Sentential Decision Diagrams (SDDs)
As total variable orders characterize OBDDs, SDDs are
characterized by vtrees. Avtree for a set of variablesX is
an ordered, full binary tree whose leaves are in one-to-one
correspondence with the variables inX. Figure 1(a) depicts
a vtree for variablesA,B,C andD. As is customary, we
will often not distinguish between a nodev and the subtree
rooted atv, referring tov as both a node and a subtree. The
vtree was originally introduced in (Pipatsrisawat and Dar-
wiche 2008), but without making a distinction between the
left and right children of a node. However, we make such a
distinction when dealing with SDDs by usingvl andvr to
denote the left and right children of nodev.

We can use a vtree to recursively decompose a Boolean
function f , starting at the root of a vtree. Consider node
v = 3 in Figure 1(a), which is the root. Theleft subtree

3

1 5

B

0

A

2

D

4

C

6

(a) vtree

�

B A ¬B�

�

B � ¬B�

�

B ¬A

�

�

��

�

D C ¬D�

�

� C

(b) Graphical depiction of an SDD

Figure 1: Functionf = (A ∧B) ∨ (B ∧ C) ∨ (C ∧D).

contains variablesX = {A,B} and theright subtree con-
tainsY = {C,D}. Decomposing functionf at nodev = 3
amounts to generating an(X,Y)-partition of functionf . If
{(p1, s1), . . . , (pn, sn)} is an (X,Y)-partition of function
f at nodev = 3, then each primepi will be further de-
composed at nodevl = 1 and each subsi will be further
decomposed at nodevr = 5. The process continues until we
have constants or literals.

Next, we provide a formal definition of an SDD. If we
denote an SDD byα, then we denote the Boolean function
that SDDα represents by〈α〉. Formally, we say thatα is an
SDD that isnormalized for a vtreev iff α andv fall under
one of the three following cases:

• α = ⊥v or α = ⊤v andv is a leaf.1

Semantics:〈⊥v〉 = false and〈⊤v〉 = true.

• α = X or α = ¬X andv is a leaf with variableX.
Semantics:〈X〉 = X and〈¬X〉 = ¬X.

• α = {(p1, s1), . . . , (pn, sn)}, v is an internal node,
primesp1, . . . , pn are SDDs that are normalized for left
child vl, subss1, . . . , sn are SDDs that are normalized for
right child vr, and〈p1〉, . . . , 〈pn〉 is a partition (mutually
exclusive, exhaustive, and〈pi〉 6= false for all pi).
Semantics:〈α〉 =

∨n

i=1
〈pi〉 ∧ 〈si〉.

A constant or literal SDD is calledterminal.Otherwise, it is
called adecomposition.The size of SDDα is obtained by
summing the sizes of all its decompositions.

1Although the terminal SDDs representingtrue and false are
distinct for each leaf node, we will omit the subscriptv in ⊤v and
⊥v when it is clear from the context.

1

A

0

3

B

2

5

C

4

D

6

(a) A vtree

�

A ¬A

�

B ¬B

�

�

�

��

�

C D ¬C�

(b) An SDD

A

B B

CC

D DD

01

(c) An OBDD

Figure 2: A vtree, SDD and OBDD for(A∧B)∨ (C ∧D).

SDDs can be notated graphically as in Figure 1(b), where
a decomposition is represented by a circle with outgoing
edges pointing to its elements, and an element is represented
by a paired boxp s , where the left box represents the prime
and the right box represents the sub. A box will either con-
tain a terminal SDD or point to a decomposition SDD. Here,
the number contained in each circle is the vtree node that the
corresponding decomposition is normalized for.

Normalized SDDs are canonical given that they are com-
pressed (Darwiche 2011). An SDD iscompressedif all of
its decompositions are compressed. Normalized SDDs also
support a polytimeApply operation, allowing one to com-
bine two SDDs using any Boolean operator.

SDDs and OBDDs
A vtree is said to beright-linear if each left-child is a leaf.
The vtree in Figure 2(a), for example, is right-linear. The
compressed SDD in Figure 2(b) is normalized for this right-
linear vtree. Every decomposition in this SDD has the form
{(X,α), (¬X,β)}, which is a Shannon decomposition, or
of the form (⊤, β). This is not a coincidence as it holds
for all compressed SDDs that are normalized for right-linear
vtrees. In fact, such SDDs correspond to quasi-reduced OB-
DDs in a precise sense; see Figure 2(c).2 Consider a quasi-
reduced OBDD that is based on the variable order induced
by the given right-linear vtree. Every decomposition in the
SDD corresponds to a decision node in the OBDD and every
decision node in the OBDD corresponds to a decomposition
or literal in the SDD. In a quasi-reduced OBDD, a literal is
represented by a decision node with0 and1 as its children,
e.g., the literalD in Figure 2(c). However, in a compressed
SDD, a literal is represented by a terminal SDD, e.g., the
literalD in Figure 2(b).

2A quasi-reduced OBDD is a minimal-size OBDD that men-
tions every variable in its variable order in all paths from root to
leaf. Quasi-reduced OBDDs are also canonical, and are at most a
factorn + 1 larger than the corresponding reduced OBDD (We-
gener 2000). Quasi-reduced OBDDs can also be found by repeated
applications of the merging rule (without the elimination rule) from
a complete binary decision tree.

3

1 9

A

0

B

2

7 F

10

5 E

8

C

4

D

6

5

1 7

A

0

3

B

2

C

4

D

6

9

E

8

F

10

Figure 3: Two vtrees that result from dissecting the order
〈A,B,C,D,E, F 〉.

Upper Bounds
A CNF with n variables and pathwidthpw is known to have
an OBDD of sizeO(n2pw) (Prasad, Chong, and Keutzer
1999; Huang and Darwiche 2004; Ferrara, Pan, and Vardi
2005). Pathwidthpw and treewidthw are related bypw =
O(w log n); see, e.g., (Bodlaender 1998). Hence, a CNF
with n variables and treewidthw has an OBDD of size poly-
nomial inn and exponential inw (Ferrara, Pan, and Vardi
2005). As for SDDs, (Darwiche 2011) showed that the size
of an SDD need only belinear in n and exponential inw.
BDD-trees are also canonical and come with a treewidth
guarantee. Their size is linear inn but at the expense of being
doubly exponential in treewidth (McMillan 1994). Hence,
SDDs come with a tighter treewidth bound than BDD-trees.

Dissecting an OBDD
One can view a vtree as the result of dissecting a total vari-
able order in the following sense.

Definition 1 (Dissection) We say that a vtreeT inducesa
variable orderπ if and only if a left-right traversal of vtree
T visits leaves (variables) in the same order asπ. In this
case, we also say that vtreeT is a dissectionof orderπ.

Figure 3 depicts two different vtrees that result from dis-
secting the same variable order. Consider now an OBDDα
with respect to a variable orderπ and an SDDβ with respect
to a dissection of orderπ. We will say in this case that SDD
β is a dissection of OBDDα. Our main goal in this section is
to answer the following question: Can dissecting an OBDD
lead to an exponential reduction in its size? The answer is
affirmative as given by the following theorem.

Theorem 1 There exists a class of Boolean functionsf , a
corresponding variable orderπ, and a corresponding vtree
T that dissects orderπ, such that the quasi-reduced (or re-
duced) OBDD induced byπ is exponentially larger than the
normalized and compressed SDD induced byT .

We will now consider a class of functions that satisfies the
conditions of Theorem 1. LetX = {X1, . . . , Xn} andY =
{Y1, . . . , Yn}. The functionfn(X,Y) is defined inductively
as follows:

(a) Formulaf1 (b) Formulaf2 (c) Formulaf4

Figure 4: Circuit realizations of a functionfn(X,Y) that
satisfies Theorem 1.

• If n = 1, thenf1(X1, Y1) = X1 ∧ Y1.

• If n > 1, thenfn(X1, . . . , Xn, Y1, . . . , Yn)

= [fn−1(X1, . . . , Xn−1, Y1, . . . , Yn−1)⊕Xn] ∧ Yn

where⊕ is the exclusive or operator.

Figure 4 depicts circuit realizations of functionfn(X,Y)
for n = 1, 2, 4. We start with a number of observations about
this function before we prove the main result.

Lemma 1 fn|xy =
⊕n

i=k+1
xi, wherek = 0 if yi = true

for all i; otherwise,k is the largest index whereyk = false.

Proof If yi = true for all i, thenfn|xy simplifies tox1 ⊕
. . . ⊕ xn. If k is the largest index such thatyk = false, then
yj = true for all j > k. In this case,fk|xy = 0, fk+1|xy =
xk+1 and, hence,fn|xy = xk+1 ⊕ . . .⊕ xn.

Lemma 2 For every pair of instantiationsx 6= x⋆, there is
an instantiationy such thatfn|xy 6= fn|x

⋆y.

Proof Let k be the largest index for which instantiationsx
andx⋆ disagree on variableXk. Consider the instantiation
y that setsY1, . . . , Yk−1 to false andYk, . . . , Yn to true. By
Lemma 1,

fn|xy = xk ⊕ . . .⊕ xn and fn|x
⋆y = x⋆

k ⊕ . . .⊕ x⋆
n.

Sincexk 6= x⋆
k and xi = x⋆

i for i > k, we must have
fn|xy 6= f |x⋆y.

Corollary 1 For every pair of instantiationsx 6= x⋆,
fn|x 6= fn|x

⋆ and, hence, the conditioning offn on vari-
ablesX1, . . . , Xn generates2n distinct sub-functions.

The first part of Theorem 1 follows from the following
corollary, which itself follows immediately from the Sieling
and Wegener bound (Sieling and Wegener 1993).

Corollary 2 A quasi-reduced (or reduced) OBDD for func-
tion fn with respect to any variable ordering that starts with
variablesX1, . . . , Xn must have at least2n nodes.

Thus, the variable orderπ = 〈Xn, . . . , X1, Y1, . . . , Yn〉, for
example, yields an OBDD with at least2n nodes.

We will now show the second part of Theorem 1, in which
we dissect such an OBDD, obtaining an SDD whose size is
only linear inn. In fact, we show a more general result: for
any function that is represented by a tree-structured circuit,
there is an SDD whose size is linear in the number of circuit
variables. The result is based on the following theorem.

Theorem 2 Let f(X) and g(Y) be two Boolean functions
whereX ∩Y = ∅. If ◦ is a Boolean operator, then function
f ◦ g has the following(X,Y)-partition:

{(f, true ◦ g), (¬f, false ◦ g)}.

Moreover, the(X,Y)-partition is compressed when opera-
tor ◦ is commutative and not trivial, and functiong is not
trivial.

Proof If x is an instantiation that satisfies functionf , then
(f ◦ g)|x = true ◦ g. Otherwise, ifx is an instantiation that
satisfies¬f , then(f ◦ g)|x = false ◦ g. Hence,

{(f, true ◦ g), (¬f, false ◦ g)}

is an(X,Y)-partition of functionf ◦ g. For example, when
◦ = ∧, we have

{(f, true ∧ g), (¬f, false ∧ g)} = {(f, g), (¬f, false)}.

When◦ = ⊕, we have

{(f, true⊕ g), (¬f, false⊕ g)} = {(f,¬g), (¬f, g)}.

By definition, the (X,Y)-partition is compressed when
true◦ g 6= false◦ g, which holds when operator◦ is commu-
tative and not trivial, and functiong is not trivial.3

Given Theorem 2, we can construct an SDD of linear size,
for any function that has a tree-structured circuit, as fol-
lows. Assuming that each gate has two inputs, we simply
use the circuit structure as our vtree;4 see the circuit in Fig-
ure 4(c) and the vtree in Figure 7(a). Note here that there is
a vtree node for each primary input and gate of the circuit.
We can now construct the SDD recursively, as shown in Al-
gorithm 1. Constructing SDDs for primary inputs is the base
case here. Given that we have SDDs for the two inputs of
a gate, we can construct an SDD for the gate immediately
using Theorem 2. Algorithm 1 appeals to two additional re-
sults. The first result, from (Darwiche 2011), says that one
can negate an(X,Y)-partition by simply negating its subs.
The second states that applying a Boolean operator◦ to a

3Suppose functiong is not trivial. Thentrue ◦ g = false ◦ g
implies that1 ◦ 1 = 0 ◦ 1 and1 ◦ 0 = 0 ◦ 0. Since1 ◦ 0 = 0 ◦ 1, we
then have1 ◦ 1 = 0 ◦ 1 = 1 ◦ 0 = 0 ◦ 0. This implies that operator
◦ is trivial, which is a contradiction. Hence,true ◦ g 6= false ◦ g.

4If the circuit contains a gate with more than two inputs, the
gate can be replaced with a sub-circuit over just binary gates.

Algorithm 1 sdd-tree(v)

input: A tree-structured circuit with primary outputv. Each
gate is non-trivial and has exactly two inputs.
output: A pair of SDDs(α, α⋆) representing the function of
circuit v and its negation.
main:
1: if v represents a primary inputX then
2: return (X,¬X)
3: else
4: vl, vr ← the two sub-circuits feeding into gatev
5: (β, β⋆)← sdd-tree(vl)
6: (γ, γ⋆)← sdd-tree(vr)
7: ◦ ← Boolean operator corresponding to gatev
8: η1 ← Apply(true, γ, ◦) {returnsγ, γ⋆,⊤ or⊥}
9: η0 ← Apply(false, γ, ◦) {returnsγ, γ⋆,⊤ or⊥}

10: α← {(β, η1), (β
⋆, η0)}

11: η⋆1 ← negation ofη1 {returnsγ, γ⋆,⊤ or⊥}
12: η⋆0 ← negation ofη0 {returnsγ, γ⋆,⊤ or⊥}
13: α⋆ ← {(β, η⋆1), (β

⋆, η⋆0)}
14: return (α, α⋆)

constant and functionf yields either a constant, the function
f , or its negation¬f (see Lines 8 & 9 of Algorithm 1).5

It should be clear that Algorithm 1 has a linear complex-
ity in the number of circuit inputs as it adds at most two
SDD nodes for each recursive call, each of which has two
elements. Since the functionfn(X,Y) identified earlier has
a tree-structured circuit, it must then have an SDD of lin-
ear size when using the vtree corresponding to its structure.
Figure 7 depicts such a vtree forn = 4, together with the
corresponding SDD. Note that this vtree dissects the order
π = 〈X4, . . . , X1, Y1, . . . , Y4〉. We then have the following
corollary, which proves the second part of Theorem 1.

Corollary 3 There is a normalized and compressed SDD of
functionfn, of sizeO(n), corresponding to a dissection of
the orderπ = 〈Xn, . . . , X1, Y1, . . . , Yn〉.

We have thus shown that dissecting an OBDD into an SDD
can lead to an exponential reduction in size, suggesting that
the ability to branch on sets of variables (sentences) in SDDs
may be a powerful one.

Figure 5 depicts a right-linear vtree corresponding to
the orderπ = 〈X4, . . . , X1, Y1, . . . , Y4〉 and Figure 6 de-
picts the corresponding SDD, which also corresponds to an
OBDD in this case. Hence, the SDD in Figure 7(b) can be
viewed as a dissection of the one in Figure 6.

Finally, we remark that we have identified a class of
Boolean functions, where certain variable orders lead to ex-
ponentially large OBDDs, but where certain dissections (re-
specting the same variable order) lead to SDDs of only linear
size. In the example we introduced in this section, there are

5To show thattrue ◦ f ∈ {true, false, f,¬f}, let 1 ◦ 1 = a
and1 ◦ 0 = b. If a = b, then true ◦ f is a trivial function. If
a = 1 andb = 0, thentrue ◦ f = f . Otherwise,a = 0, b = 1

andtrue ◦ f = ¬f . A similar argument can be used to show that
false ◦ f ∈ {true, false, f,¬f}.

Figure 5: A right-linear vtree.

in fact variable orders that lead to OBDDs (and SDDs) of
polynomial size, for example,π = 〈Yn, Xn, . . . , Y1, X1〉.
However, the fact that dissections can obtain exponential re-
ductions in size for a given variable order, has some interest-
ing practical implications. In particular, it suggests that dy-
namically searching for good dissections may be a promis-
ing direction to pursue. Sifting algorithms, for example,
which are based on swapping neighboring variables in a total
variable order, have been particularly effective for dynamic
variable re-ordering (Rudell 1993). Dissection introduces a
new dimension that would allow SDDs to navigate around
barriers that could be faced when only navigating variable
orders using OBDDs.

On the Left-Right Order of Vtrees
In this section, we consider the following question: Can
switching the left and right children of a vtree node lead
to an exponential change in the size of the corresponding
SDD? The answer is affirmative as we show next.

Consider the following function:

fn(X1, . . . , Xn, Y1, . . . , Yn) =

n
∨

i=1

i−1
∧

j=1

¬Xj

 ∧Xi ∧ Yi.

This function has a compressed(X,Y)-partition of sizen,

with theith prime beingpi =
[

∧i−1

j=1
¬Xj

]

∧Xi and theith

sub beingsi = Yi. Yet, the compressed(Y,X)-partition of
function fn is of size2n. To see this, consider an instanti-
ationy of variablesY. The sub-functionfn|y corresponds
to a disjunction of a set of primes that are unique to instan-
tiation y. Primes are mutually exclusive, so the disjunction

Figure 6: An SDD for the right-linear vtree in Figure 5. The SDD corresponds to an OBDD and is equivalent to the SDD in
Figure 7(b).

itself is also unique to instantiationy. Thus, there are2n dis-
tinct sub-functions of the formfn|y. Further, instantiations
y are the primes of the unique, compressed(Y,X)-partition
of functionfn, which must have size2n.

There is an SDD of sizeO(n) for the functionfn if it
uses a vtree with rootv where: (1) variablesX1, . . . , Xn ap-
pear in the left subtree and variablesY1, . . . , Yn appear in
the right subtree, and (2) the left subtree is right linear for
orderXn, . . . , X1 and the right subtree is right linear for or-
derY1, . . . , Yn. If we now switch the left and right subtrees
of root v, the corresponding SDD must have sizeΩ(2n) as
it must include a(Y,X)-partition of functionfn. Thus, the
left-right order of a vtree can lead to an exponential differ-
ence in the size of corresponding SDD.

In the remainder of this section, we show a more gen-
eral result on the relationship between the compressed
(X,Y)-partition of a functionf(X,Y) and its (X,Y)-
decompositions, which implies our result above. Central to
this general result is the notion of a basis.

The Basis of a Set of Boolean Functions

Let F = {f1, . . . , fn} be a set of Boolean functions, and
let F∗ denote the closure ofF with respect to Boolean op-

erators◦, i.e., the setF∗ is the smallest set whereF ⊆ F∗

and wheref, g ∈ F∗ implies f ◦ g ∈ F∗, for all Boolean
operators◦. Moreover, define thebasisG of a setF to be the
set of non-false functionsg ∈ F∗ such that for allg′ ∈ F∗,
if g′ |= g theng′ = g. That is, the basisG of a setF is the
set of minimal non-false functions in the closureF∗ under
the partial ordering|=.

First, we characterize the properties of a basis.

Theorem 3 A set of Boolean functionsG = {g1, . . . , gm}
is the basis of a setF = {f1, . . . , fn} if and only if the
following conditions hold:

(a) For all gi ∈ G, we havegi 6= false.
(b) For all gi ∈ G andfj ∈ F , eithergi |= fj or gi |= ¬fj .
(c) For all gi ∈ G, all Fi = {fj ∈ F | gi |= fj} are distinct.
(d) g1 ∨ · · · ∨ gm = true andgi ∧ gj = false for all i 6= j.

The proof of this theorem is delegated to the Appendix.

Decompositions and Partitions
We now have the following interesting theorem.

Theorem 4 Let{(g1(X), h1(Y)), . . . , (gn(X), hn(Y))}
be an(X,Y)-decomposition of a functionf(X,Y), and let
P be the basis of the functionsg1, . . . , gn. ThenP are the

(a) vtree (b) SDD

Figure 7: A vtree and its corresponding SDD.

primes of an(X,Y)-partition of functionf . Moreover, if
the functionsh1, . . . , hn are mutually exclusive, thenP are
the primes of the unique, compressed(X,Y)-partition of
functionf .

The proof of this theorem is also delegated to the Appendix.
The importance of this theorem is that it allows one to use
knowledge about the bases of Boolean functions to derive
results about the sizes of(X,Y)-partitions. For example,
we will show next that the basis of a set of Boolean func-
tions can be exponentially smaller or larger than the number
of such functions. We will then show that this implies the
concrete result we showed earlier in the section: The size of
the compressed(X,Y)-partition of a functionf(X,Y) can
be exponentially different than the size of its compressed
(Y,X)-partition.

Consider first the setS of all Boolean functions over vari-
ablesX1, . . . , Xn. Note that there are22

n

such Boolean
functions. The closure of setS under Boolean operators is
the setS itself. Hence, the basis of setS corresponds to the
set of all2n instantiations over variablesX1, . . . , Xn. This
is an example where the size of the basis of Boolean func-
tionsS is exponentially smaller than the size of the setS.

Consider now the setS of Boolean functionsf1, . . . , fn
over variablesX1, . . . , Xn, wherefi = Xi. The closure of

S under Boolean operators◦ is the set of all Boolean func-
tions over variablesX1, . . . , Xn. Thus, the basis of setS is
the set of Boolean functions corresponding to the2n instan-
tiations of variablesX1, . . . , Xn. This is an example where
the size of the basis of Boolean functionsS is exponen-
tially larger than the size of the setS. This observation and
Theorem 4 implies the result we showed earlier in the sec-
tion, in which we showed a functionf(X,Y) whose com-
pressed(X,Y)-partition and compressed(Y,X)-partition
have sizes that differ exponentially.

Conclusion
We considered in this paper the size of a decision diagram
from the viewpoint of basing decisions on sentences (i.e.,
sets of variables), as in SDDs, in contrast to basing deci-
sions on literals (i.e., single variables), as in OBDDs. We
first identified a class of Boolean functions where, for a
given variable ordering, there is a dissection of that ordering
that results in an SDD that is exponentially smaller than the
corresponding OBDD. In the process, we provided a gen-
eral algorithm for constructing compact SDDs from tree-
structured circuits. We further identified a fundamental prop-
erty of the decompositions that underlie SDDs, which we
used to show how switching children in a vtree can also lead
to exponential differences in the size of an SDD.

Acknowledgments
This work has been partially supported by NSF grant #IIS-
0916161.

Proofs
Proof of Theorem 3. Note that conjoin and complement
are sufficient to induce the closureF∗. We first show that
Conditions (a–d) are necessary for a setG = {g1, . . . , gm}
to be the basis of setF = {f1, . . . , fn}.

(a) By definition of a basis.
(b) Suppose that Condition (b) does not hold, i.e.,gi 6|= fj

and gi 6|= ¬fj . This implies thatgi ∧ fj 6= false. and
gi ∧ ¬fj 6= false. Moreover, functiongi ∧ fj is in the
closureF⋆. However,gi ∧ fj |= gi, which implies thatgi
is not a basis function, which is a contradiction.

(c) Supposegi has the corresponding setFi. We want to show
thatgi is equivalent to the function

γ =
(

∧

f∈Fi

f
)

∧
(

∧

f∈F\Fi

¬f
)

.

From Condition (b), we know that eithergi |= f or gi |=
¬f for eachf ∈ F . Thus, if we show thatgi = γ, we
know that eachFi is distinct, since eachgi is distinct. By
definition, gi |= f for all f ∈ Fi, and thusgi |= ¬f
for all f ∈ F \ Fi. Moreover, we have thatgi |= γ and
further thatγ 6= false sincegi 6= false. If we conjoin to
γ any function inF , we either get backγ or false (by
construction ofγ). Note that any function in the closure
F∗ can be represented as a disjunction of terms

(

∧

f∈H

f
)

∧
(

∧

f∈F\H

¬f
)

.

for someH ⊆ F . Thus, if we conjoin toγ any function in
the closureF∗, we also get back eitherγ or false. Since
γ ∈ F∗, function γ must be a basis function, and thus
γ = gi (sincegi |= γ).

(d) First, if γ = g1 ∨ · · · ∨ gm 6= true, then¬γ 6= false.
Moreover, for allgi ∈ G, gi 6|= ¬γ. Since¬γ ∈ F∗,
function¬γ should have been a basis function, which is
a contradiction. Next, if there aregi, gj ∈ G whereγ =
gi ∧ gj 6= false, thenγ |= gi andγ |= gj , which by the
definition of a basis, implies thatγ = gi = gj , which is a
contradiction.

Next, we show that Conditions (a–d) are sufficient for a set
G to be the basis of a setF . For each functiongi ∈ G, let
Fi = {fj ∈ F | gi |= fj}, and let

γi =
(

∧

f∈Fi

f
)

∧
(

∧

f∈F\Fi

¬f
)

,

which is in the closureF∗. First, by Condition (b), since
gi |= f for all f ∈ Fi, we know thatgi |= ¬f for all
f ∈ F \ Fi, and further thatgi |= γi. Sincegi 6= false by
Condition (a), we also know thatγi 6= false, sincegi |= γi.
Next, by Condition (c), for anygi andgj for i 6= j, there
is a functionf ∈ F wheref ∈ Fi andf 6∈ Fj (or vice
versa). Thus,γi |= f andγj |= ¬f (or vice versa), and so
γi ∧ γj = false for all i 6= j. Third, by Condition (d), all
gi ∈ G are mutually exclusive and exhaustive. Since allγi
are mutually exclusive, and sincegi |= γi, the functionsγi
are also exhaustive. Hence,gi = γi for all i. Fourth, if we
conjoin togi = γi any function inF∗, we either get back
gi = γi or false. As gi = γi ∈ F

∗, functiongi must be a
basis function ofF . Finally, since allgi ∈ G are mutually
exclusive and exhaustive, the setG must be a basis ofF .

Proof of Theorem 4. Let P be the basis of the functions
g1, . . . , gn. Since the basis forms a partition (mutually ex-
clusive, exhaustive, and allgj 6= false), we just need to
show that for eachpi ∈ P and instantiationsx andx⋆ where
x |= pi andx⋆ |= pi, we must havef |x = f |x⋆. Suppose
x |= pi andx⋆ |= pi. By Condition (b) of Theorem 3, either
pi |= gj or pi |= ¬gj . Hence, instantiationsx andx⋆ imply
the same set of functionsgi implied bypi, leading to

f |x = f |x⋆ =
∨

pi|=gj

hj ,

which is the sub of primepi.
Suppose now that functionshj are mutually exclusive.

Consider any two instantiationsx andx⋆ such thatx |= pi
andx⋆ |= pj wherei 6= j. By Condition (c) of Theorem 3,
primespi andpj imply different setsgk. Hence,

f |x =
∨

pi|=gj

hj 6=
∨

pj |=gj

hj = f |x⋆

since functionshj are mutually exclusive. Hence, the subs
of primespi andpj are distinct and the(X,Y)-partition is
compressed.

References
Bodlaender, H. L. 1998. A partialk-arboretum of graphs
with bounded treewidth. Theoretical Computer Science
209(1-2):1–45.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
C-35:677–691.
Darwiche, A. 2011. SDD: A new canonical representa-
tion of propositional knowledge bases. InProceedings of
the 22nd International Joint Conference on Artificial Intelli-
gence, 819–826.
Ferrara, A.; Pan, G.; and Vardi, M. Y. 2005. Treewidth in
verification: Local vs. global. InLogic for Programming,
Artificial Intelligence, and Reasoning (LPAR), 489–503.
Huang, J., and Darwiche, A. 2004. Using DPLL for efficient
OBDD construction. InThe Seventh International Confer-
ence on Theory and Applications of Satisfiability Testing
(SAT), 157–172.
McMillan, K. L. 1994. Hierarchical representations of dis-
crete functions, with application to model checking. InCom-
puter Aided Verification (CAV), 41–54.
Pipatsrisawat, K., and Darwiche, A. 2008. New compila-
tion languages based on structured decomposability. InPro-
ceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI), 517–522.
Pipatsrisawat, K., and Darwiche, A. 2010. A lower bound
on the size of decomposable negation normal form. InPro-
ceedings of the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence (AAAI), 345–350.
Prasad, M. R.; Chong, P.; and Keutzer, K. 1999. Why is
ATPG easy? InDesign Automation Conference (DAC), 22–
28.
Rudell, R. 1993. Dynamic variable ordering for Ordered
Binary Decision Diagrams. InICCAD, 42–47.
Sieling, D., and Wegener, I. 1993. NC-algorithms for op-
erations on binary decision diagrams.Parallel Processing
Letters3:3–12.
Wegener, I. 2000.Branching Programs and Binary Decision
Diagrams. Society for Industrial and Applied Mathematics
(SIAM).

