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Abstract

We consider in this paper the robustness of decisions based on probabilistic
thresholds. To this effect, we propose the same-decision probability as a query
that can be used as a confidence measure for threshold-based decisions. More
specifically, the same-decision probability is the probability that we would
have made the same threshold-based decision, had we known the state of
some hidden variables pertaining to our decision.

We study a number of properties about the same-decision probability.
First, we analyze its computational complexity. We then derive a bound
on its value, which we can compute using a variable elimination algorithm
that we propose. Finally, we consider decisions based on noisy sensors in
particular, showing through examples that the same-decision probability can
be used to reason about threshold-based decisions in a more refined way.

Keywords: Bayesian networks, robust decision making, computational
complexity of reasoning, sensitivity analysis, exact inference, variable
elimination

1. Introduction

There has been an increased interest recently in providing assurances on
the results of probabilistic reasoning systems. Clear examples come from the
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many results on sensitivity analysis, which is concerned with the sensitivity
of probabilistic queries with respect to changes in the model parameters; see,
e.g., Chan (2009), van der Gaag et al. (2007), van der Gaag and Coupé (1999),
Charitos and van der Gaag (2006) and Kwisthout and van der Gaag (2008).
For example, some of these results include specific bounds on the changes in
probabilistic queries that could result from perturbing model parameters.

We consider another class of assurances in this paper, which is concerned
with quantifying the robustness of threshold-based decisions made under
noisy observations, where we propose a specific notion, called the same-
deciston probability. Our proposed notion is cast in the context of Bayesian
networks where the goal is to make a decision based on whether a probability
Pr(d | e) surpasses a given threshold 7', where e represents evidence or ob-
servations. This is the prototypical scenario in which Bayesian networks are
employed to support decision making in practice, for example, in domains
such as diagnosis (Pauker and Kassirer, 1980) and (binary) classification
(Friedman et al., 1997).2

The same-decision probability is based on a few simple ideas. Let H be
a subset of the unobserved variables that pertain to the hypothesis d upon
which our decision is based. For example, the variables H may represent
the hidden state of a system, such as health modes of components in a di-
agnostic application. The variables H could also represent observations yet
to be made, such as medical tests. Now, if we knew the true states of our
variables H, we would stand to make a better informed decision based on the
probability Pr(d | e,h). As it stands, the probability Pr(d | e) can already
be viewed as the expectation of Pr(d | e,h) with respect to the distribution
Pr(H | e). Now, different scenarios h may confirm or contradict our decision
based on the probability Pr(d | e,h), but these scenarios may be likely or
unlikely, according to Pr(h | e€). The same-decision probability is then the
probability that we would have made the same threshold-based decision, had
we known the true state h of our hidden variables H.

We show a number of results about this proposed quantity. First, we
formally define the same-decision probability, and then analyze its compu-

2In principle, analogous definitions of the “same-decision probability” can be proposed
for decisions based on utilities, or decisions that are not necessarily binary (yes/no). For
the purposes of introducing the “same-decision probability” as a new query for Bayesian
networks, we restrict our attention in this paper to the simple and transparent case of
threshold-based decisions.



tational complexity, showing that the same-decision probability is a PPFF-
complete problem. Second, we propose a bound on the same-decision prob-
ability using the one-sided Chebyshev inequality, which requires only the
variance of Pr(d | e,h) with respect to the distribution Pr(h | e). Third,
we propose a variable elimination algorithm that computes this variance in
time and space that are exponential only in the constrained treewidth of the
given network.

We further consider the same-decision probability in scenarios where we
are making threshold-based decisions based on the readings of noisy sen-
sors. In particular, we propose to explicate the causal mechanisms that
govern the behaviors of noisy sensors. We can then consider the probability
that we would have made the same threshold-based decision, had we known
the latent causal mechanisms that led to our sensor readings. We conclude
with a number of concrete examples that illustrate the utility of our pro-
posed confidence measure in quantifying the robustness of threshold-based
decisions under noisy sensor readings. In particular, we illustrate how the
same-decision probability is able to distinguish scenarios that are otherwise
indistinguishable, based on the probability Pr(d | e) alone.

2. An Introductory Example

In the rest of the paper, we use standard notation for variables and their
instantiations. In particular, variables are denoted by upper case letters (X)
and their instantiations by lower case letters (z). Moreover, sets of variables
are denoted by bold upper case letters (X) and their instantiations by bold
lower case letters (x).

Before we formally define the same-decision probability, we first describe
a simple example, to highlight the basic ideas that underlie the same-decision
probability as a way to quantify the robustness of threshold-based decisions
(van der Gaag and Coupé, 1999; Charitos and van der Gaag, 2006). Again,
such decisions are the prototypical context in which Bayesian networks are
employed to support decision making in practice. These include classical ap-
plications such as diagnosis (Hamscher et al., 1992), troubleshooting (Heck-
erman et al., 1995a), classification (Friedman et al., 1997), and probabilistic
planning (Littman et al., 1998). For example, in health diagnosis, physicians
are commonly put in situations where they must commit to performing a
test or administering a treatment. Based on their (possibly subjective) belief
surpassing some (possibly subjective) threshold (Pauker and Kassirer, 1980),
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Figure 1: A simple Bayesian network, under sensor readings {S; =+, S2=+}. Here (+)
indicates a positive sensor reading for a sensor variable S;, or a positive outcome for a
decision variable D or auxiliary variable X;; similarly, (—) indicates a negative reading or
outcome. Variables H; and H represent the health of sensors S; and S3. On the left is
the posterior on the decision variable D. Network CPTs are given in Figure 2.

a physician will commit to one of these choices. As another example, in
systems diagnosis, a diagnostician, in the process of troubleshooting, must
decide whether or not they should perform one of many tests, or stop the
process of testing and perform a repair (or some other intervention) (Lu and
Przytula, 2006; Agosta et al., 2008, 2010). Again, this decision is typically
made based on a diagnostician’s beliefs about the health state of the sys-
tem, and the extent to which they are certain or uncertain about it. In this
section, we highlight an example of a threshold-based decision made under
a simple but generally applicable context, where observations are given by
noisy sensor readings. This is also a scenario which we shall revisit in more
depth in Section 6.

Consider now the Bayesian network in Figure 1, which models a scenario
involving a variable D of interest, and two noisy sensors S; and S, that bear
(indirectly) on a hypothesis d. The probability Pr(d | s1,s2) then represents
a belief in the hypothesis d, given sensor readings s1, so. We want to use this
Bayesian network to support a decision on the basis that this belief exceeds
a certain threshold, Pr(d | sy, s2) > T. Figure 1 shows a particular reading
of the two sensors and the resulting belief Pr(D=+ | S1=+, S3=+). If our
threshold is 7' = 0.6, then our computed belief confirms the decision under
consideration.

Note that in Figure 1 (and further Figure 2), we modeled the health of
our sensors through variables H; and H,, which dictate the behavior of our
sensors. Suppose we knew the sensors’ state of health, in which case, we
would know how to interpret the readings of our sensors. For example, we
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Figure 2: The CPTs for the Bayesian network given in Figure 1. Note that for the CPTs
of variables S;, only the lines for the case S; =+ are given, since Pr(S;=—|H;, X;) =
1— Pr(S;=++|H;, X;). Moreover, we model the following health states for our sensors: the
state H; =t says that the sensor is truthful, the state H;=I says the sensor is lying, the
state H; =p says the sensor is stuck with a positive reading, and the state H; =n says the
sensor is stuck with a negative reading. We consider noisy sensors further in Section 6.

would know whether we could trust their readings, or otherwise ignore some
of them. We would then be able to, and would prefer to, make a better
informed decision based on the probability Pr(d | si,s2, h) instead of the
probability Pr(d | si,ss), where h represents the state of our variables H;
and Ho, for example, h = {H, =t, Hy=t}.

Consider Table 1, which enumerates all of the possible health states h
of our example, where we have nine scenarios with non-zero probability. In
only four of these cases does the probability of the hypothesis pass the given
threshold (in bold), leading to the same decision. In the other five scenarios,
a different decision would have been made. Clearly, the extent to which this
should be of concern will depend on the likelihood of these last five scenarios.
As such, we propose to quantify the confidence in our decision using the
same-decision probability: the probability that we would have made the same
decision had we known the actual health states that dictate the readings of



Table 1: Scenarios h for sensor readings e = {S; =+, So =+} for the network in Figure 1,
where H = {H;, Hy}. Cases above the threshold T'= 0.6 are in bold.

h| H Hy| Pr(h|sy,sy) Pr(d]si,se,h)
1] t t 0.781071 0.90
2 p t 0.096429 0.82
31 1 t 0.001071 0.10
41t p 0.096429 0.90
50 p p | 0.021429 0.50
6| | P 0.001190 0.10
7Tt | 0.001071 0.90
8| p 1| 0.001190 0.18
91 1 | 0.000119 0.10

our sensors. For this example, this probability is:
0.781071 + 0.096429 + 0.096429 4 0.001071 = 0.975

indicating a relatively robust decision.

3. Same-Decision Probability

Suppose we have a Bayesian network conditioned on evidence e, and that
we are interested in making a decision depending on whether the probability
of some hypothesis d surpasses some threshold 7. There may be hidden,
latent, or otherwise unobserved variables H that pertain to our hypothesis
d. If we did have access to the true joint state h, we would certainly want to
make a better informed decision based on whether the probability Pr(d | e, h)
surpasses the threshold 7. In the absence of this knowledge, we can still
reason about the possible scenarios h.

Consider the fact that different scenarios h may confirm or contradict
our decision based on the probability Pr(d | e,h). These scenarios may be
likely or unlikely, according to Pr(h | e). However, what if the scenarios h
that contradict our decision, where Pr(d | e,h) < T, have a low probability
Pr(h | e)? In this case, we have a degree of confidence in our original decision
based on Pr(d | e) > T, in the sense that even if we were able to discover the
state of our unobserved variables H, it is unlikely that we would have made

6



Table 2: Scenarios h for sensor readings e = {S; =+, So =—} for the network in Figure 1,
where H = {H;, Hy}. Cases above the threshold T'= 0.6 are in bold.

h| H Hy| Pr(h|sy,sy) Pr(d]si,se,h)
1] t t 0.268893 0.90
2 p t 0.298770 0.18
31 1 t 0.029877 0.10
41t n 0.298770 0.90
5| p n 0.066393 0.50
6| | n 0.003689 0.10
7Tt | 0.029877 0.90
8| p | 0.003689 0.82
91 1 | 0.000041 0.10

a different decision. The same-decision probability is then the probability
that we would have made the same decision had we known the states of our
unobserved variables H.

Definition 1. Let N be a Bayesian network that is conditioned on evidence
e, where we are further given a hypothesis d, a threshold T, and a set of
unobserved variables H. Suppose we are making a decision that is confirmed
by the threshold Pr(d | e) > T. The same-decision probability in this
scenarto s

P(Pr(d|eH)>T)=> [Pr(d|eh)>T|Pr(h|e), (1)

where we have the indicator function

_f 1 iftPr(d|eh)>T
[Pr(d]eh) >T]= { 0 otherwise.
For the remainder of the paper, we shall denote the same-decision probability
by P(Q(H) > T), for reasons that we discuss below.
Consider the following observation. When we are making a decision based
on whether Pr(d | e) > T, even if the state h of our variables H is unknown,
we are in fact averaging over all possible scenarios h when we make a decision.



That is,

Pr(d|e) = Y Pr(d|eh)Pr(h|e) (2)
= Y Q(M)Pr(h]e).

Here, we denote Pr(d | e, h) using Q(h) to emphasize our view on the prob-
ability Pr(d | e) as an expectation E[ Q(H) | with respect to the distribution
Pr(H | e) over unobserved variables H. We remark that the same-decision
probability P(Q(H) > T') is also an expectation, as in Equation 2. We view
Equation 1, however, as the expected decision based on Pr(d | e, h), with
respect to the distribution Pr(H | e) over unobserved variables H.

Consider now Table 1, which corresponds to two positive sensor readings
in Figure 1. Assuming a threshold of 7" = 0.60, a decision is confirmed given
that we have Pr(D=+ | 1=+, S:=+) = 0.880952 > T". We make the same
decision, however, in only four of the nine instantiations h. These probabili-
ties add up to 0.975; hence, the same-decision probability is 0.975. Consider
now Table 2, which corresponds to two conflicting sensor readings. The deci-
sion is also confirmed here since Pr(D=+ | S1=+,S:=—) = 0.631147 > T.
Again, we make the same decision in four scenarios h, although they are
now less likely scenarios. The same-decision probability is only 0.601229,
suggesting a smaller confidence in the decision in this case.

The following theorem now highlights the complexity of computing the
same decision probability.

Theorem 1. The problem of deciding whether the same-decision probability
is greater than some given probability p is PPYY —complete.

This complexity result indicates that computing the same-decision probabil-
ity is computationally quite challenging, even more so than computing MAP
in Bayesian networks, for example, which is only NP*"—complete (Park and
Darwiche, 2004). In particular, the complexity classes NP, PP, and the
corresponding classes assuming a PP oracle, are related in the following way:

NP C PP C NPF? C ppPF?

where the complexity class NPPF already contains the entire Polynomial
Hierarchy (Toda, 1991). The proof of Theorem 1 is included in the Appendix,



together with some further comments on the complexity class PPYY (Allender
and Wagner, 1990).

Since the same-decision probability is a natural problem that is of practi-
cal interest, and given that it is PP"Y—complete, studying the same-decision
probability could help analyze the complexity of other reasoning problems
for Bayesian networks that may also be PP*Y—complete (as MAP has proved
useful for analyzing NP"Y—complete problems). See Umans (2000) for nat-
ural problems in the Polynomial Hierarchy, and also Kwisthout (2009) for
natural problems in probabilistic reasoning, for a variety of other complexity
classes.

4. Approximating the Same-Decision Probability

Although computing the same-decision probability may be computation-
ally difficult, the one-sided Chebyshev inequality can be used to bound it.
According to this inequality, if V is a random variable with expectation
E[V] = p and variance Var[V | = o2, then for any a > 0:

0.2

Recall now that the probability Pr(d | e) is an expectation E[Q(H)] with
respect to the distribution Pr(H | e), where Q(h) = Pr(d | e,h). Suppose
that E[Q(H)] > T and a decision has been confirmed accordingly. The same-
decision probability is simply the probability of Q(H) > T, where Q(H) is
a random variable. Using the Chebyshev inequality, we get the following
bound on the same-decision probability:

Var[Q(H) |
PORED =D =1 Vo) + (Prid [0) -~ 177

Suppose now that E[Q(H)] < T and a decision has been confirmed ac-
cordingly. The same-decision probability in this case is the probability of
Q(H) < T'. Using the Chebyshev inequality now to bound P(V < u + a),
we get the same bound for the same-decision probability P(Q(H) < T'). To
compute these bounds, we need the variance Var[Q(H)]. We provide an
algorithm for this purpose in the next section.

For an example of our bound, consider again the example from Fig-
ure 1 and Table 1. We have mean E[Q(H)] = 0.880952 and variance



Var[Q(H) ] = 0.005823. We can thus state that P(Q(H) > 0.6) > 0.931289.
Recall that the exact same-decision probability here is .975. On the other
hand, if we take the same network, but are given conflicting sensor readings
e = {S1=+,S53=—1}, as in Table 2, then we have mean E[Q(H)] = 0.631147
and variance Var[ Q(H) | = 0.114755. The mean is much closer to our thresh-
old, and our variance is much higher than when our readings were consistent.
We can only state that P(Q(H) > 0.6) > 0.008383. Recall that the same-
decision probability is 0.601229 for this example, so the Chebyshev inequality
provides a weak bound here. However, the more extreme the bound is, the
more confident we can be about its tightness.

5. Computing the Variance

Let E and H be any two disjoint sets of variables in a Bayesian network,
with neither set containing variable D. The probability Pr(d | e) can be
interpreted as an expectation of @Q(h) = Pr(d | e,h) with respect to a
distribution Pr(h | e€). We propose in this section a general algorithm for
computing the variance of such expectations.

Consider now the variance:

Var[Q(H)] = E[QH)?] - E[Q(H)
=[>_ Pr(d|eh)*Pr(h|e)] — Pr(d|e).

We need two quantities to compute this variance. First, we need the quan-
tity Pr(d | e), which can be computed using standard algorithms for Bayes-
ian network inference, such as variable elimination (Zhang and Poole, 1996;
Dechter, 1996; Darwiche, 2009). The other quantity involves a summation
over instantiations h. Naively, we could compute this sum by simply enu-
merating over all instantiations h, using again the variable elimination algo-
rithm to compute the relevant quantities for each instantiation h. However,
the number of instantiations h is exponential in the number of variables in
H and will thus be impractical when this number is too large.

However, with a suitably augmented variable elimination algorithm, we
can compute this summation more efficiently, and thus the variance. First,
consider the following alternative form for the summation:

) 1 Pr(d,e, h)?
;Pr(dlah) Pr(h"e)_Pr(e) — Pr(eh)

10



Note that the term Pr(e) is readily available using variable elimination and

can be computed together with Pr(d | e). Hence, we just need the sum
Pr(d,e,h)?

h  Pr(eh)
version of variable elimination.
Let Y denote all variables in the Bayesian network excluding variables
H. If we set evidence e and use variable elimination to sum out variables Y,

we get a set of factors that represents the following distribution:
= [ va(X

Here, v, are the factors remaining from variable elimination after having
eliminated variables Y.

We can similarly run the variable elimination algorithm with evidence d, e
to obtain a set of factors whose product represents the following distribution:

r(H,d, e) H%

Using the same variable ordering when eliminating variables Y, we can ensure
a one-to-one correspondence between factors in both factorizations: each pair
of factors 1, and ¢, will be over the same set of variables X, for a given index
a. For each instantiation h, d, e, we then have

which, as we show next, can be computed using an augmented
3

Pr(h,d,e)? Hgbax

a
Prhe a(Xa)
a

where x, is an instantiation of variables X, consistent with instantiation
h,d,e. We now compute a new set of factors

$a(Xa)?
Ya(Xa)
and run the variable elimination algorithm a third time to eliminate variables

H from the factors x,(X,). The result will be a trivial factor that contains
the quantity of interest.*

Xa(Xa) =

3Formally, our summation should be over instantiations h where Pr(e,h) > 0. Note
that if Pr(e,h) = 0 then Pr(d,e,h) = 0. Hence, if we define /0 = 0, then our summation

11



Algorithm 1 Variance by Variable Elimination

input:

N:  a Bayes net with distribution Pr

D, d: a decision variable and a decision state

E,e: a set of observed variables E and evidence e
H:  a set of unobserved variables H

Pr(d,e,h)?
Pr(e,h)

output: a factor that contains ),
main:

S; + factors of AN/ under observations d, e
S, « factors of N under observations e
Y <« all variables in N but variables H

7 < an ordering of variables Y

S+ VE(S1,Y, )

Sy «+ VE(S,, Y, )

S {Xa | Xa = 2 for ¢, € S1, 1 € So}
7 <— an ordering of variables H

S + VE(S,H, )

return [[, s

_.
.

12



Algorithm 2 Variable Elimination [VE]

input:
S:  a set of factors
Y: a set of variables to eliminate in factor set S
m: an ordering of variables Y
output: a set of factors where variables Y are eliminated
main:
1: for i =1 to length of order 7 do
2:  §; « factors in S containing variable (1)
3 i Dy [yes, ¥
4: S(—S—SzU{@/JZ}

5 return S

Algorithm 1 provides pseudo-code that implements this procedure. Note
that on Line 7, there is a one-to-one correspondence between the factors of S;
and S as we have a one-to-one correspondence between the factors passed to
VE(S1,Y, ) and VE(S2, Y, 7), and since each call eliminates the same set of
variables using the same variable order. Algorithm 1 must eliminate variables
H last, so the complexity of the algorithm is exponential in the constrained
treewidth (Darwiche, 2009). This is analogous to the complexity of variable
elimination for computing MAP, where variables H are MAP variables (Park
and Darwiche, 2004).

We finally stress that the algorithm we proposed in this section has appli-
cability beyond that of bounding the same-decision probability. In particular,
any conditional probability of the form Pr(d | e), where D is a network vari-
able and E is a set of network variables, can always be interpreted as an
expectation with respect to the distribution Pr(H | e) for some other set of
network variables H. Our algorithm can therefore be used to compute the
variance of this expectation under the same complexity.

is simply over all instantiations h. In Algorithm 1, we thus define factor division such that
ba(Xa)?/1a(x4) = 0 when t,(x,) = 0. This is typically the convention used in the
implementation and analysis of jointree algorithms (Lauritzen and Spiegelhalter, 1988;
Jensen et al., 1990; Huang and Darwiche, 1996).

4According to the formulation of variable elimination in (Darwiche, 2009), a trivial
factor is a factor over the empty set of variables and contains one entry. It results from
eliminating all variables from a set of factors.

13



6. On the Semantics of Noisy Sensors

In the remainder of this paper, we consider threshold-based decisions
where our observations e correspond to readings from noisy sensors. We
considered such a scenario in our example from Section 2. We propose,
in particular, to explicate the causal mechanisms that govern the behavior
of sensors, and then consider the same-decision probability with respect to
these causal mechanisms. In Section 7, we illustrate through examples how
the same-decision probability can be used to distinguish scenarios involving
noisy sensors, that we could otherwise not distinguish using the probability
Pr(d | e) alone. Our goal, in this section, is to show how we can augment a
sensor so that its causal mechanisms are modeled explicitly.

Consider a Bayesian network fragment X — S, where S represents a
sensor that bears on variable X, and suppose that both S and X take values
in {4+, —}.> Suppose further that we are given the false positive f, and false
negative f, rates of the sensor:

Pr(S=+|X=—-)=f, Pr(S=—|X=+) = fa..

Our augmented sensor model is based on a functional interpretation of the
causal relationship between a sensor S and the event X that it bears on.
This causal perspective in turn is based on Laplace’s conception of natural
phenomena (Pearl, 2009, Section 1.4). In particular, we assume that the
output of a sensor S is a deterministic function that depends on the state of
X, and that the stochastic nature of the sensor arises from the uncertainty
in which functional relationship manifests itself.

We propose to expand the above sensor model into X — S «+ H, where
variable H is viewed as a selector for one of the four possible Boolean func-
tions mapping X to S, which we ascribe the labels {t, |, p,n}:

H X S|Pr(S|HX) H X S|Pr(S|H,X)
t + +|1 p + +[1

t — +10 p — + |1

Il + + 10 n + +1]0

I — + 1 n — +1]0

5Our discussion focuses on sensors over binary variables, but generalizing to multi-
valued variables is not difficult; see also (Druzdzel and Simon, 1993).
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We observe that these Boolean function have commonly used diagnostic in-
terpretations, describing the behavior of a sensor. We will indeed assume
these interpretations in the rest of this paper, for convenience:

e the state H =t indicates the sensor is “truthful,”

e the state H =I indicates the sensor is “lying,”

e the state H =p indicates the sensor is “stuck positive,” and
e the state H =n indicates the sensor is “stuck negative.”

Note that any stochastic model can be emulated by a functional model with
stochastic inputs (Pearl, 2009; Druzdzel and Simon, 1993).

6.1. Assumptions about Causal Mechanisms

To reason about our augmented sensor model X — S «+ H, we need
to specify a prior distribution Pr(H) over causal mechanisms. Moreover,
we need to specify one that yields a model equivalent to the original model
X — S, when variable H has been marginalized out:

Pr(S=+|X==)=> Pr(S=+|H X=-)Pr(H) = f, (3)

Pr(S=—|X=+)=> Pr(S=—|H X=+)Pr(H) = f,. (4)

There is not enough information in the given Bayesian network to identify
a unique prior Pr(H). However, if we make some assumptions about this
prior, we may be able to pin down a unique one. We make two such proposals
here.

For our first proposal, assume that the probability Pr(H =1) that a sensor
lies is zero, which is a common assumption made in the diagnostic community.
This assumption, along with Equations 3 and 4, immediately commits us to
the following distribution over causal mechanisms:

H | Pr(H)

t 1_fp_fn
P |/

n | fa

I {0

15



For our second proposal, consider the event o, = {H=p V H =1} which
denotes the materialization of a causal mechanism that produces a false
positive behavior by the sensor. That is, if «, holds, the sensor will re-
port a positive reading when variable X is negative. Moreover, the event
a, = {H=nV H =1} denotes the materialization of a causal mechanism that
produces a false negative behavior by the sensor. Now, if we further assume
that the false positive and negative mechanisms of the sensor are indepen-
dent, we get Pr(ay, a,) = Pr(a,)Pr(a,). Since a,, oy, is equivalent to H =1,
we now get

Pr(H=1) = f,f. (5)

This assumption, with Equations 3 and 4, commits us to the following CPT:
H | Pr(H)

t | (1= o)1= fa)
p fp(l_fn)
|

fofn

The assumption is similar to parameter independence used in learning Bayes-
ian networks (Heckerman et al., 1995b).% Interestingly, under this assumption
(and f, + f. < 1), as the probabilities of H=p and H=n go to zero (i.e.,
the sensor does not get stuck), the probability of H=I also goes to zero,
therefore, implying that the sensor must be truthful.

Note that the two assumptions discussed above become equivalent as the
false positive and false negative rates of a sensor approach zero. In fact, as we
shall illustrate later, the same-decision probability is almost the same when
these rates are small, which is the more interesting case.

6.2. Beliefs Based on Noisy Sensors

Suppose now that we have observed the values of n sensors. For a sen-
sor with a positive reading, the three possible states are {t,l, p}, since the
probability Pr(H =n) that a sensor is stuck-negative is zero when we have
a positive reading. Similarly, for a sensor with a negative reading, the three
possible states are {t, |, n}. Hence, we have at most 3" sensor states that have
non-zero probability. Each one of these 3" states are causal mechanisms, and

6Namely, using a Dirichlet prior on the CPT of S in the original model X — S would
basically assume independent false positive and false negative rates.
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each refers to a hypothesis about which sensors are truthful, which are lying
and which are irrelevant.

Note that our example network of Figure 1, from Section 2, corresponds
to sensor models X — S < H expanded from sensor models X — S with
parameters f, = f, = 0.1. Table 1 depicts the nine causal mechanisms cor-
responding to two positive sensor readings in the network of Figure 1. The
table also depicts the posterior distribution over these mechanisms, suggest-
ing that the leading scenario, by a large margin, is the one in which the
two sensors are truthful (hy). Table 2 depicts the nine causal mechanisms
assuming two conflicting sensor readings.

Before we close this section, we point out that the probability Pr(d | s) is
actually invariant to any assumption we made about the causal mechanisms
governing sensor readings, i.e., about the prior distribution Pr(H). In other
words, as long as the distribution on variable H satisfies Equations 3 and 4,
the probability Pr(d | s) will have the same value, regardless of which par-
ticular distribution we choose for variable H. This is indeed true for the
probability of any event that does not mention the auxiliary variables H. It
is not true, however, for the same-decision probability, which we shall see in
the following section.

7. Examples

Consider the Bayesian network in Figure 3, which depicts a chain D —
X, — Xy — X3 with two sensors S¢ and S? attached to each node X;. Our
goal here is to make a decision depending on whether Pr(D=+ | e) > T
for some sensor readings e and threshold 7" = 0.5. We will next consider a
number of sensor readings, each leading to the same decision but a different
same-decision probability. Our purpose is to provide concrete examples of
this probability, and to show that it can discriminate among sensor readings
that not only lead to the same decision, but also under very similar proba-
bilities for the hypothesis of interest. The examples will also shed more light
on the tightness of the one-sided Chebyshev bound proposed earlier.

Our computations in this section assume the independence between the
mechanisms governing false positives and false negatives, which is needed to
induce a distribution over causal mechanisms. We also provide the results of
these computations under the second assumption where the “lying” causal
mechanism has zero probability (in brackets). As we discussed earlier, the
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Figure 3: A Bayesian network with six sensors. Variables S¢ and S? represent redundant
sensors for variable X;. All sensors have the same false positive and negative rates of
fp = fn = .05. Variables X; all have the same CPTs. (only the one for variable X is
shown).

two results are expected to be very close since the false positive and negative
rates are small. This is also confirmed empirically here.

We start by observing that Pr(D=+) = 25%. Suppose now that we
have a positive reading for sensor S§. We now have the hypothesis proba-
bility Pr(D=+ | S§=+) = 55.34% and the decision is confirmed given our
threshold. The same-decision probability is 86.19%. From now on, we will
say that our decision confidence is 86.19% in this case.

The following table depicts what happens when we obtain another posi-
tive sensor reading.

Scenario 1 Scenario 2
sensor readings S§ =+ S¢=+ Sh=+
hypothesis probability | 55.34% 60.01%
decision confidence 86.19%(85.96%] 99.22%[99.19%)

Note how the decision confidence has increased significantly even though
the change in the hypothesis probability is relatively modest. The following
table depicts a scenario when we have two more sensor readings that are
conflicting.
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Scenario 2 Scenario 3
readings Sp=-+, Sy=-

S§=+, Si=+ Sy=+, Sh=+
hypothesis probability | 60.01% 60.01%
decision confidence 99.22%(99.19%]  79.97%[80.07%)

Note how the new readings keep the hypothesis probability the same, but
reduce the decision confidence significantly. This is mostly due to raising the
probability of some causal mechanism under which we would make a different
decision.

The following table depicts a conflict between a different pair of sensors.

Scenario 3 Scenario 4
St=+, S7=—
readings S¢=+, Sb=+ Si=+, S=+
S§=+, S5=—
hypothesis probability | 60.01% 60.01%
decision confidence 79.97%[80.07%)]  99.48%[99.48%)

In this case, the sensor conflict increases the same-decision probability just
slightly (from 99.22% to 99.48%).” The next example shows what happens
when we get two negative readings but at different sensor locations.

Scenario 5 Scenario 6
Si—— Si=-
readings S¢=+, Si=+ S§=+, Sh=+
S§g=—, Sh=—
hypothesis probability | 4.31% 57.88%
decision confidence 98.73%[98.70%)]  95.25%[95.23%

When the negative sensors are close to the hypothesis, they reduce the hy-
pothesis probability significantly below the threshold, leading to a high con-
fidence decision. When the readings are further away from the hypothesis
(and dominated by the two positive readings), they reduce the hypothesis

"Knowing that sensor S is lying, or that S¢ is telling the truth, is enough to confirm our
decision given our threshold. The conflicting sensor readings thus introduce new scenarios
under which the decision is confirmed, although these scenarios are very unlikely.
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probability, yet keep it above the threshold. The decision confidence is also
reduced, but remains relatively high.

Finally, consider the table below which compares the decision confidence,
the bound on the confidence, and the variance used to compute the bound.

Scenario | confidence bound  variance
1 86.19% > 15.53% 1.54-1072
2 99.22% > 90.50% 1.05-1073
3 79.97% > 11.05% 8.06-1072
4 99.48% > 88.30% 1.32-1073
5 98.73% > 98.02% 4.22-1073
6 95.25% > 34.73% 1.16-1072

Note that our decision confidence is high when our bound on the same-
decision probability is high. Moreover, the one-sided Chebyshev inequality
may provide only weak bounds, which may call for exact computation of
the same-decision probability. We consider the exact computation of the
same-decision probability a direction for further research. We computed
this quantity through exhaustive enumeration here, yet an algorithm that is
exponential only in the constrained treewidth could open new possibilities
for reasoning about threshold-based decisions.

8. Conclusion

We considered in this paper the robustness of decisions based on proba-
bilistic thresholds under noisy sensor readings. In particular, we suggested
a confidence measure for threshold-based decisions which corresponds to the
probability that one would have made the same decision if one had knowl-
edge about a set of unobserved variables. We analyzed the complexity of
computing the same-decision probability, showing that the corresponding
decision problem is complete for the complexity class PPYY. In response,
we used the one-sided Chebyshev inequality to bound this probability, which
requires computing the variance of a conditional probability with respect to
the marginal distribution over a subset of network variables. We also pro-
posed a variable elimination algorithm for computing this variance, whose
complexity is exponential only in the constrained treewidth of the given net-
work. Finally, we proposed to explicate the causal mechanisms that govern
the readings of sensors, which allows us to use the same-decision probability
to reason about decisions under noisy sensors in a more refined way.
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Appendix A. On the Complexity of Same-Decision Probability

In this section, let AV denote a Bayesian network that induces a distri-
bution Pr over a set of variables X. Let E C X denote a set of observed
variables, and let e (the evidence) denote an instantiation of the variables
E. Similarly, let H C X — E denote a set of unobserved (hidden) variables,
and let h denote an instantiation of H. Let D € X be a variable of interest,
where D ¢ H and D ¢ E. Note that the variable D, together with the sets
of variables H and E may only mention a subset of the variables X. That
is, {D} UHUE C X, where the containment may be strict.

Consider now the following decision problem for Bayesian networks over
variables X.

D-SDP: Given a decision based on probability Pr(d | e) surpassing a
threshold 7', a set of unobserved variables H, and a probability p, is the
same-decision probability:

P(Pr(d|eH)>T)=> [Pr(d|eh)>T|Pr(h|e)
h

greater than p?

We show here that decision problem D-SDP is PPPYcomplete. Intuitively,
typical problems in PP are counting (or enumeration) problems (e.g., count-
ing the number of satisfying assignments in a given CNF formula). Intu-
itively, problems in PP"" are counting problems that have counting sub-
problems (the PP oracle). Note that PP is the second level of the count-
ing hierarchy (Allender and Wagner, 1990). Moreover, PP'" is the counting
analogue of the class NPY? | the latter of which includes a number of Bayesian
network queries as complete problems, including MAP (Park and Darwiche,
2004), multi-parameter sensitivity analysis (Kwisthout and van der Gaag,
2008), and optimization of decision theoretic value of information (Krause
and Guestrin, 2009). For a review on the complexity of reasoning in Bayes-
ian networks, see, for example, Park and Darwiche (2004), Kwisthout (2009),
and Darwiche (2009).
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First, we show that D-SDP is in PP'" by providing a probabilistic
polynomial-time algorithm, with access to a PP oracle, that answers the
decision problem D-SDP correctly with probability greater than % Our
algorithm and its proof of correctness is based on those from (Darwiche,
2009), showing that the decision problem D-MAR is contained in PP:

D-MAR: Given query variables Q C X, an instantiation q, and a proba-
bility p, is Pr(q | e) > p?

We first observe that the same-decision probability can be viewed more sim-
ply as the probability Pr(3 | e) of an event (3, where § = \/thr(dle’h)ZT h. We
now specify a probabilistic polytime algorithm for deciding if Pr(5 | e) > p.

1. Define the following probabilities as a function of p:

[ if p<3
alp) = { 1/(2p) otherwise

[ (1=2p)/2—-2p) ifp<;
b(p) = { 0 otherwise

2. Sample a complete instantiation x from the Bayesian network, with
probability Pr(x). We can do this in linear time, using forward sam-
pling.

3. If x is compatible with e, we test whether Pr(d | e,h) > T using
our PP-oracle,® where h is the projection of instantiation x onto the
variables H. We can do this since our test is an instance of D-MAR,
which is PP—complete.

4. Declare Pr(f | e) > p according to the following probabilities

e a(p) if instantiation x is compatible with e, and Pr(d | e,h) > T}
e b(p) if instantiation x is compatible with e, and Pr(d | e,h) < T}

° % if instantiation x is not compatible with e.

Theorem 2. This procedure will declare Pr(f | €) > p correctly with proba-
bility greater than %

8Equivalently, we can test whether Pr(—d | e,h) > 1—T, using an oracle for D-MAR.
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Proof The probability of declaring Pr(f | e) > p is
1
= alp) Pr(3,) + b(p)Pr(~5.¢) + L[1 — Pr(e)

noting that the probability that sample x is compatible with e is Pr(e), and
then given this, the probability that Pr(d | e,h) > T is Pr(f | e) (by the
definition of 3). It remains to show that » > 1 iff Pr(8|e) > p.

The remainder of the proof mirrors the proof of Theorem 11.5 in (Dar-
wiche, 2009), which we reproduce here for completeness. First, r > % iff

alp)Pr(B | @) + b(p)Pr(= | ) > 5.

We consider two cases, p < % and p > 1 which are the two cases in the

27
definitions of a(p) and b(p).
Ifp< %, then the following inequalities are equivalent:

a(p)Pr(5 | €) + b(p)Pr(=5] ) > o
1-2 1
Pr(Ble)+ 5y (1= PriB|e)] >3
1—-2p 1 1—-2p
Prigle) {1_2—2]9} 2 2-9
1 p
Prif| e)g—g > 525
Pr(5|e) > p.

Otherwise, if p > %, then the following inequalities are equivalent:

a(p)Pr(3] €) + bp) Pr(~3 | ) > 3
2 Pr31e) >3
Pr(p|e) > p.
Thus, r > 5 iff Pr(5|e) > p. O

Having just shown that D-SDP is in PP"? | it remains to show that D-
SDP is PP"P-hard. Given a propositional sentence o over Boolean variables
Xq,...,X,, consider the following decision problem.
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Figure A.4: A Bayesian network representing the following sentence in propositional logic:
o = (X1 V X2 V _\X3) AN ((Xg A X4) V _‘X5)

MAJ-MAJ-SAT: Given some number k where 1 < k£ < n, are there
a majority of instantiations x1,...,xy, where a majority of instantiations
Tga1, - --,Ty have instantiations x4, ..., x, that satisfy a?

For a given instantiation xi,...,x, we can ask if a majority of instantia-
tions xy41, . . ., x, lead to satisfying assignments z1, . .., x, (which is a MAJ-
SAT subproblem). For the problem MAJ-MAJ-SAT, we ask if there are
a majority of such instantiations xi,...,z;. Given that MAJ-MAJ-SAT
is complete for PP™Y (Wagner, 1986), we want to reduce instances of MLAJ-
MAJ-SAT to instances of D-SDP.

Given propositional sentence «, we assume the typical Bayesian network
N, representing it; see, e.g., Section 11.3 of Darwiche (2009). This network
has root nodes Xi,..., X, and a leaf node S, representing the value of the
sentence .. Nodes X; have uniform priors, and each logical operator appear-
ing in sentence « is represented using the appropriate deterministic CPT.
Figure A.4 illustrates an example.

Theorem 3. There are a majority of instantiations x4, . .., Ty, where a ma-
jority of instantiations xyy1, . .., T, have instantiations x1, ..., x, that satisfy
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o iff the same-decision probability P(Pr(S, | X1, ..., Xy) > 1) is greater than
1
.

Proof Consider the same-decision probability for a decision based on the
threshold Pr(S,=true) > %, with respect to variables X, ..., X} (or equiv-
alently, based on the threshold Pr (S, =false) < 1):

2
1
P(Pr(Sy=true | Xq,...,Xy) > 5)
1
= Z [Pr(Sa:true | 21,...,28) > 5} - Pr(zy,...,xy)
L]y Tk
1 1
= o Z [Pr(Sa:true |z, ..., x5) > 5}
T1,..., Tk
Note that Pr(S, | z1,...,x,) = lifxq, ..., x, satisfies v, and zero otherwise.

Moreover, Pr(z1,...,z,) =[]\, Pr(z;) = 3. Thus,

Pr(zy,..., x5, Sq=true) = Z Pr(zy,...,x,, Sq=true)

Th41y-3Ln
= Z Pr(Sy=true| z1,...,x,)Pr(zy,...,x,)
ThA41y+H T

= Z Pr(xl,...,xn):;n

Th41se5Tn

where ¢ is the number of instantiations x4, ..., x, for which the instantia-
tion w1, ..., x, satisfies a. Since Pr(zy,...,xy) = 2%, we have that
c
Pr(S,=true| z1,...,x%) = S
which is the fraction of such instantiations xy,1,...,x,. Thus, there are a
majority of such instantiations iff &% > %
Finally, the same-decision probability is:
1 b
P(Pr(Sa=true | X1,...,X§) > =) = —
2 2k
where b is the number of instantiations xq,...,x; for which the majority
of instantiations xj.1,..., 2, have instantiations xi,...,x, that satisfy a.
Thus, there are a majority of such instantiations xi,...,x; iff the same-
decision probability is greater than %, ie., iff 2% > % O
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Theorem 3 establishes that D-SDP is PP'P—hard. Theorem 2 establishes
D-SDP is in PP"". Hence, we have Theorem 1, and D-SDP is PP’
complete.
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