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Abstract

We propose an approach to lifted approx-
imate inference for first-order probabilistic
models, such as Markov logic networks. It is
based on performing exact lifted inference in
a simplified first-order model, which is found
by relaxing first-order constraints, and then
compensating for the relaxation. These sim-
plified models can be incrementally improved
by carefully recovering constraints that have
been relaxed, also at the first-order level.
This leads to a spectrum of approximations,
with lifted belief propagation on one end, and
exact lifted inference on the other. We dis-
cuss how relaxation, compensation, and re-
covery can be performed, all at the first-
order level, and show empirically that our ap-
proach substantially improves on the approx-
imations of both propositional solvers and
lifted belief propagation.

1 INTRODUCTION

Probabilistic logic models combine aspects of first-
order logic and probabilistic graphical models, en-
abling them to model complex logical and probabilistic
interactions between large numbers of objects (Getoor
and Taskar, 2007; De Raedt et al., 2008). This level of
expressivity comes at the cost of increased complexity
of inference, motivating a new line of research in lifted
inference algorithms (Poole, 2003). These algorithms
exploit logical structure and symmetries in probabilis-
tic logics to perform efficient inference in these models.

For exact inference, lifted variants of variable elimina-
tion (Poole, 2003; de Salvo Braz et al., 2005; Milch
et al., 2008; Taghipour et al., 2012) and weighted

�Part of this research was conducted while the author
was a visiting student at UCLA.

model counting (Gogate and Domingos, 2011; Van den
Broeck et al., 2011) have been proposed. With some
exceptions, lifted approximate inference has focused on
lifting iterative belief propagation (Singla and Domin-
gos, 2008; Kersting et al., 2009).

In this paper, we propose an approach to approximate
lifted inference that is based on performing exact lifted
inference in a simplified first-order model. Namely, we
simplify the structure of a first-order model until it is
amenable to exact lifted inference, by relaxing first-
order equivalence constraints in the model. Relaxing
equivalence constraints ignores (many) dependencies
between random variables, so we compensate for this
relaxation by restoring a weaker notion of equivalence,
in a lifted way. We then incrementally improve this ap-
proximation by recovering first-order equivalence con-
straints back into the model.

In fact our proposal corresponds to an approach to
approximate inference, called Relax, Compensate and
then Recover (RCR) for (ground) probabilistic graph-
ical models.1 For such models, the RCR framework
gives rise to a spectrum of approximations, with iter-
ative belief propagation on one end (when we use the
coarsest possible model), and exact inference on the
other (when we use the original model). In this paper,
we show how relaxations, compensations and recov-
ery can all be performed at the first-order level, giving
rise to a spectrum of first-order approximations, with
lifted first-order belief propagation on one end, and
exact lifted inference in the other.

We evaluate our approach on benchmarks from the
lifted inference literature. Experiments indicate that
recovering a small number of first-order equivalences
can improve on the approximations of lifted belief
propagation by several orders of magnitude. We show
that, compared to Ground RCR, Lifted RCR can re-

1A solver based on the RCR framework won first place
in two categories evaluated at the UAI’10 approximate in-
ference challenge (Elidan and Globerson, 2010).



cover many more equivalences in the same amount of
time, leading to better approximations.

2 RCR FOR GROUND MLNs

While our main objective is to present a lifted version
of the RCR framework, we start by adapting RCR to
ground Markov logic networks (MLNs). This is meant
to both motivate the specifics of Lifted RCR and to
provide a basis for its semantics (i.e., the correctness
of Lifted RCR will be against Ground RCR). RCR
can be understood in terms of three steps: Relaxation
(R), Compensation (C), and Recovery (R). Next, we
introduce MLNs and examine each of these steps.

2.1 MARKOV LOGIC NETWORKS

We first introduce some standard concepts from
function-free first-order logic. An atom ppt1, . . . , tnq
consists of a predicate p {n of arity n followed by
n arguments, which are either (lowercase) constants
or (uppercase) logical variables. A formula combines
atoms with logical connectives (e.g., ^, ô). A formula
is ground if it does not contain any logical variables.
The groundings of a formula are the formulas obtained
by substituting all variables for constants.

Many probabilistic logical languages have been pro-
posed in recent years. We will work with one such lan-
guage: Markov logic networks (MLN) (Richardson and
Domingos, 2006). An MLN is a set of tuples pw, fq,
where w is a real number representing a weight and
f is a formula in function-free first-order logic. First-
order logic formulas without a weight are called hard
formulas and correspond to formulas with an infinite
weight. We will assume that all logical variables in f
are universally quantified.2 Consider the MLN

1.3 smokespXq ñ cancerpXq (1)

1.5 smokespXq ^ friendspX,Y q ñ smokespY q (2)

which states that (1) smokers are more likely to get
cancer and (2) smokers are more likely to be friends
with other smokers (Singla and Domingos, 2008). This
MLN will be a running example throughout this paper.

The grounding of an MLN ∆ is the MLN which re-
sults from replacing each formula in ∆ with all its
groundings (using the same weight). For the domain
ta, bu, the above first-order MLN represents the fol-
lowing ground MLN:

1.3 smokespaq ñ cancerpaq (3)

1.3 smokespbq ñ cancerpbq

1.5 smokespaq ^ friendspa, aq ñ smokespaq

2We transform existential quantifiers into disjunctions.

1.5 smokespaq ^ friendspa, bq ñ smokespbq

1.5 smokespbq ^ friendspb, aq ñ smokespaq

1.5 smokespbq ^ friendspb, bq ñ smokespbq

This ground MLN contains eight different random
variables, which correspond to all groundings of atoms
smokespXq, cancerpXq and friendspX,Y q. This leads
to a distribution over 28 possible worlds. The weight
of each world is simply the product of all weights ew,
where pw, fq is a ground MLN formula and f is sat-
isfied by the world. The weights of worlds that do
not satisfy a hard formula are set to zero. The prob-
abilities of worlds are obtained by normalizing their
weights. The ground distribution of ∆ is the distribu-
tion induced by the grounding of ∆.

2.2 GROUND RELAXATION

Relaxation is the process of ignoring interactions be-
tween the formulas of a ground MLN. An interaction
takes place when the same ground atom ag appears in
more than one ground formula in an MLN. We can ig-
nore this interaction via a two step process. First, we
rename one occurrence of ag into, say, a1g, through a
process that we call cloning. We then assert an equiv-
alence constraint between the original ground atom
ag and its clone, ag ô a1g. At this point, we can
ignore the interaction by simply dropping the equiv-
alence constraint, through a process that we call re-
laxation. Bringing back the equivalence is known as
recovery and will be discussed in more detail later.

The smokespaq atom in Formula 3 leads to an inter-
action between this formula and some of the other
five formulas in the ground MLN. To ignore this in-
teraction, we first rename this atom occurrence into
smokes1paq leading to the modified formula

1.3 smokes1paq ñ cancerpaq (4)

which replaces Formula 3 in the MLN. The correspond-
ing equivalence constraint is

smokes1paq ô smokespaq (5)

Dropping this constraint amounts to removing the in-
teraction between Formula 4 and the rest of the MLN.

2.3 GROUND COMPENSATION

When relaxing a constraint ag ô a1g, we ignore a con-
nection between the ground atoms ag and a1g. We can
compensate for this loss by adding two weighted atoms

w : ag and w1 : a1g

If the weights w and w1 are chosen carefully, one can
reestablish a weaker connection between the ground



atoms. For example, one can choose these weights to
ensure that the ground atoms have the same probabil-
ity, establishing a weaker notion of equivalence.

We will now suggest a specific compensation scheme
based on a key result from Choi and Darwiche (2006).
Suppose that we relax a single equivalence constraint,
ag ô a1g, which splits the MLN into two disconnected
components, one containing atom ag and another con-
taining atom a1g. Suppose further that we choose the
compensations w and w1 such that

Prpagq � Prpa1gq �
ew�w1

1� ew�w1
. (6)

We now have a number of guarantees. First, the re-
sulting MLN will yield exact results when computing
the probability of any ground atom. Second, the com-
pensations w and w1 can be identified by finding a fixed
point for the following equations:

wi�1 � log
�
Pr ipa

1
gq
�
� log

�
Pr ip a

1
gq
�
� w1i

w1i�1 � log pPr ipagqq � log pPr ip agqq � wi. (7)

Following Choi and Darwiche (2006), we will seek com-
pensations using these update equations even when
the relaxed equivalence constraint does not disconnect
the MLN, and even when relaxing multiple equivalence
constraints. In this more general case, a fixed-point
to the above equations will still guarantee the weak
equivalence given in (6). However, when computing
the probabilities of ground atoms, we will only get ap-
proximations instead of exact results.3

Searching for compensations using Equations 7 will
lead to the generation of a sequence of MLNs that
differ only on the weights of atoms added during the
compensation process. The first MLN in this sequence
is obtained by using zero weights for all compensating
atoms, leading to an initial ground distribution Pr0.
Each application of Equations 7 will then lead to a
new MLN (with new compensations) and, hence, a new
ground distribution, Pri�1. Upon convergence, the re-
sulting MLN and its ground distribution will then be
used for answering queries. This is typically done us-
ing an exact inference algorithm as one usually relaxes
enough equivalence constraints to make the ground
MLN amenable to exact inference. Note that applying
Equations 7 also requires exact inference, as one must
compute the probabilities Pripagq and Pripa

1
gq.

2.4 GROUND RECOVERY

Now that we can relax equivalences and compensate
for their loss, the remaining question is which equiv-

3In this more general case, there is no longer a guarantee
that Equations 7 will converge to a fixed point. Conver-
gence can be improved by using damping in Equations 7.

alences to relax. In general, deciding which equiva-
lences to relax is hard, because it requires inference in
the original model, which is intractable. Instead, Choi
and Darwiche (2006) take the approach of relaxing ev-
ery equivalence constraint and then incrementally re-
covering them as time and exact inference allow.

It follows from their results that when (i) relaxing all
equivalence constraints, (ii) using the above compen-
sation scheme and (iii) doing exact inference in the
approximate model, the approximate marginals found
correspond to the approximations found by iterative
belief propagation (IBP) (Pearl, 1988). The connec-
tion to IBP is even stronger: the compensating weights
computed in each iteration of Equations 7 exactly cor-
respond to the messages passed by IBP.

Several heuristics have been proposed to decide which
equivalences to recover, by doing inference in the re-
laxed model. We will work with the residual recovery
heuristic (Choi and Darwiche, 2011). It is based on the
practical observation that when IBP converges easily,
the quality of its approximation is high. The heuristic
tries to recover those constraints that have the most
difficulty converging throughout the iterative process,
i.e., those that least satisfy Equation 6. We measure
this by keeping track of the three-way symmetric KL
divergence between the three terms of Equation 6.

3 LIFTED RCR

We now introduce a lifted version of the relax, compen-
sate and recover framework, which is meant to operate
directly on first-order MLNs without necessarily hav-
ing to ground them. Lifted RCR is based on first-order
relaxation, compensation and recovery.

3.1 FIRST-ORDER RELAXATION

We will now discuss a first-order notion of relaxation
where the goal is to ignore interactions between ground
MLN formulas, yet without necessarily having to fully
ground the MLN. This requires a first-order version of
atom cloning and first-order equivalences.

Definition 1 (First-Order Cloning). Cloning an atom
occurrence in an MLN formula amounts to renaming
the atom by concatenating its predicate with (i) an
identifier of the formula, (ii) an identifier of the oc-
currence of the atom within the formula, and (iii) the
logical variables appearing in the atom’s formula.

For example, the first-order cloning of the atom occur-
rence smokespY q in Formula 2 gives

1.5 smokespXq ^ friendspX,Y q

ñ smokes2b X,Y¡pY q (8)



Here, 2 is an identifier of the formula, b is an identifier
of the atom occurrence in the formula, and  X,Y¡
are the logical variables appearing in the formula.

As in the ground case, each first-order cloning is asso-
ciated with a corresponding equivalence between the
original atom and its clone, except that the equiva-
lence is first-order in this case. The first-order cloning
of atom occurrence smokespY q into smokes2b X,Y¡pY q
in the example above leads to introducing the follow-
ing first-order equivalence:

smokespY q ô smokes2b X,Y¡pY q (9)

Let us now consider the groundings of Formulas 8
and 9, assuming a domain of ta, bu:

1.5 smokespaq ^ friendspa, aq ñ smokes2b a,a¡paq

1.5 smokespaq ^ friendspa, bq ñ smokes2b a,b¡pbq

1.5 smokespbq ^ friendspb, aq ñ smokes2b b,a¡paq

1.5 smokespbq ^ friendspb, bq ñ smokes2b b,b¡pbq

smokespaq ô smokes2b a,a¡paq

smokespbq ô smokes2b a,b¡pbq

smokespaq ô smokes2b b,a¡paq

smokespbq ô smokes2b b,b¡pbq

We have a few observations on the proposed cloning
and relaxation techniques. First, the four ground-
ings of (8) contain distinct groundings of the clone
smokes2b X,Y¡pY q. Second, if we relax the equiva-
lence in (9), the ground formulas of (8) will no longer
interact through the clone smokes2b X,Y¡pY q. Third,
if we did not append the logical variables  X,Y¡
during the cloning process, the previous statement
would no longer hold. In particular, without append-
ing logical variables, the four groundings of (8) would
have contained only the two distinct clone groundings,
smokes2bpaq and smokes2bpbq. This will lead to contin-
ued interactions between the four groundings of (8).4

The proposed cloning technique leads to MLNs in
which one quantifies over predicate names (as in
second-order logic). This can be avoided, but it
leads to less transparent semantics. In particular, we
can avoid quantifying over predicate names by using
ground predicate names with increased arity. For ex-
ample, smokes2b X,Y¡pY q could have been written as
smokes2bpX,Y q where we pushed  X,Y¡ into the
predicate arguments. The disadvantage of this, how-
ever, is that the semantics of the individual arguments
is lost as the arguments become overloaded.

4We need to remove all interactions among ground-
ings of the same formula because otherwise the formula
might not even be tractable for exact inference. For exam-
ple, there is currently no exact lifted inference algorithm
that can handle the formula w : papX,Y q ^ pbpY,Zq ñ
pcpX,Zq without grounding it first (Van den Broeck, 2011).

We now have the following key theorem.

Theorem 1. Let ∆r be the MLN resulting from
cloning all atom occurrences in MLN ∆ and then relax-
ing all introduced equivalences. Let ∆g be the ground-
ing of ∆r. The formulas of ∆g are then fully discon-
nected (i.e., they share no atoms).

With this theorem, the proposed first-order cloning
and relaxation technique allows one to fully disconnect
the grounding of an MLN by simply relaxing first-order
equivalences in the first-order MLN.

3.2 FIRST-ORDER COMPENSATION

In principle, one can just clone atom occurrences, re-
lax some equivalence constraints, and then use the
resulting MLN as an approximation of the original
MLN. By relaxing enough equivalences, the approx-
imate MLN can be made arbitrarily easy for exact in-
ference. Our goal in this section, however, is to im-
prove the quality of approximations by compensating
for the relaxed equivalences, yet without making the
relaxed MLN any harder for exact inference. This will
be done through a notion of first-order compensation.

3.2.1 Equiprobable Equivalences

The proposed technique is similar to the one for ground
MLNs, that is, using weighted atoms whose weights
will allow for compensation. The key, however, is to
use first-order weighted atoms instead of ground ones.
For this, we need to define the following notions.

Definition 2 (Equiprobable Set). A set of random
variables V is called equiprobable w.r.t. distribution
Pr iff for all v1, v2 P V : Prpv1q � Prpv2q.

Definition 3 (Equiprobable Equivalence). Let ∆ be
an MLN from which a first-order equivalence a ô a1

was relaxed. Let a1 ô a11, . . . , an ô a1n be all ground-
ings of a ô a1. The equivalence a ô a1 is equiproba-
ble iff the sets ta1, . . . , anu and ta11, . . . , a

1
nu are both

equiprobable w.r.t the ground distribution of MLN ∆.

The basic idea of first-order compensation is that when
relaxing an equiprobable equivalence a ô a1, under
certain conditions, one can compensate for its loss us-
ing only two weighted first-order atoms of the form:

w : a and w1 : a1

This follows because if we were to fully ground the
equivalence into a1 ô a11, . . . , an ô a1n and then apply
ground compensation, the relevant ground atoms will
attain the same weights. That is, by the end of ground
compensation, the weighted ground atoms,

wi : ai and w1i : a1i

will have wi � wj and w1i � w1j for all i and j.



3.2.2 Partitioning Equivalences

To realize first-order compensation, one must address
two issues. First, a relaxed first-order equivalence
may not be equiprobable to start with. Second, even
when the equivalence is equiprobable, it may cease
to be equiprobable as we adjust the weights during
the compensation process. Recall that equiprobabil-
ity is defined with respect to the ground distribution
of an MLN. Yet, this distribution changes during the
compensation process, which iteratively changes the
weights of compensating atoms and, hence, also itera-
tively changes the ground distribution.

Consider for example the following relaxed equiva-
lences: ppXq ô qpXq and qpXq ô rpXq. Sup-
pose the domain is ta, bu and the current ground dis-
tribution, Pri, is such that Pripppaqq � Pripppbqq,
Pripqpaqq � Pripqpbqq, and Priprpaqq � Priprpbqq. In
this case, the equivalence ppXq ô qpXq is equiproba-
ble, but qpXq ô rpXq is not equiprobable.

If an equivalence constraint is not equiprobable, one
can always partition it into a set of equiprobable equiv-
alences — in the worst case, the partition will include
all groundings of the equivalence. In the above exam-
ple, one can partition the equivalence qpXq ô rpXq
into the equivalences qpaq ô rpaq and qpbq ô rpbq,
which are trivially equiprobable.

Given this partitioning, the compensation algorithm
will add distinct weights for the compensating atoms
qpaq and qpbq. Therefore, the set tqpaq, qpbqu will no
longer be equiprobable in the next ground distribution,
Pri�1. As a result, the equivalence ppXq ô qpXq will
no longer be equiprobable w.r.t. the ground distri-
bution Pri�1, even though it was equiprobable with
respect to the previous ground distribution Pri.

3.2.3 Strongly Equiprobable Equivalences

To attain the highest degree of lifting during compen-
sation, one needs to dynamically partition equivalences
after each iteration of the compensation algorithm, to
ensure equiprobability. We defer the discussion on dy-
namic partitioning to Appendix A, focusing here on
a strong version of equiprobability that allows one to
circumvent the need for dynamic partitioning.

The mentioned technique is employed by our cur-
rent implementation of Lifted RCR, which starts with
equivalences that are strongly equiprobable. An equiva-
lence is strongly equiprobable if it is equiprobable w.r.t
all ground distributions induced by the compensation
algorithm (i.e., ground distributions that result from
only modifying the weights of compensating atoms).

Consider again Formula 2 where we cloned the atom
occurrence smokespY q and relaxed its equivalence,

leading to the MLN:

1.5 smokespXq ^ friendspX,Y q ñ smokes2b X,Y¡pY q

and relaxed equivalence

smokespY q ô smokes2b X,Y¡pY q (10)

Suppose we partition this equivalence as follows:5

X � Y, smokespY q ô smokes2b X,Y¡pY q

X � Y, smokespY q ô smokes2b X,Y¡pY q

These equivalences are not only equiprobable w.r.t.
the relaxed MLN, but also strongly equiprobable.
That is, suppose we add to the relaxed model the com-
pensating atoms

w1 : smokespXq

w11 : X � Y, smokes2b X,Y¡pY q

w2 : smokespXq

w12 : X � Y, smokes2b X,Y¡pY q

The two equivalences will be equiprobable w.r.t. any
ground distribution that results from adjusting the
weights of these compensating atoms. We will present
an equivalence partitioning algorithm in Section 4 that
guarantees strong equiprobability of the partitioned
equivalences. This algorithm is employed by our cur-
rent implementation of Lifted RCR and will be used
when reporting experimental results later.

3.3 COUNT-NORMALIZATION

We are one step away from presenting our first-order
compensation scheme. What is still missing is a discus-
sion of count-normalized equivalences, which are also
required by our compensation scheme.

Consider Equivalence 10, which has four groundings

smokespaq ô smokes2b a,a¡paq

smokespbq ô smokes2b a,b¡pbq

smokespaq ô smokes2b b,a¡paq

smokespbq ô smokes2b b,b¡pbq

for the domain ta, bu. There are two distinct ground-
ings of the original atom smokespY q in this case and
each of them appears in two groundings. When each
grounding of the original atom appears in exactly the

5We are using an extension of MLNs that allows con-
straints, such as X � Y . Our implementation is in terms of
parfactor graphs, which are more expressive than standard
MLNs and do allow for the representation of such con-
straints. In extended MLNs, we will write C, f to mean
that C is a constraint that applies to formula f .



same number of ground equivalences, we say that the
first-order equivalence is count-normalized.

Consider now a constrained version of Equivalence 10

X � b_ Y � b, smokespY q ô smokes2b X,Y¡pY q

which has the following groundings

smokespaq ô smokes2b a,a¡paq

smokespbq ô smokes2b a,b¡pbq

smokespaq ô smokes2b b,a¡paq

This constrained equivalence is not count-normalized
since the atom smokespaq appears in two ground equiv-
alences while the atom smokespbq appears in only one.
More generally, we have the following definition.

Definition 4. Let C, a ô a1 be a first-order equiv-
alence. Let α be an instantiation of the variables in
original atom a and assume that α satisfies constraint
C. The equivalence is count-normalized iff C ^ α has
the same number of solutions for each instantiation α.
Moreover, the number of groundings for C, a is called
the original count and the number of groundings for
C, a1 is called the clone count.

Count-normalization can only be violated by con-
strained equivalences. Moreover, for a certain class of
constraints, count-normalization is always preserved.
The algorithm we shall present in Section 4 for par-
titioning equivalences takes advantage of this obser-
vation. In particular, the algorithm generates con-
strained equivalences whose constraint structure guar-
antees count-normalization.

3.4 THE COMPENSATION SCHEME

We now have the following theorem.

Theorem 2. Let ∆i be an MLN with relaxed equiva-
lences C, a ô a1 and, hence, corresponding compen-
sating atoms:

wi : C, a and w1i : C, a1

Suppose that the equivalences are count-normalized
and strongly equiprobable. Let ag ô a1g be one ground-
ing of equivalence C, aô a1, let n be its original count
and n1 be its clone count. Consider now the MLN ∆i�1

obtained using the following updates:

wi�1 �
n1

n

�
log
�
Pr ipa

1
gq
�
� log

�
Pr ip a

1
gq
�
� w1i

�
w1i�1 � log pPr ipagqq � log pPr ip agqq � wi (11)

The ground distribution of MLN ∆i�1 equals the one
obtained by applying Ground RCR to MLN ∆i.

Note that first-order compensation requires exact in-
ference on the MLN ∆i, which is needed for computing
Pripagq and Pripa

1
gq. Moreover, these computations

will need to be repeated until one obtains a fixed point
of the update equations given by Theorem 2.

3.5 FIRST-ORDER RECOVERY

Recovering a first-order equivalence C, a ô a1

amounts to removing its compensating atoms

wi : C, a and w1i : C, a1

and then adding the equivalence back to the MLN.

Adapting the ground recovery heuristic suggested ear-
lier, one recovers the first-order equivalence that max-
imizes the symmetric pairwise KL-divergence

n1 �KLD

�
Prpagq,Prpa1gq,

ewi�w1

i

1� ewi�w1

i

�
,

where n1 is the clone count of the equivalence. Note
here that n1 is also the number of equivalence ground-
ings since, by definition, the clone atom contains all
logical variables that appear in the equivalence.

Note that recovering first-order equivalences may vi-
olate the equiprobability of equivalences that remain
relaxed, which in turn may require re-partitioning.

4 PARTITIONING EQUIVALENCES

We will now discuss a method for partition-
ing first-order equivalences, which guarantees both
strong equiprobability and count-normalization. This
method is used by our current implementation of
Lifted RCR that we describe in Section 6.

Our method is based on the procedure of preemptive
shattering given by Poole et al. (2011), which is a con-
ceptually simpler version of the influential shattering
algorithm proposed by Poole (2003) and de Salvo Braz
et al. (2005) in the context of exact lifted inference.
We will first describe this shattering procedure, which
partitions atoms. We will then use it to partition all
atoms in a relaxed MLN. We will finally show how
these atom partitions can be used to partition first-
order equivalences.

4.1 PREEMPTIVE SHATTERING

Preemptive shattering takes as input an atom
ppX1, . . . , Xnq and a set of constants K �
tk1, . . . , kmu. It then returns a set of constrained
atoms of the form C, ppX1, . . . , Xnq which represent
a partitioning of the input atom. That is, the ground-
ings of constrained atoms are guaranteed to be disjoint
and cover all groundings of the input atom.



We start with an intuitive description of preemptive
shattering. The set of constants K are the ones explic-
itly mentioned in the MLN of interest. If an argument
Xi of the input atom ppX1, . . . , Xnq can take on one
of the constants kj P K, preemptive shattering splits
the atom into two constrained atoms: one where Xi

is substituted by constant ki and one where the con-
stant kj is excluded from the domain of Xi. Moreover,
when two arguments Xi and Xj of the input atom can
take on the same value, preemptive shattering splits
the atom into two constrained atoms: one with the
constraint Xi � Xj and another with Xi � Xj .

We will next describe the shattering procedure and its
complexity more formally. We need some definitions
first. For each argument Xi of the input atom, let

Ci �tpXi � k1q, . . . , pXi � kmq,

pXi � k1, . . . , Xi � kmqu.

Preemptive shattering generates all possible combina-
tions of the above constraints:

CA � tc1 ^ � � � ^ cn | pc1, . . . , cnq P
�n

i�1 Ciu,

where
�n

i�1 Ci is the cartesian product of C1, . . . , Cn.

Consider now a subset X � tX1, . . . , Xnu of the input
atom arguments and let

CpX q �
©

Xi,XjPX
pXi � Xjq ^

n©
i�1

©
XjRX

pXi � Xjq

CB � tCpX q | X � tX1, . . . , Xnuu

Preemptive shattering will then create the following
partition of the input atom ppX1, . . . , Xnq:

A � tca ^ cb, ppX1, . . . , Xnq | ca P CA, cb P CBu

Many of the generated constraints ca^ cb will have no
solutions and can be dropped. What remains is a set
of constrained atoms whose groundings form a parti-
tion of the groundings for the input atom. Preemptive
shattering can be implemented in time that is expo-
nential in the arity n of input atom and polynomial in
the number of input constants m.

For an example, consider the formula smokespXq ô
smokes X,Y¡pXq and assume we have evidence
smokespaq and therefore K � tau. Preemptive shat-
tering of the input atom smokespXq returns back

X � a, smokespXq

X � a, smokespXq

Preemptive shattering of the input atom

smokes X,Y¡pXq returns back

X � a, Y � a, smokes X,Y¡pXq

X � a, Y � a, smokes X,Y¡pXq

X � a, Y � a, smokes X,Y¡pXq

X � a, Y � a,X � Y, smokes X,Y¡pXq

X � a, Y � a,X � Y, smokes X,Y¡pXq

We will next show how this shattering procedure forms
the basis of a method for partitioning equivalence
constraints, with the aim of ensuring both strong
equiprobability and count-normalization.

4.2 PARTITIONING EQUIVALENCES BY
PREEMPTIVE SHATTERING

Consider an MLN which results from cloning some
atom occurrences and then adding corresponding
equivalence constraints. Let K be all the constants
appearing explicitly in the MLN.

To partition a first-order equivalence a ô a1, our
method will first apply preemptive shattering to the
original atom a and clone atom a1, yielding a partition
for each. Suppose that C1, a1, . . . , Cn, an is the parti-
tion returned for original atom a. Suppose further that
C 11, a

1
1, . . . , C

1
m, a

1
m is the partition returned for clone

atom a1. By definition of cloning, all variables that
appear in original atom a must also appear in clone
atom a1. This implies the following property. For every
(original) constraint Ci, there is a corresponding set of
(clone) constraints C 1j that partition Ci. Each pair of
constraints Ci and C 1j will then generate a member of
the equivalence partition: Ci^C

1
j , ai ô a1j . Note that

Ci ^ C
1
j � C 1j since C 1j implies Ci.

Let us consider an example. Suppose we are partition-
ing the equivalence smokespXq ô smokes X,Y¡pXq.
Section 4.1 showed the preemptive shattering of the
atoms smokespXq and smokes X,Y¡pXq. These give
rise to the following equivalence partition:

X � a, Y � a, smokespXq ô smokes X,Y¡pXq

X � a, Y � a, smokespXq ô smokes X,Y¡pXq

X � a, Y � a, smokespXq ô smokes X,Y¡pXq

X � a, Y � a,X � Y, smokespXq ô smokes X,Y¡pXq

X � a, Y � a,X � Y, smokespXq ô smokes X,Y¡pXq

The following result is proven in Appendix B.

Theorem 3. Partitioning by preemptive shattering re-
turns count-normalized, strongly equiprobable equiva-
lences.

When K is small, preemptive shattering will find par-
titions that are close to minimal. When K is large,
however, it will create large partitions, defeating the



purpose of lifted inference. In the next section, we will
mention some alternative partitioning algorithms that
work on a fully relaxed model. However, preemptive
shattering is the only partitioning algorithm to our
knowledge that works for any level of relaxation. We
believe our work can motivate future work on finding
more efficient general partitioning algorithms and even
approximate partitioning algorithms.

5 RELATED WORK

The RCR framework has previously been used to
characterize iterative belief propagation (IBP) and
some of its generalizations. In the case where the
simplified model is fully disconnected, the approxi-
mate marginals of RCR correspond to the approximate
marginals given by IBP (Pearl, 1988; Choi and Dar-
wiche, 2006). The approximation to the partition func-
tion further corresponds to the Bethe free energy ap-
proximation (Yedidia et al., 2003; Choi and Darwiche,
2008). When equivalence constraints have been re-
covered, RCR corresponds to a class of generalized be-
lief propagation (GBP) approximations (Yedidia et al.,
2003), and in particular iterative joingraph propaga-
tion (Aji and McEliece, 2001; Dechter et al., 2002).
RCR also inspired a system that was successfully em-
ployed in a recent approximate inference competi-
tion (Elidan and Globerson, 2010; Choi and Darwiche,
2011). Mini-buckets can also be viewed as an instance
of RCR where no compensations are used (Kask and
Dechter, 2001; Dechter and Rish, 2003; Choi et al.,
2007), which leads to upper bounds on the partition
function (for example). Any approximate MLN found
by Lifted RCR corresponds to one found by Ground
RCR on the ground MLN, thus all of the above results
carry over to the lifted setting.

The motivation for calling our approach lifted is three-
fold. First, in the compensation phase, we are com-
pensating for many ground equivalences at the same
time. Computing compensating weights for all of these
requires inferring only a single pair of marginal prob-
abilities. Second, computing marginal probabilities is
done by an exact lifted inference algorithm. Third, we
relax and recover first-order equivalence constraints,
which correspond to sets of ground equivalences.

The work on lifted approximate inference has mainly
focused on lifting the IBP algorithm. The correspon-
dence between IBP and RCR carries over to their
lifted counterparts: Lifted RCR compensations on a
fully relaxed model correspond to lifted belief propa-
gation (Singla and Domingos, 2008). Starting from
a first-order model, Singla and Domingos (2008) pro-
posed lifted network construction (LNC), which par-
titions atoms into so-called supernodes. The ground

atoms represented by these supernodes send and re-
ceive the same messages when running IBP. This
means that they partition the atoms into equiprob-
able sets and that LNC can be used for equivalence
partitioning in Lifted RCR for the fully relaxed model.
Kersting et al. (2009) proposed a color-passing (CP)
algorithm that achieves similar results as LNC, only
starting from a ground model, where the first-order
structure is not apparent. Two other approximate
lifted inference algorithms are probabilistic theorem
proving (Gogate and Domingos, 2011), which contains
a Monte-Carlo method and bisimulation-based lifted
inference (Sen et al., 2009), which uses a mini-bucket
approximation on a model that was compressed by de-
tecting symmetries. Because of the correspondence
between Ground RCR and mini-buckets mentioned
above, this approach can also be seen as an instance
of Lifted RCR with the compensation phase removed.

6 EXPERIMENTS

In this section, we evaluate the Lifted RCR algorithm
on common benchmarks from the lifted inference lit-
erature. The experiments were set up to answer the
questions: (Q1) To which extent does recovering first-
order equivalences improve the approximations found
by Lifted RCR? (Q2) Can IBP be improved consider-
ably through the recovery of a small number of equiva-
lences? (Q3) Is there a significant advantage to using
Lifted RCR over Ground RCR?

We implemented Lifted RCR and released it as open
source software.6 To compute exact marginal proba-
bilities in Equations 11, we use first-order knowledge
compilation (Van den Broeck et al., 2011). It com-
piles the MLN into a logical circuit where probabilis-
tic inference is performed by weighted model counting,
which exploits context-specific independencies and de-
terminism in the MLN. It is arguably the state of the
art in exact lifted inference (Van den Broeck, 2011;
Van den Broeck and Davis, 2012). In combination
with preemptive shattering, we compile a first-order
circuit once and re-evaluate it in each iteration of the
compensation algorithm. This is possible because the
structure of the compensated MLNs do not change be-
tween iterations, only their parameters change. An al-
ready compiled first-order circuit can re-evaluated very
efficiently. See Appendix C for further details.

To answer (Q1-2) we ran Lifted RCR on MLNs from
the exact lifted inference literature, where computing
exact marginals is tractable. This allows us to evalu-
ate the approximation quality of Lifted RCR for dif-
ferent degrees of relaxation. We used the models p-
r and sick-death (de Salvo Braz et al., 2005), work-

6http://dtai.cs.kuleuven.be/ml/systems/wfomc
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Figure 1: Normalized approximation error of Lifted RCR for different levels of approximation on the models
(a) p-r, (b) sick-death, (c) workshop attributes, (d) smokers, (e) smokers and drinkers and (f) symmetric smokers.

shop attributes (Milch et al., 2008), smokers (Singla
and Domingos, 2008), smokers and drinkers (Van den
Broeck et al., 2011) and symmetric smokers (Van den
Broeck, 2011). Each of these models represents a new
advance in exact lifted inference. They are incremen-
tally more complex and challenging for lifted inference.
The results are shown in Figure 1, where we ran Lifted
RCR on the above models for two sets of domain sizes:
a small and a large set, where the number of random
variables is on the order of 100 and 10,000 respectively.
We plot the symmetric KL divergence between the ex-
act marginals and the approximations found by Lifted
RCR, as a percentage of the KL divergence of the fully
relaxed approximation. The horizontal axis shows the
level of relaxation in terms of the percentage of recov-
ered ground equivalences. The 0% point corresponds
to the approximations found by (lifted) IBP. The 100%
point corresponds to exact inference.7

We see that each recovered first-order equivalence
tends to improve the approximation quality signifi-
cantly, often by more than one order of magnitude,
answering (Q1). In the case of smokers with a large
domain size, recovering a single equivalence more than
the IBP approximation reduced the KL divergence by
10 orders of magnitude, giving a positive answer to
(Q2). The sick-death model is the only negative case
for (Q2), where recovering equivalences does not lead
to approximations that are better than IBP.8

To answer (Q3), first note that as argued in Section 5,
the 0% recovery point of Lifted RCR using LNC or
CP to partition equivalences corresponds to lifted IBP.
For this case, the work of Singla and Domingos (2008)
and Kersting et al. (2009) has extensively shown that
Lifted IBP/RCR methods can significantly outperform

7All experiments ran up to the 100% point, which is not
shown in the plot because it has a KL divergence of 0.

8Interestingly, it is also the only example where some
compensations failed to converge without using damping.

Ground IBP/RCR. Similarly, computational gains for
the 100% recovery point were shown in the exact lifted
inference literature. For intermediate levels of relax-
ation, we ran Ground RCR on the above models with
large domain sizes. On these, Ground RCR could
never recover more than 5% of the relaxed equivalences
before exact inference in the relaxed model becomes
intractable. This answers (Q3) positively.

For the above experiments, Appendix D further re-
ports on the quality of the approximations and the
convergence of the compensation algorithm, both as a
function of runtime and the number of iterations.

7 CONCLUSIONS

We presented Lifted RCR, a lifted approximate infer-
ence algorithm that performs exact inference in a sim-
plified model. We showed how to obtain a simplified
model by relaxing first-order equivalences, compensat-
ing for their loss, and recovering them as long as ex-
act inference remains tractable. The algorithm can
traverse an entire spectrum of approximations, from
lifted iterative belief propagation to exact lifted infer-
ence. Inside this spectrum is a family of lifted join-
graph propagation (and GBP) approximations. We
empirically showed that recovering first-order equiv-
alences in a relaxed model can substantially improve
the quality of an approximation. We also remark that
Lifted RCR relies on an exact lifted inference engine
as a black box, and that any future advances in ex-
act lifted inference have immediate impact in lifted
approximate inference.
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A DYNAMIC EQUIVALENCE
PARTITIONING

To attain the highest degree of lifting, one may need
to dynamically partition equivalences after each it-
eration of the compensation scheme. Moreover, one
would need to find the smallest possible partition for
each considered equivalence, while guaranteeing both
equiprobability and count-normalization.9

Dynamic partitioning leads to a higher degree of lifting
as it removes the need for strong equiprobability, which
usually leads to larger partitions of equivalences.

We do not employ dynamic partitioning in our current
implementation of Lifted RCR, leaving this to future
work. We point out, however, that dynamic partition-
ing requires a slight adjustment to the compensation
scheme given by Theorem 2.

Suppose that the first-order equivalence C, aô a1 was
equiprobable in MLN ∆i, but ceases to be equiproba-
ble in MLN ∆i�1 due to the adjustment of weights
for compensating atoms. A dynamic partitioning
scheme will then partition this equivalence into a set
of equiprobable and count-normalized equivalences.
One implication of this partitioning is that the two
compensating atoms associated with the equivalence
C, aô a1 in MLN ∆i will now have to be partitioned
as well. That is, the compensating atoms in MLN ∆i

wi : C, a and w1i : C, a1

will need to be replaced in MLN ∆i�1 by two com-
pensating atoms for each equivalence in the computed
partition. Moreover, the initial weights of these new
compensating atoms will be precisely wi (for original
atoms) and w1i for cloned atoms.

Dynamic partitioning is related to informed lifting in
the context of lifted belief propagation (Kersting et al.
2010).

9There is a unique smallest partition satisfying these
properties.

B PREEMPTIVE SHATTERING

We split Theorem 3 up into three lemmas.

Lemma 4. Partitioning by preemptive shattering re-
turns equiprobable equivalences.

Proof outline. Let C^C 1, aô a1 be an element of the
partition of an equivalence constraint found by pre-
emptive shattering. The constrained atoms C, a and
C 1, a1 themselves were found by preemptive shattering
of the MLN ∆. Therefore, the groundings of C, a and
C 1, a1 are exchangeable variables (Poole et al., 2011).
This follows from the fact that any permutation of
these groundings is an automorphism of the ground
factor graph represented by ∆. When a set of ran-
dom variables is exchangeable, it is also equiprobable,
which makes the equivalence equiprobable.

Lemma 5. Partitioning by preemptive shattering re-
turns count-normalized equivalences.

Proof outline. Let C, aô a1 be an element of the par-
tition of an equivalence constraint found by preemptive
shattering. Let X be the set of logical variable argu-
ments of a and XYY be the logical variable arguments
of its clone a1. For a each grounding of a, that is, each
substitution of the variables X by constants that sat-
isfy C, the clone a1 has the same number of groundings
of the variables Y that satisfy C. This follows from
the fact that each logical variable that is not bound to
a constant has the same set of inequality constraints
associated with it.

Lemma 6. Partitioning by preemptive shattering re-
turns strongly equiprobable equivalences.

Proof outline. The preemptive shattering procedure
does not depend on the exact formulas in the MLN
∆, but only on the constants K that appear in it.
The partition returned by preemptive shattering does
not introduce any constants that were not in the in-
put ∆. Therefore, the MLNs ∆i that are constructed
in each iteration of the compensation algorithm (with
compensating weighted atoms) do not introduce addi-
tional constants and each call to preemptive shatter-
ing returns identical partitions in each iteration of the
compensation algorithm.

C IMPLEMENTATION

Our implementation not only works with MLNs, but
also with parfactor graphs and WFOMC theories.

In practice, the Ground RCR algorithm does not start
off with a fully relaxed model. Instead, it starts with
some equivalences intact, such that the relaxed model



forms a spanning tree, and exact inference is still ef-
ficient in it. As long as the relaxed model is a tree,
the set of approximate single marginals that can be
found with RCR correspond to the set of marginals
that the loopy BP algorithm can converge to in the
original model. Relaxing equivalences beyond a span-
ning tree does not make inference more tractable, nor
does it change the approximations made by RCR.

For these reasons, we do not clone all atoms occur-
rences and atom groundings in the relaxation step of
Lifted RCR. Instead, we clone all but one atom per
MLN formula. This guarantees that the relaxed model
is still a tree (but not necessarily spanning). To select
the atom that is not cloned, we choose one with a high
number of logical variable arguments, to have as few
equivalences relaxed as possible overall. As a conse-
quence of this approach to relaxation, weighted unit
clauses are never relaxed.

In the compensation phase, we use damping with a
weight of 50%.

D CONVERGENCE AND
RUNTIME EXPERIMENTS

For the four most challenging benchmarks (small and
large smokers and drinkers and symmetric smokers),
we report the quality of the approximation and the
convergence of the compensation algorithm, both as a
function of runtime and number of iterations. These
results are shown in Figure 2.

The figures on the left show convergence as a func-
tion of the number of iterations of the compensation
algorithm.

• The red solid line shows the KL divergence be-
tween the approximate marginals (according to
the relaxed MLN and compensating weights of
that iteration) and the exact marginals (computed
with exact lifted inference).

• The blue dashed line shows the three-way pair-
wise symmetric KL divergence between the three
terms of Equation 6. Our compensation algo-
rithm aims to satisfy this equation, lowering the
reported KLD.

We see that the compensation KLD increases dramat-
ically between certain iterations. This happens when
we recover a relaxed first-order equivalence. Using the
compensating weights from the previous iteration does
not anymore satisfy Equation 6 after recovery. The
compensation KLD is increased and the compensation
algorithm starts searching for a better set of compen-
sating weights. In the iterations where recovery hap-

pens, we also see a change in the quality of the approx-
imation. It can improve, because of the added equiv-
alence, but it can also decrease, because the compen-
sating weights no longer satisfy Equation 6. In either
case, we see that after running the compensation al-
gorithm after recovering an equivalence improves both
the compensations and the quality of the approxima-
tions. The KLD of the approximation before each re-
covery corresponds to the errors reported in Figure 1.

The figures on the left show the same quality of ap-
proximation (red solid line to the left), this time as
a function of time. In between reported data points,
there are large gaps. These again correspond to recov-
ery steps, where the algorithm needs to compile a set
of new circuits to perform exact inference in the new
approximate, relaxed model. Evaluating these circuits
in the compensation phase (to compute all marginals)
is typically fast, leading to a quick succession of iter-
ations. For one experiment, in Figure 2(d), the com-
pilation is not the bottleneck. This is because eval-
uating the compiled circuits for its large domain size
becomes expensive when most equivalences have been
recovered.

As a final observation, the iterations on the left side
become increasingly expensive. For example, in Fig-
ure 2(a), the first 80 iterations out of 160 take less
than 10 seconds out of 100 in Figure 2(b). Similarly, in
Figure 2(c), the first 150 iterations out of 180 take 300
seconds out of 1800 in Figure 2(d). To complement our
earlier claim that it suffices to recover a small number
of equivalences in order to significantly improve upon
IBP approximations, this also shows that recovering
these first few equivalences can be done very efficiently.
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Figure 2: Convergence Rate of Lifted RCR


