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Abstract

When using graphical models for decision making, a fundamental question is whether one
is ready to make a decision (stopping criteria), and if not, what observations should be
made to better prepare for a decision (selection criteria). In this paper, we review the
notions of entropy and expected utility, which are commonly used for this purpose, and
contrast them with a newly introduced notion, called the same-decision probability, which
can be used both as a stopping criteria for making decisions and as a selection criteria
for choosing additional observations. Furthermore, we show that computing the same-
decision probability lies in the same complexity class as a general expectation computation
problem that is applicable to a wide variety of queries in graphical models, including the
computation of non-myopic value of information.

1 Introduction

Probabilistic graphical models have often been
used to model a variety of decision problems,
e.g., in medical diagnosis (Pauker and Kassirer,
1980; van der Gaag and Coupé, 1999), fault di-
agnosis (Lu and Przytula, 2006), troubleshoot-
ing (Heckerman et al., 1995), and in intrusion
detection (Kruegel et al., 2003). In these and
similar applications, there are often unobserved
variables, such as the state of a patient’s health,
or the presence of a security breach, leading to
two fundamental questions. The first question
is whether, given the current observations, the
decision maker is ready to commit to a decision.
We will refer to this as the stopping criteria for
making a decision. Assuming the stopping cri-
teria is not met, the second question is what ad-
ditional observations should be made before the
decision maker is ready to make a decision. This
typically requires a selection criteria based on
some measure for quantifying an observation’s
value of information (VOI).

The literature contains a number of propos-
als for both stopping and selection criteria. On
stopping criteria, one may commit to a decision
once the belief about a certain event crosses

some threshold, as in (Pauker and Kassirer,
1980; Lu and Przytula, 2006). Alternatively,
we may simply perform as many observations
as our budget allows, as in (Greiner et al., 1996;
Krause and Guestrin, 2009). As for selection
criteria, different observations may have differ-
ent values with respect to the decision we are
interested in making, possibly taking into ac-
count also the cost of performing an observa-
tion (Lindley, 1956; Howard, 1966). We may be
interested in making an observation that mini-
mizes our expected uncertainty about an event,
or we may be interested in maximizing our ex-
pected utility; see, e.g. (Kjærulff and Madsen,
2008; Krause and Guestrin, 2009).

In this paper, we consider the use of a recently
introduced notion, called the Same-Decision
Probability (SDP), as both a stopping criteria
and a selection criteria for the purposes of more
robust decision making. In short, the SDP is the
probability of making the same decision even af-
ter knowing the values of a set of, as of yet, un-
observed variables. (Darwiche and Choi, 2010).
We first extend SDP, which was previously pro-
posed for threshold-based decisions supported
by Bayesian networks, to more general decision-
making tasks, such as those typically supported



by influence diagrams. We next consider the
potential value of SDP as a stopping criteria,
via concrete examples, illustrating how SDP can
quantify the stability of a decision in ways that
are not evident when we consider beliefs and
utilities alone. Next, we consider the potential
value of SDP as a selection criteria, in terms
of the gain in confidence (as opposed to infor-
mation) than an observation may bring. Fi-
nally, we analyze the complexity of the gener-
alized notion of SDP that we propose, showing
that it is PPPP-complete. This result general-
izes previous complexity results for SDP (Choi
et al., 2012), but more importantly, applies to a
broader class of VOI and reward functions.

2 Technical Preliminaries

We use standard notation for variables and their
instantiations, where variables are denoted by
upper case letters X and their instantiations by
lower case letters x. Additionally, sets of vari-
ables are denoted by bold upper case letters X
and their instantiations by bold lower case let-
ters x. We assume that the state of the world is
described over random variables X, where the
evidence E ⊆ X includes all known variables,
and where hidden variables U ⊆ X include all

unknown variables. By definition, E ∩ U = ∅
and E∪U = X. We often discuss the ramifica-
tions of observing a subset of hidden variables
H ⊆ U on decision making. Furthermore, we
use D ∈ U to denote the hypothesis variable
that forms the basis for making a decision.1

2.1 Same-Decision Probability

The same-decision probability (SDP) was ini-
tially defined in the context of threshold-based
decisions (Darwiche and Choi, 2010), where a
decision is made if the probability Pr(d | e)
reaches or surpasses a threshold T . Threshold-
based decisions are common and can be found
in troubleshooting (Heckerman et al., 1995),
medical diagnosis (Pauker and Kassirer, 1980;
van der Gaag and Coupé, 1999), anomaly detec-
tion (Kruegel et al., 2003), and fault diagnosis

1One can extend the analysis to multiple hypothesis
variables, but we focus here on the case of one hypothesis
variable for simplicity.

(Lu and Przytula, 2006).
Although the SDP was defined in the context

of threshold-based decisions, we extend the def-
inition to a more general setting. In particu-
lar, we assume that F is a function that out-
puts some decision given as input a distribution
Pr(D | e). SDP is thus defined as the probabil-
ity that the same decision would be made if the
hidden states of variables H were known (Dar-
wiche and Choi, 2010).

Definition 1. Given a decision function F , hy-
pothesis variable D, unobserved variables H,
and evidence e, the same-decision probabil-

ity (SDP) is defined as

SDP (F , D,H, e) =
∑

h

[F(Pr(D | h, e))]hPr(h | e) (1)

where [F(Pr(D | h, e))]h is an indicator func-
tion that is equal to 1 when F(Pr(D | h, e)) =
F(Pr(D | e)), and equal to 0 otherwise.

Note that the original SDP definition as-
sumed that we had a binary decision and would
perform one decision if Pr(d | e) ≥ T and the
alternative decision otherwise (Darwiche and
Choi, 2010).

2.2 Value of Information

We follow (Krause and Guestrin, 2009) by us-
ing a general definition of VOI based on reward
functions. In particular, given an arbitrary re-
ward function R,2 hypothesis D, hidden vari-
ables H, and evidence e, the VOI is defined as

V(R,D,H, e) =

ER(R,D,H, e)−R(Pr(D | e)) (2)

where

ER(R,D,H, e) =
∑

h

R(Pr(D | h, e))Pr(h | e) (3)

is the expected reward of observing variables
H and R(Pr(D | e)) is the reward if we do

2We thoroughly discuss R in Section 5.
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Figure 1: A Bayesian network for intrusion de-
tection, with its CPTs given in Table 1.

not observe H. Note that as in (Krause and
Guestrin, 2009), VOI can refer to the expected
reward as defined in Equation 3 since R(Pr(D |
e)) does not depend on variables H.

For example, depending on the reward func-
tion used, VOI can be used to identify observa-
tions that best increase expected utility or re-
duce entropy (Kjærulff and Madsen, 2008). The
mean-squared error and margins of confidence
have also been used as reward functions (Krause
and Guestrin, 2009).

3 SDP as a Stopping Criteria

We illustrate in this section the use of SDP as
a stopping criteria in the context of threshold-
based decisions and expected-utility decisions
(i.e., influence diagrams).

3.1 Threshold-Based Decisions

Consider the sensor network in Figure 1, which
may correspond to an intrusion detection ap-
plication as discussed in (Kruegel et al., 2003).
Here, the hypothesis variable is D = {+,−}
with D = + implying an intrusion. Suppose we
commit to a decision, and stop performing ob-
servations, when our belief in the event D = +
surpasses some threshold T , say T = 0.55.
There are four sensors in this model, S1, S2, S3

and S4, whose readings may affect this decision.

Consider the two following scenarios: (1)
S1 = + and S2 = +, and (2) S3 = + and
S4 = +. Since Pr(D = + | S1 = +, S2 =
+) = 0.60 > 0.55 and Pr(D = + | S3 =
+, S4 = +) = 0.74 > 0.55, it is clear that in
both cases that the threshold has been crossed.
We deem that no further observations are neces-
sary based on our beliefs surpassing our thresh-
old, as in (Kruegel et al., 2003; Lu and Przytula,

Table 1: CPTs for the network in Figure 1.

D S1 Pr(S1 | D)

+ + 0.55
+ − 0.45
− + 0.45
− − 0.55

D S2 Pr(S2 | D)

+ + 0.55
+ − 0.45
− + 0.45
− − 0.55

D S3 Pr(S3 | D)

+ + 0.60
+ − 0.40
− + 0.40
− − 0.60

D S4 Pr(S4 | D)

+ + 0.65
+ − 0.35
− + 0.35
− − 0.65

2006). Hence, when using thresholds as a stop-
ping criteria, the two scenarios are identical.

From the viewpoint of SDP, however, these
two scenarios are very different. In particular,
the first scenario leads to an SDP of 52.97%.
This means that there is a 47.03% chance that
a different decision would be made if we were
to further observe the two unobserved sensors
S3 and S4. The second scenario, however, leads
to an SDP of 100%. That is, we would with
certainty know that we would make the same
decision, if we were to also observe the two un-
observed sensors S1 and S2: no matter what the
readings of S1 and S2 could be, our beliefs in the
event D = + would always surpass our thresh-
old 0.55. Indeed, as we can see in Table 1, the
sensors S1 and S2 are not as strong as sensors
S3 and S4, and in this example, they are not
strong enough to reverse our decision.

This example provides a clear illustration of
the usefulness of the SDP as a stopping cri-
teria. First, the SDP can pinpoint situations
where further observations are unnecessary as
they would never reverse the decision under con-
sideration. Second, the SDP can also identify
situations where the decision to be made is not
robust, and is likely to change upon making fur-
ther observations.

3.2 Expected-Utility Decisions

We now consider the use of SDP as a stop-
ping criteria in the context of influence dia-
grams (Howard and Matheson, 1984).
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Figure 2: An influence diagram for an invest-
ment problem.

Consider the influence diagram in Figure 2,
which consists of a Bayesian network with three
variables (C,Q and S), a decision node I, and
a utility node P that is a direct function of the
utility function u. This influence diagram mod-
els an investment problem in which a venture
capital firm is deciding whether to invest an
amount of $5 million in a tech startup (I = T )
or to allow the money to collect interest in the
bank (I = F ). In this example, the profit of
the investment (P ) depends on the decision (I)
and the success of the company (S), which in
turn depends on two factors: (1) whether the
existing competition is successful (C) and (2)
whether the co-founders of the startup have a
high quality, original idea (Q). Both C and Q
are unobserved initially and independent of each
other. Variable S is the hypothesis variable in
this case and cannot be observed. Variables C
and Q, however, can be observed for a price.
The goal here is to choose the decision I = i

with the maximum expected utility:

EU(i | e) =
∑

s

Pr(s | e)u(i, s)

where u(i, s) is the utility of decision i given s,
whether the company is successful or not.
Figures 3 and 4 contain two different parame-

terizations of the influence diagram in Figure 2.
We will refer to these as different scenarios of
the investment problem.
In both scenarios, given no evidence on vari-

ables C and Q, the best decision is I = F , with
an expected utility of $500K. A decision maker
may commit to this decision or decide to observe
variables C and Q, with the hope of finding a

Q Pr(Q)

T 0.4
F 0.6

Q C Pr(S = T | .)

T T 0.60
T F 0.90
F T 0.20
F F 0.30

C Pr(C)

T 0.6
F 0.4

I S u(I, S)

T T $5× 106

T F −$5× 106

F T $5× 105

F F $5× 105

Figure 3: A parameterization of the influence
diagram in Figure 2.

Q Pr(Q)

T 0.1
F 0.9

Q C Pr(S = T | .)

T T 0.05
T F 0.98
F T 0.01
F F 0.05

C Pr(C)

T 0.9
F 0.1

I S u(I, S)

T T $7× 107

T F −$5× 106

F T $5× 105

F F $5× 105

Figure 4: A parameterization of the influence
diagram in Figure 2.

better decision in light of the additional infor-
mation. The classical stopping criteria here is
to compute the maximum expected utility given
that we observe variables C and Q (Heckerman
et al., 1993; Kjærulff and Madsen, 2008):

∑

c,q

max
i

EU(i | c, q)Pr(c, q)

In both scenarios, the maximum expected util-
ity comes out to $1, 180K,3 showing that fur-
ther observations may lead to a better decision
of I = T , i.e. investing in the company.
Up to this point, the above two scenarios are

indistinguishable from the viewpoint of classi-

3According to the formulation of (Krause and
Guestrin, 2009), we have computed the VOI for vari-
ables C and Q using the reward function.



cal decision making tools. The SDP, however,
finds these two scenarios very different. In par-
ticular, with respect to variables C and Q, the
SDP is 60% in the first scenario and is 99% in
the second scenario. That is, even though we
stand to make a better decision of I = T in
both scenarios upon observing certain instanti-
ations of C and Q, (at least with respect to util-
ity), and even though the expected benefit from
such observations is the same in both scenarios,
it is very unlikely that we would change the cur-
rent decision of I = F in the second scenario in
comparison to the first. Hence, given the addi-
tional information provided by the SDP, a de-
cision maker may act quite differently in these
two scenarios. Indeed, when we take a closer
look at the second scenario, there is a state of
the world that has very high utility (when I = T
and S = T ). However, the chance of this state
manifesting itself is extremely small (analogous
to a lottery).
This illustrates the usefulness of SDP

as a stopping criteria in the context of
expected-utility decisions and influence dia-
grams. Namely, using SDP, we can distinguish
between two very different scenarios, that are
otherwise indistinguishable when we consider
utilities alone.

4 SDP as a Selection Criteria

We now turn our attention to the use of SDP as
a criteria for deciding which variables to observe
next, assuming that some stopping criteria in-
dicates that further observations are necessary.
Formally, our proposal is based on using VOI

as the selection criteria (see Equation 2), while
choosing the SDP as the reward function (see
Equation 1). We next define SDP gain.

Definition 2. Given Definition 1 of SDP, the
SDP gain of observing variables H out of vari-
ables U is defined as

G(H) =
∑

h

SDP (F , D,U \H,he)Pr(h|e)

− SDP (F , D,U, e). (4)

where he denotes the joint instantiation of h

and e.

D Pr(D)

+ 0.5
− 0.5

D

S1 S2

Figure 5: A Bayesian network with its CPTs
given in Table 2.

Table 2: CPTs for the Bayesian network in Fig-
ure 5.

D S1 Pr(S1 | D)

+ + 0.8
+ − 0.2
− + 0.2
− − 0.8

D S2 Pr(S2 | D)

+ + 0.75
+ o 0.2
+ − 0.05
− + 0.05
− o 0.2
− − 0.75

The goal here is to observe those variables
which, on average, will lead to the highest SDP.
That is, we want to maximize the probability
of making a decision that is unlikely to change
even if we observe the remaining variables.

We will next provide an example of using SDP
as a selection criteria, contrasting it with two
other selection criteria: One based on reducing
entropy of the hypothesis variable D, and an-
other based on maximizing the margin between
the first and second most likely states. While
both criteria can be motivated as reducing un-
certainty, we will show that both can indeed
lead to less stable decisions in contrast to SDP.

The example is given by the Bayesian net-
work in Figure 5, where D is the hypothesis
variable and S1/S2 are sensors. A decision is
triggered when Pr(D = + | e) ≥ .80, where
evidence e is over sensors S1 and S2. With
no observations (empty evidence e), the SDP is
0.595, suggesting that further observations may
be needed. Assuming a limited number of ob-
servations (Heckerman et al., 1995), and observ-
ing one variable at a time (Dittmer and Jensen,
1997), we need now to select the next variable
to observe.



Note that maximizing VOI with negative
entropy as the reward function amounts to
maximizing mutual information (Cover and
Thomas, 1991). The mutual information be-
tween variable D and sensor S2 is 0.53 whereas
the mutual information between D and sensor
S1 is 0.278. Hence, observing S2 will reduce
the entropy of D the most. In terms of margin
of confidence, another reward function (Krause
and Guestrin, 2009), observing S2 will on av-
erage lead to a 0.7 margin between the D = +
and D = −, whereas observing S1 will only lead
to a 0.6 margin between the two states.

However, if we compute the corresponding
SDP gains, G(S1) and G(S2), we find that ob-
serving S1 will, on average, lead to improv-
ing the decision stability the most. In partic-
ular, observing S1 would give us an SDP of ei-
ther 1 or 0.81, resulting in an expected SDP
of 0.905. Observing S2 would give us an SDP
of either 0.7625, 0.5, or 1, resulting in an ex-
pected SDP of 0.805. Therefore, G(S1) = 0.31
and G(S2) = 0.21. Hence, observing S1 will on
average allow us to make a decision that is less
likely to change due to additional information.

Some intuition to why this is the case is that
in threshold-based decisions, we make a decision
solely based on whether Pr(D | e) is above or
below the threshold. Selection criteria such as
entropy and margins of confidence will not con-
sider the threshold. This example demonstrates
the usefulness of SDP as a selection criteria for
threshold-based decisions, as the SDP can be
used to select observations that lead to more
robust decisions.

5 Computational Complexity

The SDP was shown to be a PPPP-complete
problem in (Choi et al., 2012). The PPPP class
can be thought of as a counting variant of the
NPPP class, for which the MAP problem is com-
plete (Park and Darwiche, 2004).

We show in this section that a general prob-
lem of computing expectations is also PPPP-
complete, with non-myopic VOI being an in-
stance of such an expectation. We also show
that the SDP is another instance of this com-

putation. Thus, the development of algorithms
for SDP will be beneficial to problems in the
complexity class PPPP, which in turn benefits
computing an assortment of expectations, in-
cluding non-myopic VOI.
The proposed expectation computation is

based on using a reward function R with some
properties that we review next. In particular,
the function R is assumed to map a probability
distribution Pr(D | e) to a numeric value. We
also assume that the minimum l and maximum
u of this range are polytime computable. These
assumptions are not too limiting—for example,
both entropy and utility can be expressed us-
ing reward functions that fall in this category
(Krause and Guestrin, 2009).
We now consider the following computation

of expectations.

D-EPT: Given reward function R, hypoth-
esis variable D, unobserved variables H, evi-
dence e, a real number N , and a distribution
Pr induced by a Bayesian network over vari-
ables X,4 the expectation decision prob-

lem asks: Is

E =
∑

h

R(Pr(D | h, e))Pr(h | e)

greater than N?

It should be clear that the SDP falls as a spe-
cial case when the reward function R is the SDP
indicator function (see Definition 1). For exam-
ple, in (Choi et al., 2012), the decision func-
tion outputs one of two decisions depending on
whether Pr(d|e) > T for some value d of D and
some threshold T .
We now have the following theorems, with

proofs in the Appendix.

Theorem 1. D-EPT is PPPP-hard.

Theorem 2. D-EPT is in PPPP.

This shows that D-EPT is PPPP-complete.
This also implies that computing the SDP
is PPPP-complete, as are other computational
problems such as non-myopic VOI using a vari-
ety of reward functions.

4This proof also holds for influence diagrams con-
strained to have only one decision node.



6 Conclusion

In this paper, we extended the recently in-
troduced notion of same decision probability
(SDP), as a way to quantify the robustness of a
decision, to a broader class of decision-making
problems. Through concrete examples, we il-
lustrated the usefulness of SDP as a stopping
criterion, where SDP is capable of distinguish-
ing scenarios that are otherwise indistinguish-
able based on thresholds or utilities alone. We
further illustrated the usefulness of SDP as a
selection criterion, in the terms of a confidence
gain (in contrast to information gain). Finally,
we provided a general analysis of the complexity
of SDP, which extends itself to a broad class of
functions formulated as expectations, including
a general class of VOI computations.

7 Appendix

See (Kwisthout, 2009; Choi et al., 2012) for
more on the complexity class PPPP in the con-
text of reasoning in Bayesian networks.

Proof of Theorem 1. We show D-EPT is
PPPP–hard by reduction from the following de-
cision problem D-SDP, which corresponds to
the originally proposed notion of same-decision
probability for threshold-based decisions
(Darwiche and Choi, 2010).

D-SDP: Given a decision based on probabil-
ity Pr(d | e) surpassing a threshold T , a set
of unobserved variables H, and a probability
p, is the same-decision probability:

∑

h

[Pr(d | h, e) ≥ T ]Pr(h | e) (5)

greater than p?

Here, [.] denotes an indicator function which
evaluates to 1 if the enclosed expression is sat-
isfied, and 0 otherwise. D-SDP was shown to
be PPPP–complete in (Choi et al., 2012).
This same-decision probability corresponds to

an expectation with respect to the distribution
Pr(H | e), using the reward function:

R(Pr(D | h, e)) =

{

1 if Pr(d | h, e) ≥ T
0 otherwise.

Thus the same-decision probability is greater
than T iff this expectation is greater than T .

Proof of Theorem 2. To show that D-EPT is
in PPPP, we provide a probabilistic polynomial-
time algorithm, with access to a PP oracle, that
answers the decision problem D-EPT correctly
with probability greater than 1

2
. This proof gen-

eralizes and simplifies the proof given in (Choi
et al., 2012) for D-SDP.

Consider the following probabilistic algo-
rithm that determines if E > N :

1. Sample a complete instantiation x from the
Bayesian network, with probability Pr(x).
We can do this in linear time, using forward
sampling (Henrion, 1986).

2. If x is compatible with e, we can use a
PP–oracle to compute t = R(Pr(D | h, e)).
First, the reward function R can be com-
puted in polynomial time, by definition.
Second, Pr(D | h, e) can be computed us-
ing a PP–oracle, since the decision problem
for marginals is PP–complete (Roth, 1996),
and since PPP = P#P.

3. Define a function a(t) = 1
2
+ 1

2
t−N
u−l

, which
defines a probability used by our proba-
bilistic algorithm to guess whether E > N
(see Lemma 1).

4. Declare that E > N with probability:

• a(t) if x is compatible with e;

• 1
2
if x is not compatible with e.

The probability of declaring E > N is:

r =
∑

h

a(t)Pr(h, e) +
1

2
(1− Pr(e)) (6)

which is greater than 1
2
iff the following set of



equivalent statements hold:

∑

h

a(t)Pr(h, e) >
Pr(e)

2

∑

h

a(t)Pr(h | e) >
1

2

∑

h

(

1

2
+

1

2

t−N

u− l

)

Pr(h | e) >
1

2

∑

h

(

1

2

t−N

u− l

)

Pr(h | e) > 0

∑

h

(t−N)Pr(h | e) > 0

∑

h

R(Pr(D | h, e))Pr(h | e) > N.

Thus r > 1
2
iff E > N .

Lemma 1. The function a(t) = 1
2
+ 1

2
t−N
u−l

maps
a reward t to a probability in [0, 1].

Proof. Values u and l are given, and denote up-
per and lower bounds on the reward t, but also
the threshold N . Thus t−N

u−l
is in [−1, 1].

Note that a(t) denotes a probability used by
our algorithm to declare whether E > N , which
is higher or lower depending on the value of the
reward t = R(Pr(D | h, e)).
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