
Compiling Probabilistic Graphical Models using
Sentential Decision Diagrams

Arthur Choi, Doga Kisa, and Adnan Darwiche

University of California, Los Angeles, California 90095, USA
{aychoi,doga,darwiche}@cs.ucla.edu

Abstract. Knowledge compilation is a powerful approach to exact in-
ference in probabilistic graphical models, which is able to effectively ex-
ploit determinism and context-specific independence, allowing it to scale
to highly connected models that are otherwise infeasible using more tra-
ditional methods (based on treewidth alone). Previous approaches were
based on performing two steps: encode a model into CNF, then compile
the CNF into an equivalent but more tractable representation (d-DNNF),
where exact inference reduces to weighted model counting. In this pa-
per, we investigate a bottom-up approach, that is enabled by a recently
proposed representation, the Sentential Decision Diagram (SDD). We
describe a novel and efficient way to encode the factors of a given model
directly to SDDs, bypassing the CNF representation. To compile a given
model, it now suffices to conjoin the SDD representations of its factors,
using an apply operator, which d-DNNFs lack. Empirically, we find that
our simpler approach to knowledge compilation is as effective as those
based on d-DNNFs, and at times, orders-of-magnitude faster.

1 Introduction

There are a variety of algorithms for performing exact inference in probabilistic
graphical models; see, e.g., [5, 12]. They typically have time complexities that
are exponential in the treewidth of a given model, which make them unsuitable
for models with high treewidths. Another approach to exact probabilistic infer-
ence, known as knowledge compilation, is capable of exploiting local structure
in probabilistic graphical models, such as determinism and context-specific in-
dependence, allowing one to conduct exact inference efficiently, even in models
with high treewidth. The basic idea is to encode then compile a given model into
a target representation, where local structure can be exploited in more natural
ways. Exact inference then reduces to weighted model counting, where the com-
plexity of inference is now just linear in the size of the representation found [4,
2]. The challenge is then to find effective encodings of a probabilistic graphical
model that can be efficiently compiled to representations of manageable size.

Previous approaches based on knowledge compilation can be summarized as
performing two steps [4, 2]. First, a given model is encoded as a CNF, where
exact inference corresponds to weighted model counting in the CNF. Second,
this CNF is compiled into a more tractable representation called deterministic,

0 50 100 150 200 250
cumulative score

0

2000

4000

6000

8000

10000
cu

m
u
la

ti
v
e
 t

im
e
 (

s)

Exact-MAR: Relational (after 20 minutes)

Hugin-double (Hugin)
Hugin-single (Hugin)
Ace (UCLA)
SMILE (UPitt)

Fig. 1. The performance of ace at the UAI’08
evaluation of probabilistic reasoning systems, the
only system to exactly solve all 250 benchmarks in
the relational suite.

6

 ⊤ C ¬B

2

B A ¬B !

2

B ¬A

5

D C ¬D!

(a) SDD

6

2 5

B
0

A
1

D
3

C
4

(b) vtree

Fig. 2. An SDD and vtree for
(A ∧B) ∨ (B ∧ C) ∨ (C ∧D).

decomposable negation normal form (d-DNNF) [8]. The effectiveness of this
approach depends critically on (1) how we encode a model as a CNF, and (2)
on how we compile the CNF into d-DNNF. The ace system implements this
approach, using the c2d system to compile a CNF into a d-DNNF.1 Figure 1
illustrates the performance benefits of ace, at the UAI’08 evaluation [7] on an
example suite of high treewidth networks that are synthesized from relational
models. The average cluster size for this suite is greater than 50, making them
infeasible to solve without exploiting local structure.

We propose here a simpler bottom-up approach for compiling probabilistic
graphical models, that is enabled by a recently proposed representation, the
Sentential Decision Diagram (SDD) [6]. Unlike d-DNNFs, an efficient apply op-
eration is available for SDDs, which allows one to conjoin and disjoin two SDDs
efficiently. This allows us to bypass intermediate representations in CNF, and
encode the factors of a model directly to SDDs. Compilation then reduces to
conjoining factors together, as SDDs, also using the apply operator. Encoding
and compilation are now expressed in common terms, enabling novel, more effi-
cient ways to exploit local structure. Empirically, this leads to a more efficient
compilation algorithm, sometimes by orders-of-magnitude. In the process, we
propose further a new cardinality minimization algorithm for SDDs.

2 Probabilistic Inference as Weighted Model Counting

We first review how to reduce inference in probabilistic graphical models to
weighted model counting, as in [2]. As a running example, we use a simple

1 ace is available at http://reasoning.cs.ucla.edu/ace/, and c2d is available at
http://reasoning.cs.ucla.edu/c2d/.

Bayesian network A→ B, where variable A has 2 states a and ā, and variable B
has 2 states b and b̄. This network has two CPTs, a CPT ΘA with 2 parameters
θa and θā, and a CPT ΘB|A with 4 parameters θb|a, θb̄|a, θb|ā and θb̄|ā.

We can encode a Bayesian network as a propositional knowledge base ∆
represented in CNF, whose weighted model count will correspond to the prob-
ability of evidence in a Bayesian network: Pr(e) =

∑
x∼e

∏
X θx|u, where x is

a complete network instantiation, e is an evidence instantiation, and relation
∼ denotes compatibility between two instantiations (they agree on the values
of common variables). For probabilistic graphical models in general, weighted
model counts correspond to partition functions.

We first define the propositional variables of the CNF. First, for each BN
variable X we define indicator variables Ix of the CNF, one variable Ix for each
value x of BN variable X. Second, for each CPT ΘX|U of our BN, we define
parameter variables Px|u, one variable Px|u for each CPT parameter θx|u. In our
running example, we have the CNF variables:

BN variables CNF variables
A Ia, Iā
B Ib, Ib̄

BN CPTs CNF variables
ΘA Pa, Pā

ΘB|A Pb|a, Pb̄|a, Pb|ā, Pb̄|ā

We have two types of clauses in our CNF. First, for each BN variable, we have
indicator clauses, which enforce a constraint that exactly one of the correspond-
ing indicator variables is true. For each CPT, we have parameter clauses, which,
given the indicator clauses, enforce a constraint that exactly one of the cor-
responding parameter variables is true (the one consistent with the indicator
variables). In our example, we thus have the clauses:2

BN variables CNF clauses
A Ia ∨ Iā ¬Ia ∨ ¬Iā
B Ib ∨ Ib̄ ¬Ib ∨ ¬Ib̄

BN CPTs CNF clauses
ΘA Ia ⇔ Pa Iā ⇔ Pā

ΘB|A Ia ∧ Ib ⇔ Pb|a Ia ∧ Ib̄ ⇔ Pb̄|a
Iā ∧ Ib ⇔ Pb|ā Iā ∧ Ib̄ ⇔ Pb̄|ā

To do weighted model counting, we need to specify weights on each CNF literal.
For each indicator variable, we set both literal weightsW (Ix) andW (¬Ix) to one.
For each parameter variable, we set the positive literal weight W (Px|u) to the
value of the corresponding BN parameter θx|u, and the negative literal weight
W (¬Px|u) to one. The models w of the resulting knowledge base ∆ are now
in one-to-one correspondence with rows of the joint distribution table induced
by our BN. The weight of a model w is W (w) =

∏
w|=`W (`), and the weighted

model count of ∆ is wmc(∆) =
∑

w|=∆W (w). For example, we have the following

model w and model weight W (w):

w = (Ia,¬Iā,¬Ib, Ib̄, Pa,¬Pā,¬Pb|a, Pb̄|a,¬Pb|ā,¬Pb̄|ā)

W (w) = W (Pa) ·W (Pb̄|a) = θa · θb̄|a = Pr(a, b̄).

2 Ia∧Ib ⇔ Pb|a is shorthand for the clauses (¬Ia∨¬Ib∨Pb|a), (Ia∨¬Pb|a) (Ib∨¬Pb|a).

Further, the weighted model count is one, just as a BN’s joint probability table
sums to one. We incorporate evidence by setting to zero the weights of any
indicator variable Ix that is not compatible with the evidence. The weighted
model count then corresponds to the probability of evidence in a BN.

2.1 Exploiting Local Structure

Zero Parameters It is straightforward to encode determinism using CNFs.
Say that the parameter θb|a is zero. Any model w where parameter variable Pb|a
appears positively has a model weight that is zero, since W (Pb|a) = 0. We can
thus replace the parameter clauses for the BN parameter θx|u with the single
clause ¬Ia∨¬Ib, which also forces to zero the weight of a model where parameter
variable Pb|a appears positively. The parameter variable Pb|a is now superfluous,
and can be removed from the domain of the knowledge base ∆.

Equal Parameters Efficiently encoding equal parameters can be a more subtle
process. Say that two parameters of a CPT, say θb|a and θb̄|ā, have the same value
p. The parameter clauses (given the indicator clauses) guarantee that exactly one
parameter variable from each CPT appears positively in any model w |= ∆. This
allows us to use a common parameter variable Pp, for equal parameters. If these
parameters have clauses Ia ∧ Ib ⇔ Pb|a and Iā ∧ Ib̄ ⇔ Pā|b̄ we first instead assert
the clauses Ia ∧ Ib ⇒ P and Iā ∧ Ib̄ ⇒ P. This by itself is not sufficient, as
the resulting knowledge base ∆ admits too many models (the above clauses, by
themselves, do not prevent parameter variable P from being set to true when
neither Ia∧Ib nor Iā∧Ib̄ are true). We can filter out such models once we compile
the resulting CNF into d-DNNF, by performing cardinality minimization [2].

3 Sentential Decision Diagrams

The Sentential Decision Diagram (SDD) is a newly introduced target represen-
tation for propositional knowledge bases [6]. It is a strict subset of deterministic,
decomposable negation normal form (d-DNNF), used by the ace system. Fig-
ure 2(a) depicts an SDD: paired-boxes p s are called elements and represent
conjunctions (p ∧ s), where p is called a prime and s is called a sub. Circles are
called decision nodes and represent disjunctions of the corresponding elements.
SDDs satisfy stronger properties than d-DNNFs, allowing one, for example, to
conjoin two SDDs in polytime. In contrast, this is not possible in general with
d-DNNFs [8]. As we shall show, the ability to conjoin SDDs efficiently is critical
for incremental, bottom-up compilation of probabilistic graphical models.

An SDD is constructed for a given vtree, which is a full binary tree whose
leaves are in one-to-one correspondence with the given variables; see Figure 2(b).
The SDD is canonical for a given vtree (under some conditions) and its size
depends critically on the vtree used. Ordered Binary Decision Diagrams (OB-
DDs) [1] are a strict subset of SDDs: OBDDs correspond precisely to SDDs
that are constructed using a special type of vtree, called a right-linear vtree [6].

Theoretically, SDDs come with size upper bounds (based on treewidth) [6] that
are tighter than the size upper bounds that OBDDs come with (based on path-
width) [13, 11, 9]. In practice, dynamic compilation algorithms can find SDDs
that are orders-of-magnitude more succinct than those found using OBDDs [3].
Compilation to d-DNNF has also compared favorably against bottom-up com-
pilation using OBDDs in other probabilistic representations [10].

Every decision node in an SDD is normalized for some vtree node. In Fig-
ure 2(a), each decision node is labeled with the vtree node it is normalized for.
Consider a decision node with elements p1 s1 , . . . , pn sn , and suppose that it
is normalized for a vtree node v which has variables X in its left subtree and
variables Y in its right subtree. We are then guaranteed that each prime pi will
only mention variables in X and that each sub si will only mention variables
in Y (this ensures decomposability). Moreover, the primes are guaranteed to
represent propositional sentences that are consistent, mutually exclusive, and
exhaustive (this ensures determinism). For example, the top decision node in
Figure 2(a) has elements that represent the following sentences:

{(A ∧B︸ ︷︷ ︸
prime

, true︸︷︷︸
sub

), (¬A ∧B︸ ︷︷ ︸
prime

, C︸︷︷︸
sub

), (¬B︸︷︷︸
prime

, D ∧ C︸ ︷︷ ︸
sub

)}

One can verify that these primes and subs satisfy the properties above.
In our experiments, we use the SDD package developed by the Automated

Reasoning Group at UCLA.3 This package allows one to efficiently conjoin, dis-
join and negate SDDs, in addition to computing weighted model counts in time
that is linear in the size of the corresponding SDD.

4 Bottom-Up Compilation Into SDDs

There are a number of steps we need to take in order to compile a given prob-
abilistic graphical model into an equivalent representation as an SDD. At each
step, we make certain decisions that can have a significant impact on the size of
the resulting SDD, as well as on the efficiency of constructing it.

4.1 Choosing an Initial Vtree

Vtrees uniquely define SDDs (under some conditions), so the choice of an initial
vtree is critical to obtaining a compact SDD. Here, we consider one approach,
which we describe below, that was effective in our experiments.

We propose to obtain an initial vtree by inducing one from a variable or-
dering. We run the min-fill algorithm on a given model, and use the resulting
variable ordering to induce a vtree, as follows. First, we construct for each model
variable, a balanced vtree over indicator variables, and for each factor, a bal-
anced vtree over parameter variables. We then simulate variable elimination: (1)
when we multiply two factors, we compose their vtrees, and (2) when we forget

3 Publicly available at http://reasoning.cs.ucla.edu/sdd.

Ia Iā

v1

Ib Ib̄

v2

Pa Pā

v3

Pa|b Pa|b̄ Pā|b Pā|b̄

v4

(a) Initial Balanced Vtrees

Pa|b Pa|b̄ Pā|b Pā|b̄

Ib Ib̄

Pa Pā

Ia Iā
v3

v1

v2 v4

(b) Vtree for Network A→ B

Fig. 3. Choosing an initial vtree for network A→ B

a variable from a factor, we compose the vtrees of the variable and the factor.
Here, composing two vtrees vi and vj means that we create a new vtree v with
children vi and vj . In our experiments, we let the left subtree be the one with
fewer variables. Figure 3(a) shows the initial vtrees over indicator and parameter
variables for a Bayesian network A→ B. Figure 3(b) shows a vtree constructed
using variable ordering 〈B,A〉. First, forget variable B from CPT ΘB|A (com-
pose vtrees v2 and v4), then multiply with CPT ΘA (compose with vtree v3),
and finally forget variable A (compose with vtree v1).

4.2 Compiling Factors Into SDDs

Here, we consider how to efficiently encode the factors of a given model as an
SDD. This encoding is possible as SDDs support an efficient apply operator,
which given two SDDs α and β and a boolean operator ◦, will return a new SDD
for α◦β, in polytime. When we encode a factor, we encode the indicator clauses
for each factor variable, and the parameter clauses for each factor parameter, as
in Section 2. This factor CNF can be compiled using apply, where we disjoin
the corresponding literals of each clause, and then conjoin the resulting clauses.
However, we could seek a more direct and efficient approach by relaxing our use
of the CNF representation. Consider the factor ΘB|A of network A → B, with
parameters θb|a, θb̄|a, θb|ā and θb̄|ā. Our factor CNF is equivalent to the following
DNF, over indicator variables Ia and Ib and parameter variables Pb|a:

(Ia ∧ ¬Iā ∧ Ib ∧ ¬Ib̄ ∧ Pb|a ∧ ¬Pb̄|a ∧ ¬Pb|ā ∧ ¬Pb̄|ā)

∨ (Ia ∧ ¬Iā ∧ ¬Ib ∧ Ib̄ ∧ ¬Pb|a ∧ Pb̄|a ∧ ¬Pb|ā ∧ ¬Pb̄|ā)

∨ (¬Ia ∧ Iā ∧ Ib ∧ ¬Ib̄ ∧ ¬Pb|a ∧ ¬Pb̄|a ∧ Pb|ā ∧ ¬Pb̄|ā)

∨ (¬Ia ∧ Iā ∧ ¬Ib ∧ Ib̄ ∧ ¬Pb|a ∧ ¬Pb̄|a ∧ ¬Pb|ā ∧ Pb̄|ā).

The constraints implied by indicator and parameter clauses result in a DNF
where each term represents a setting of indicator and parameter variables for
each factor parameter θx|u. In particular, the term for parameter θx|u has positive
literals for parameter variable Px|u and for the indicator variables consistent with
instantiation xu; all other literals are negative.

Using apply, it is also easy to compile a DNF into an SDD. However, there
are as many terms in the DNF as there are parameters in a factor, and each
term has a sub-term with the same number of literals. Naively, this entails a
quadratic number of apply operations, just to construct the sub-terms over
parameter variables, which is undesirable when we have large factors.

Instead, we observe that each sub-term over parameter variables, has all but
one variable appearing negatively. We thus construct an SDD α for the sub-term
composed of all negative literals, using apply. We can use, and re-use, this SDD
to construct all parameter sub-terms, using two additional operations each. In
particular, for each parameter θx|u we compute (α | ¬Px|u)∧Px|u, where (α | `)
denotes conditioning α on a literal ` (which is another operation supported by
SDDs). This conditioning is equivalent to replacing ¬Px|u with the constant true,
which drops the literal from the term α. The conjoin then replaces the literal
with the positive one. To construct all sub-terms over parameter variables, we
just need in total a linear number of apply operations and a linear number of
conditioning operations, which is much more efficient than a quadratic number
of apply’s. The same technique can be used to construct terms over indicator
variables, which is similarly effective when a factor contains variables with many
states. We can then conjoin the indicator sub-term with the parameter sub-term.

Encoding Determinism If a factor contains a zero parameter θx|u, then any
model w satisfying that term, in the factor DNF, will evaluate to zero, since
W (Px|u) = 0. Setting variable Px|u to false does the same, which effectively
removes the term and variable from the DNF. The variable Px|u is now vacuous,
so we remove it from the domain of knowledge base ∆.

Encoding Equal Parameters If a factor contains parameters θx|u that have
the same value p, then it suffices to have a single parameter variable Pp for those
parameters. For example, say parameter θb|a and θb̄|ā have the same value p in
CPT ΘB|A. The corresponding DNF is:

(Ia ∧ ¬Iā ∧ Ib ∧ ¬Ib̄ ∧ Pp ∧ ¬Pb̄|a ∧ ¬Pb|ā)

∨ (Ia ∧ ¬Iā ∧ ¬Ib ∧ Ib̄ ∧ ¬Pp ∧ Pb̄|a ∧ ¬Pb|ā)

∨ (¬Ia ∧ Iā ∧ Ib ∧ ¬Ib̄ ∧ ¬Pp ∧ ¬Pb̄|a ∧ Pb|ā)

∨ (¬Ia ∧ Iā ∧ ¬Ib ∧ Ib̄ ∧ Pp ∧ ¬Pb̄|a ∧ ¬Pb|ā).

Note that the weight of each term is unchanged. To compile this function using
the apply operator, it suffices to construct the parameter sub-term for equal
parameters once, and just disjoin the corresponding indicator sub-terms. This is
more efficient (fewer apply operations) than explicitly compiling the DNF.

Note that in the CNF encoding of Section 2, we resorted to encoding a repre-
sentation that contained too many models, and then filtered them by performing
cardinality minimization after compiling to d-DNNF. This is more efficient than
encoding equal parameters directly as a CNF, as a straightforward conversion
leads to a CNF with many clauses. However, such techniques are not needed
using an SDD representation, as we are not constrained to using CNFs/DNFs.

4.3 Bottom-Up Compilation

Once we have obtained SDD representation of our model’s factors, we just need
to conjoin these SDDs to obtain an SDD representation of our model. However,
what order do we use to conjoin factor SDDs together? This decision impacts the
sizes of the intermediate representations that we encounter during compilation.
In the implementation we evaluate empirically, we mirror the process we used
to construct our vtree, using the same min-fill variable ordering. We start with
SDD representations of each factor, and simulate variable elimination: (1) when
we multiply two factors, we conjoin the corresponding SDDs, and (2) when we
forget a variable from a factor, we conjoin the variable’s indicator clauses.4

4.4 CNF Encodings: Revisited

Using SDDs, it is also possible to perform bottom-up compilation using the CNF
encoding [3]. Suppose we are given a probabilistic graphical model as a set of
indicator and parameter clauses, as in Section 2, and a vtree over its indicator
and parameter variables, as in Section 4.1. We can assign each clause c to the
lowest (and unique) vtree node v which contains its variables. This labeled vtree
provides a recursive partitioning of the CNF clauses, with each node v in the
vtree hosting a set of clauses ∆v. To compile a CNF, we recursively compile the
clauses placed in the sub-vtrees rooted at the children of v, each child returning
with its corresponding SDD. We conjoin these two SDDs using apply, and then
iterate over the clauses at node v, compiling each into an SDD, and conjoining
the result with the existing SDD, all also using apply. We also visit the clauses
hosted by node v according to their size, visiting shorter clauses first.

4.5 Minimizing Cardinality

When exploiting local structure with a CNF as in Section 2, we appealed to
cardinality minimization in a compiled d-DNNF. We need to be able to do the
same when compiling CNFs to SDDs, which is not as straightforward.

Formally, the minimum cardinality of a given SDD α is defined as:5

mcard(α) =


0 if α is a negative literal or true;
1 if α is a positive literal;
∞ if α is false.
mini{mcard(pi) + mcard(si)} if α = {(p1, s1), ..., (pn, sn)}

Algorithm 1 describes how to recursively obtain an SDD αmin representing the
minimum cardinality models of a given SDD α, which we call a minimized SDD.

4 Conjoining indicator clauses is typically redundant, since we can normally assume
they are encoded in the SDD of each factor mentioning that variable.

5 More intuitively, the cardinality of a model w is the number of positive literals
that appear in that model. The minimum cardinality of a knowledge base ∆ is the
minimum cardinality of all its models. Minimizing a knowledge base ∆ produces
another knowledge base representing the minimum cardinality models of ∆.

Algorithm 1: Minimize-SDD

Input: An SDD α, a vtree v for which α is normalized
Output: A minimized SDD αmin, normalized for v, for SDD α

1 if α ∈ {⊥, X,¬X} and v is leaf with variable X then return α;
2 else if α = > and v is leaf with variable X then return ¬X;
3 else
4 if cache(α) 6= nil then return cache(α);
5 αmin ← empty decision node;
6 foreach element (p, s) in α do
7 if mcard(p) + mcard(s) > mcard(α) then add (p,⊥) to αmin;
8 else

9 pmin ← Minimize-SDD(p, vl), smin ← Minimize-SDD(s, vr);
10 add (pmin, smin) to αmin;
11 pcarry ← apply(p,¬pmin,∧);
12 if pcarry 6= ⊥ then add (pcarry,⊥) to αmin;

13 add αmin to cache;
14 return αmin;

1

B A ¬B⊥

1

B ¬A ¬B⊥

1

¬B¬A B ⊥

1

¬B A B ⊥

3

⊥

5

¬D¬C D ⊥

5

¬DC D ⊥

5

D C ¬D⊥

Fig. 4. Minimized SDD for (A ∧B) ∨ (B ∧ C) ∨ (C ∧D)

For each element (p, s) ∈ α, if mcard(p) + mcard(s) > mcard(α), then (p,⊥)
is an element of αmin. If mcard(p) + mcard(s) = mcard(α), then (pmin, smin) is
an element of αmin, where pmin and smin are the minimized SDD’s for p and s
respectively. If a prime is minimized, then to ensure the exhaustiveness of the
primes, we need to add a new element to the minimized SDD (Line 12).

Figure 4 shows the minimized SDD αmin for SDD α in Figure 2. Each element
of α has a minimum cardinality of 2, so the minimum cardinality of α is 2.
For each element (p, s) of α, the minimization αmin has a minimized element
(pmin, smin). The minimization {(¬B,¬A),(B,⊥)} of prime ¬B is not equal to
itself, so αmin has an element with prime {(¬B,A),(B,⊥)} and sub ⊥.

5 Experiments

We evaluate our approach to compiling probabilistic graphical models (PGMs)
into SDDs, where we consider the impact that different encodings can have on

the succinctness of the resulting compilation, and also on the time that it takes to
compile it. We compare 4 methods to compile a probabilistic graphical model:6

– compiling to SDD without exploiting local structure (denoted by none);

– compiling to SDD, exploiting local structure as in Section 4.2 (sdd);

– encoding the PGM as a CNF, and compiling to SDD (cnf);

– encoding the PGM as a CNF, and compiling to d-DNNF with c2d (c2d).

Note that method c2d is the one that underlies the ace system. All methods here
are driven by initial structures (vtrees for SDDs and dtrees for d-DNNFs), based
on min-fill variable orderings. We restrict ourselves to static initial structures,
although SDDs support the ability to dynamically optimize the size of an SDD
[3]; top-down approaches to compilation, like method c2d, typically do not.

Table 1 highlights statistics for a selection of benchmarks and their SDD and
d-DNNF compilations. Here, the size of an SDD is the aggregate size of an SDD’s
decompositions, and the number of nodes is the number of decision nodes. For
methods that compile to SDDs, we observe that encoding local structure (sdd,
cnf) can obtain much more compact SDDs than without (none). For example, in
network water, method sdd produced an SDD that was 73× more compact than
none. Such improvements are typical for knowledge compilation approaches to
exact inference, when there is sufficient local structure [2]. Next, methods cnf
and sdd encode the same local structure, so both approaches yield the same
compiled SDDs. However, by not constraining ourselves to CNFs, as method cnf
does, we can obtain these SDDs in much less time, often by orders-of-magnitude.

As for d-DNNFs compiled by c2d, we report the number of NNF edges as
the compilation size, and the number of AND-nodes and OR-nodes in an NNF
as the number of nodes. While the sizes for SDDs and d-DNNFs are not directly
comparable, we note that for instances where we obtained both an SDD and
a d-DNNF, the reported sizes are within an order-of-magnitude of each other
(or better). This suggests that methods sdd and c2d are performing comparably,
relatively speaking, across these benchmarks. In other cases, method sdd could
compile benchmarks that method c2d was unable to in one hour. For example,
method sdd was able to compile network diabetes in under 25 seconds (at least
144× faster), and method sdd was the only one to compile network munin1.

Finally, we note that d-DNNFs are in general more succinct than SDDs, and
for any given SDD there is a corresponding d-DNNF that is at least as succinct.
However, SDDs enjoy an efficient apply operator, which is critical for certain
applications that are out of the scope of d-DNNFs, which does not support an
apply. Our results here suggest that our simplified approach (method sdd) can
be orders-of-magnitude more efficient than other alternatives. In some cases, in
fact, the ability to encode directly to an SDD alone (none) appears to outweigh
the ability to exploit local structure using CNFs (given enough memory).

6 Our experiments were performed on an Intel i7-3770 3.4GHz CPU with 16GB RAM,
except for method none, which were on an Intel Xeon E5440 2.83GHz CPU with
32GB RAM (SDD size is the relevant comparison here, and less compilation time).

PGM stats compilation stats
benchmark X θ 0 p C method size nodes time

barley 48 130180 0 36926 23.4 none 231,784,907 96,062,825 227.46
sdd 49,442,901 17,678,076 32.48
cnf — — —
c2d — — —

diabetes 413 461069 352224 17574 17.5 none 78,641,365 32,312,892 308.74
sdd 21,704,366 7,882,652 24.49
cnf — — —
c2d — — —

diagnose-b 329 34704 51 976 18.1 none 15,622,318 7,115,750 67.23
sdd 227,170 102,856 0.84
cnf 227,170 102,856 245.12
c2d 369,426 124,393 77.56

mildew 35 547158 509234 6713 19.6 none 54,726,909 26,136,443 188.51
sdd 2,981,951 1,156,072 5.55
cnf — — —
c2d 167,676,317 3,120,074 1430.90

munin1 189 19466 10910 4246 26.2 none ? ? ?
sdd 139,855,161 61,376,880 339.34
cnf — — —
c2d — — —

munin2 1003 83920 46606 22852 17.4 none 25,068,547 10,453,726 122.08
sdd 8,007,175 3,430,400 19.12
cnf 8,007,175 3,430,400 2377.67
c2d — — —

munin3 1044 85855 47581 24102 17.3 none 43,069,070 19,066,130 158.25
sdd 9,623,616 4,431,843 21.73
cnf — — —
c2d 66,048,268 2,297,199 132.96

water 32 13484 6970 3578 20.8 none 29,881,265 12,566,205 36.17
sdd 405,538 195,502 3.83
cnf 405,538 195,502 106.07
c2d 1,342,307 141,167 3.24

mm-5-8-3 1616 11278 5531 3367 28.0 none ? ? ?
sdd 870,867 400,872 255.38
cnf 870,867 400,872 1830.93
c2d 4,920,481 214,281 8.78

gr-90-26-1 676 5202 2360 1704 40.0 none ? ? ?
sdd 600,816 288,632 190.01
cnf 600,816 288,632 62.48
c2d 216,935 28,241 3.38

Table 1. Under PGM stats, X is # of variables, θ is # of model parameters, 0 is #
of zeros, p is # of distinct parameter values, C is log2 size of largest jointree cluster.
We have 4 compilation methods: none is compilation to SDDs without encoding local
structure, sdd is to SDDs with encoding local structure, cnf is to SDDs via encod-
ing CNFs with local structure, c2d is to d-DNNFs via the same CNF using the c2d
compiler. Time reported in seconds. — is a 1 hour timeout, ? is out-of-memory.

6 Conclusion

In this paper, we outlined a knowledge compilation approach for exact infer-
ence in probabilistic graphical models, that is enabled by a recently proposed
representation, the Sentential Decision Diagram (SDD). SDDs support an ef-
ficient apply operation, which was not available in previous approaches based
on compilation to d-DNNFs. As we illustrated, an efficient apply operation
enables a more unified approach to knowledge compilation, that allows us to
encode a model, exploit its local structure, and compile it to a more compact
representation, in common and simplified terms. Empirically, we found that by
bypassing the auxiliary CNF representations that were previously used, we can
obtain SDDs that are of comparable succinctness to d-DNNFs found by c2d,
but more efficiently, by orders-of-magnitude in some cases. In the process, we
further proposed a new algorithm for minimizing cardinality in SDDs.

Acknowledgments. This work has been partially supported by ONR grant
#N00014-12-1-0423, NSF grant #IIS-1118122, and NSF grant #IIS-0916161.

References

1. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35, 677–691 (1986)

2. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artificial Intelligence Journal 172(6–7), 772–799 (2008)

3. Choi, A., Darwiche, A.: Dynamic minimization of sentential decision diagrams. In:
Proceedings of the 27th Conference on Artificial Intelligence (AAAI) (2013)

4. Darwiche, A.: A differential approach to inference in Bayesian networks. Journal
of the ACM 50(3), 280–305 (2003)

5. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press (2009)

6. Darwiche, A.: SDD: A new canonical representation of propositional knowledge
bases. In: IJCAI. pp. 819–826 (2011)

7. Darwiche, A., Dechter, R., Choi, A., Gogate, V., Otten, L.: Results from the prob-
ablistic inference evaluation of UAI-08 (2008), http://graphmod.ics.uci.edu/

uai08/Evaluation/Report

8. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264 (2002)

9. Ferrara, A., Pan, G., Vardi, M.Y.: Treewidth in verification: Local vs. global. In:
LPAR. pp. 489–503 (2005)

10. Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., Raedt, L.D.: Inference in
probabilistic logic programs using weighted CNF’s. In: UAI. pp. 211–220 (2011)

11. Huang, J., Darwiche, A.: Using DPLL for efficient OBDD construction. In: SAT
(2004)

12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

13. Prasad, M.R., Chong, P., Keutzer, K.: Why is ATPG easy? In: DAC. pp. 22–28
(1999)

