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Abstract

We revisit the problem of revising probabilistic be-
liefs using uncertain evidence, and report results on
four major issues relating to this problem: How
to specify uncertain evidence? How to revise a
distribution? Should, and do, iterated belief revi-
sions commute? And how to provide guarantees on
the amount of belief change induced by a revision?
Our discussion is focused on two main methods for
probabilistic revision: Jeffrey’s rule of probability
kinematics and Pearl’s method of virtual evidence,
where we analyze and unify these methods from the
perspective of the questions posed above.

1 Introduction
We consider in this paper the problem of revising beliefs
given uncertain evidence, where beliefs are represented using
a probability distribution. There are two main methods for
revising probabilistic beliefs in this case. The first method is
known asJeffrey’s ruleand is based on the principle ofproba-
bility kinematics,which can be viewed as a principle for min-
imizing belief change[Jeffrey, 1965]. The second method is
calledvirtual evidenceand is proposed by Pearl in the context
of belief networks—even though it can be easily generalized
to arbitrary probability distributions—and is based on reduc-
ing uncertain evidence into certain evidence on some virtual
event[Pearl, 1988]. We analyze both of these methods in this
paper with respect to the following four questions:

1. How should one specify uncertain evidence?

2. How should one revise a probability distribution?

3. Should, and do, iterated belief revisions commute?

4. What guarantees can be offered on the amount of belief
change induced by a particular revision?

Our main findings can be summarized as follows. First, we
show that Jeffrey’s rule and Pearl’s method both revise be-
liefs using the principle of probability kinematics; Jeffrey’s
rule explicitly commits to this principle, while Pearl’s method
is based on a different principle, yet we show that Pearl’s
method implies the principle of probability kinematics, lead-
ing to the same revision method as that of Jeffrey’s. The dif-
ference between Jeffrey’s rule and Pearl’s method is in the

way uncertain evidence is specified. Jeffrey requires uncer-
tain evidence to be specified in terms of theeffectit has on
beliefs once accepted, which is a function of both evidence
strength and beliefs held before the evidence is obtained.
Pearl, on the other hand, requires uncertain evidence to be
specified in terms of itsstrengthonly. Despite this differ-
ence, we show that one can easily translate between the two
methods of specifying evidence and provide the method for
carrying out this translation.

The multiplicity of methods for specifying evidence also
raises an important question: How should informal state-
ments about evidence be captured formally using available
methods? For example, what should the following statement
translate to: “Seeing these clouds, I believe there is an 80%
chance that it will rain?” We will discuss this problem of
interpreting informal evidential statements in a separate sec-
tion.

As to the question of iterated belief revision: It is well
known that Jeffrey’s rule does not commute; hence, the or-
der in which evidence is incorporated matters[Diaconis &
Zabell, 1982]. This has long been perceived as a problem,
until clarified recently by the work of Wagner who observed
that Jeffrey’s method of specifying evidence is dependent on
what is believed before the evidence is obtained and, hence,
should not be commutative to start with[Wagner, 2002].
Wagner proposed a method for specifying evidence, based
on the notion ofBayes factor,and argued that this method
specifies only the strength of evidence, and is independent of
the beliefs held when attaining evidence. Wagner argued that
when evidence is specified in that particular way, iterated re-
visions should commute. He even showed that combining this
method for specifying evidence with the principle of proba-
bility kinematics leads to a revision rule that commutes. We
actually show that Pearl’s method of virtual evidence is speci-
fying evidence according to Bayes factor, exactly as proposed
by Wagner and, hence, corresponds exactly to the proposal he
calls for. Therefore, the results we discuss in this paper unify
the two main methods for probabilistic belief revision pro-
posed by Jeffrey and Pearl, and show that differences between
them amount to a difference in the protocol for specifying un-
certain evidence.

Our last set of results relate to the problem of providing
guarantees on the amount of belief change induced by a re-
vision. We have recently proposed a distance measure for



bounding belief changes, and showed how one can use it
to provide such guarantees[Chan & Darwiche, 2002]. We
show in this paper how this distance measure can be com-
puted when one distribution is obtained from another using
the principle of probability kinematics. We then show how
the guarantees provided by this measure can be realized when
applying either Jeffrey’s rule or Pearl’s method, since they
both are performing revision based on the principle of proba-
bility kinematics.

2 Probability Kinematics and Jeffrey’s Rule
Suppose that we have two probability distributionsPr and
Pr ′ which disagree on the probabilities they assign to a set of
mutually exclusive and exhaustive eventsγ1, . . . , γn, yet:

Pr(α | γi) = Pr ′(α | γi), (1)

for i = 1, . . . , n, and for every eventα in the probability
space. We say here thatPr ′ is obtained fromPr by probabil-
ity kinematicson γ1, . . . , γn. This concept was proposed by
Jeffrey[1965] to capture the notion that even thoughPr and
Pr ′ disagree on the probabilities of eventsγi, they agree on
their relevance to every other eventα.

Consider now the problem of revising a probability distri-
butionPr given uncertain evidence relating to a set of mutu-
ally exclusive and exhaustive eventsγ1, . . . , γn. One method
of specifying uncertain evidence is through theeffectthat it
would have on beliefs once accepted. That is, we can say that
the evidence is such that the probability ofγi becomesqi once
the evidence is accepted. If we adopt this method of evidence
specification, we conclude that there isonly onedistribution
Pr ′ such that:

• Pr ′(γi) = qi for i = 1, . . . , n.

• Pr ′ is obtained fromPr by probability kinematics on
γ1, . . . , γn.

Moreover, this specific distribution is given by:

Pr ′(ω)
def
= Pr(ω)

qi

Pr(γi)
, if ω |= γi, (2)

whereω is an atomic event, also known as a world, and|= is
the logical entailment relationship. This is exactly the distri-
bution that Jeffrey suggests and, hence, this method of re-
vision is known asJeffrey’s rule. We stress here that we
are drawing a distinction between the principle of probabil-
ity kinematics and Jeffrey’s rule, which are often considered
synonymous. Specifically, Jeffrey’s rule arises from a com-
bination of two proposals: (1) the principle of probability
kinematics, and (2) the specification of uncertain evidence us-
ing a posterior distribution. It is possible for one to combine
the principle of probability kinematics with other methods for
specifying evidence as we discuss later.

It is not hard to show that the above distributionPr ′
is indeed obtained fromPr by probability kinematics on
γ1, . . . , γn, as it satisfies Equation 1:

Pr ′(α | γi) =
Pr ′(α, γi)
Pr ′(γi)

=

∑
ω|=α,γi

Pr ′(ω)

qi

=

∑
ω|=α,γi

Pr(ω) qi

Pr(γi)

qi

=

∑
ω|=α,γi

Pr(ω)

Pr(γi)

=
Pr(α, γi)
Pr(γi)

= Pr(α | γi).

Therefore, for any eventα, its probability under the new dis-
tributionPr ′ is:

Pr ′(α) =
∑

i

Pr ′(α | γi)Pr ′(γi)

=
∑

i

Pr(α | γi)qi

=
∑

i

qi
Pr(α, γi)
Pr(γi)

,

which is the closed form for Jeffrey’s rule. We now show an
example of using Jeffrey’s rule.

Example 1 (Due to Jeffrey) Assume that we are given a
piece of cloth, where its color can be one of: green (cg), blue
(cb), or violet (cv). We want to know whether, in the next day,
the cloth will be sold (s), or not sold (s). Our original state
of belief is given by the distributionPr :

Pr(s, cg) = .12, Pr(s, cb) = .12, Pr(s, cv) = .32,
Pr(s, cg) = .18, Pr(s, cb) = .18, Pr(s, cv) = .08.

Therefore, our original state of belief on the color of the cloth
(cg, cb, cv) is given by the distribution(.3, .3, .4). Assume
that we now inspect the cloth by candlelight, and we want
to revise our state of belief on the color of the cloth to the
new distribution(.7, .25, .05) using Jeffrey’s rule. If we apply
Jeffrey’s rule (Equation 2), we get the new distributionPr ′:

Pr ′(s, cg) = .28, Pr ′(s, cb) = .10, Pr ′(s, cv) = .04,
Pr ′(s, cg) = .42, Pr ′(s, cb) = .15, Pr ′(s, cv) = .01.

3 Virtual Evidence and Pearl’s Method
The problem of revising a probability distribution under un-
certain evidence can be approached from a different perspec-
tive than that of probability kinematics. Specifically, when we
have uncertain evidence about some mutually exclusive and
exhaustive eventsγ1, . . . , γn, we can interpret that evidence
ashard evidenceon somevirtual eventη, where the relevance
of γ1, . . . , γn to η is uncertain. It is assumed that the virtual
eventη depends only on the eventsγ1, . . . , γn and, therefore,
is independent of any other eventα givenγi:

Pr(η | γi, α) = Pr(η | γi). (3)

According to this approach, the uncertainty regarding evi-
dence onγ1, . . . , γn is recast as uncertainty in the relevance
of γ1, . . . , γn to the virtual eventη. Specifically, the uncer-
tainty is recast as the likelihood ofγi given virtual evidence
η: Pr(η | γi), for i = 1, . . . , n.



We next show that the new distribution obtained after ac-
cepting the uncertain evidence onγ1, . . . , γn, Pr(· | η), is:

Pr(ω | η) = Pr(ω)
λi∑

j Pr(γj)λj
, if ω |= γi, (4)

whereλ1, . . . , λn are ratios chosen such that:

λ1 : . . . : λn = Pr(η | γ1) : . . . : Pr(η | γn).

Hence, the specific likelihoodsPr(η | γi) are not important
here, but their ratios are. This is why this method usually
specifies uncertain evidence using a set of likelihood ratios
λ1, . . . , λn [Pearl, 1988]. The derivation of Equation 4 is
based on the assumptions underlying the method of virtual
evidence given by Equation 3:

Pr(ω | η) =
Pr(ω, η)
Pr(η)

=
Pr(η | ω)Pr(ω)∑
j Pr(η | γj)Pr(γj)

=
Pr(η | γi, ω)Pr(ω)∑

j Pr(η | γj)Pr(γj)

=
Pr(η | γi)Pr(ω)∑
j Pr(η | γj)Pr(γj)

= Pr(ω)
λi∑

j Pr(γj)λj
, if ω |= γi.

The last step is based onPr(η | γi) = kλi, wherek is a
constant. For any eventα, the new probability after accom-
modating the virtual evidence is:

Pr(α | η) =
∑

i

Pr(α, γi | η)

=
∑

i

Pr(α, γi)
λi∑

j λjPr(γj)

=
∑

i λiPr(α, γi)∑
j λjPr(γj)

,

which is the closed form for Pearl’s method.
The above revision method is a generalization of the

method of virtual evidence proposed by Pearl[1988] in the
context of belief networks. A belief network is a graphi-
cal probabilistic model, composed of two parts: a directed
acyclic graph where nodes represent variables, and a set of
conditional probability tables (CPTs), one for each variable
[Pearl, 1988; Jensen, 2001]. The CPT for variableX with
parentsU defines a set of conditional probabilities of the
form Pr(x | u), wherex is a value of variableX, andu
is an instantiation of parentsU. Suppose now that we have
some virtual evidence bearing on variableY , which has val-
uesy1, . . . , yn. This virtual evidence is represented in the be-
lief network by adding a dummy nodeZ and a directed edge
Y → Z, where one value ofZ, sayz, corresponds to the vir-
tual eventη. This ensures the assumption of Equation 3, that
virtual eventz is independent of every other eventα given ev-
ery yi, i.e.,Pr(z | yi, α) = Pr(z | yi), which follows from
the independence semantics of belief networks[Pearl, 1988].

The uncertainty of evidence is quantified by the likelihood ra-
tios: Pr(z | y1) : . . . : Pr(z | yn) = λ1 : . . . : λn, which are
specified in the CPT of variableZ. Finally, we incorporate
the presence of the virtual eventz by adding the observation
Z = z to the rest of evidence in the belief network. We now
show a simple example.

Example 2 (Due to Pearl) We are given a belief network
with two variables:A represents whether the alarm of Mr.
Holmes’ house goes off, andB represents whether there is
a burglary. To represent the influence between the two vari-
ables, there is a directed edgeB → A. The CPTs ofA and
B are given by:Pr(a | b) = .95, meaning the alarm goes off
if there is a burglary with probability.95; Pr(a | b) = .01,
meaning the alarm goes off if there is no burglary with prob-
ability .01; and Pr(b) = 10−4, meaning on any given day,
there is a burglary on any given house with probability10−4.

One day, Mr. Holmes’ receives a call from his neighbor,
Mrs. Gibbons, saying she may have heard the alarm of his
house going off. Since Mrs. Gibbons suffers from a hearing
problem, Mr. Holmes concludes that there is an 80% chance
that Mrs. Gibbons did hear the alarm going off. According
to the method of virtual evidence, this uncertain evidence can
be specified by the virtual eventη and the likelihood ratio:
Pr(η | a) : Pr(η | a) = 4 : 1. To incorporate the virtual
evidence into the belief network, we add the variableZ, and
the directed edgeA → Z, and specify the CPT ofZ such that
Pr(z | a) : Pr(z | a) = 4 : 1. For example, we can assign
Pr(z | a) = .4 and Pr(z | a) = .1. After incorporating
the virtual evidence by adding the observationZ = z to the
evidence, we can easily compute the answers to queries in
the belief network. For example, the probability that there
is a burglary at Mr. Holmes’ house is nowPr(b | z) ≈
3.85× 10−4.

4 Comparing the Revision Methods
From the illustrations of the two belief revision methods, Jef-
frey’s rule and Pearl’s method of virtual evidence, we can see
that a belief revision method can be broken into two parts: a
formal method of specifying uncertain evidence, and a prin-
ciple of belief revision that commits to a unique distribution
among many which satisfy the uncertain evidence.

4.1 Pearl’s method and Probability Kinematics
We now show that Pearl’s method, like Jeffrey’s rule, also
obeys the principle of probability kinematics; what they differ
in is how uncertain evidence is specified.

Suppose that a probability distributionPr was revised us-
ing the method of virtual evidence, with likelihood ratios
λ1, . . . , λn bearing on eventsγ1, . . . , γn, obtaining the new
distributionPr(· | η). We can easily see that the revision sat-
isfies the principle of probability kinematics, i.e. Equation 1:

Pr(α | γi, η) =
Pr(α, γi | η)
Pr(γi | η)

=
Pr(α, γi) λi∑

j
Pr(γj)λj

Pr(γi) λi∑
j
Pr(γj)λj



=
Pr(α, γi)
Pr(γi)

= Pr(α | γi).

Therefore, both Jeffrey’s rule and Pearl’s method uses the
principle of probability kinematics for belief revision.

4.2 From Pearl’s Method to Jeffrey’s Rule
With the previous result, we now show how we can easily
translate between the two methods of specifying uncertain
evidence. For example, to translate from Pearl’s method to
Jeffrey’s rule, we note that the new probabilities of events
γ1, . . . , γn after applying virtual evidence, with likelihood ra-
tiosλ1, . . . , λn, are given by:

Pr(γi | η) =
∑

ω|=γi

Pr(ω | η)

=
∑

ω|=γi

Pr(ω)
λi∑

j Pr(γj)λj

= Pr(γi)
λi∑

j Pr(γj)λj
.

Suppose instead that we want to revise the distributionPr
using Jeffrey’s rule, assuming that after accepting uncertain
evidence, the probability ofγi becomes:

qi = Pr(γi)
λi∑

j Pr(γj)λj
.

Substituting the above probabilityqi in Jeffrey’s rule (Equa-
tion 2), we get:

Pr ′(ω) = Pr(ω)
Pr(γi) λi∑

j
Pr(γj)λj

Pr(γi)

= Pr(ω)
λi∑

j Pr(γj)λj
, if ω |= γi,

which is exactly the distribution obtained by the method of
virtual evidence (Equation 4). We now illustrate this transla-
tion by revisiting Example 2.

Example 3 In Example 2, we applied the method of virtual
evidence onPr , by specifying the virtual evidence:Pr(η |
a) : Pr(η | a) = λa : λa = 4 : 1. The original prob-
abilities of a and a are given by: Pr(a) = .010094, and
Pr(a) = .989906. After applying the virtual evidence, the
new probabilities ofa anda are given by:

Pr(a | η) = Pr(a)
λa

Pr(a)λa + Pr(a)λa
≈ .039189;

Pr(a | η) = Pr(a)
λa

Pr(a)λa + Pr(a)λa
≈ .960811.

Alternatively, we can apply Jeffrey’s rule to obtain the new
distribution Pr ′ such thatPr ′(a) = Pr(a | η) ≈ .039189
and Pr ′(a) = Pr(a | η) ≈ .960811, and Pr ′ will be the
same to the distributionPr(· | η) obtained by virtual evi-
dence.

4.3 From Jeffrey’s Rule to Pearl’s Method
We can also easily translate from Jeffrey’s rule to Pearl’s
method. The new probabilities of eventsγ1, . . . , γn after ap-
plying Jeffrey’s rule are given by:

Pr ′(γi) = qi.

Suppose instead that we want to revise the distributionPr
using Pearl’s method. We can do this by applying the method
of virtual evidence, with likelihood ratiosλ1, . . . , λn, such
that:

λ1 : . . . : λn =
q1

Pr(γ1)
: . . . :

qn

Pr(γn)
.

Therefore,λi = kqi/Pr(γi), wherek is a constant. Substi-
tutingλi in Pearl’s method (Equation 4), we get:

Pr(ω | η) = Pr(ω)
kqi

Pr(γi)∑
j Pr(γj)

kqj

Pr(γj)

= Pr(ω)
qi

Pr(γi)
, if ω |= γi,

which is exactly the distribution obtained by Jeffrey’s rule
(Equation 2). We now illustrate this translation by revisiting
Example 1.

Example 4 In Example 1, we applied Jeffrey’s rule on the
original distributionPr to obtain new distributionPr ′. We
can also do this by applying the method of virtual evidence.
We can interpret the inspection of the cloth by candlelight as
virtual evidenceη, wherePr(η | cg) : Pr(η | cb) : Pr(η |
cv) = λg : λb : λv = 7 : 2.5 : .375.1 The probability
distribution of the color of the cloth after applying virtual
evidence is therefore given by:

Pr(cg | η) =
Pr(cg)λg

Pr(cg)λg + Pr(cb)λb + Pr(cv)λv
= .7;

Pr(cb | η) =
Pr(cb)λb

Pr(cg)λg + Pr(cb)λb + Pr(cv)λv
= .25;

Pr(cv | η) =
Pr(cv)λv

Pr(cg)λg + Pr(cb)λb + Pr(cv)λv
= .05.

We can easily verify that this probability distributionPr(· |
η) obtained by virtual evidence is the same as the distribution
Pr ′ obtained by Jeffrey’s rule.

5 Interpreting Evidential Statements
The evidence specification protocols adopted by Jeffrey’s rule
and Pearl’s method have been discussed by Pearl[2001], in
relation to the problem of formally interpreting evidential
statements. Consider the following statement as an example:

Looking at this evidence, I am willing to bet 2:1
that David is not the killer.

This statement can be formally interpreted using either pro-
tocol. For example, ifα denotes the event “David is not the
killer,” this statement can be interpreted in two ways:

1Theλ’s are chosen such thatλi = kPr ′(ci)/Pr(ci), wherek
is a constant.



1. After accepting the evidence, the probability that David
is not the killer becomes twice the probability that David
is the killer:Pr ′(α) = 2/3 andPr ′(α) = 1/3.

2. The probability that I will see this evidenceη given that
David is not the killer is twice the probability that I will
see it given that David is the killer:Pr(η | α) : Pr(η |
α) = 2 : 1.

The first interpretation translates directly into a formal piece
of evidence, Jeffrey’s style, and can be characterized as an
“All things considered” interpretation since it is a statement
about the agent’s final beliefs, which are a function of both
his prior beliefs and the evidence[Pearl, 2001]. On the other
hand, the second interpretation translates directly into a for-
mal piece of evidence, Pearl’s style, and can be character-
ized as a “Nothing else considered” interpretation since it is
a statement about the evidence only[Pearl, 2001].

The two interpretations can lead to contradictory conclu-
sions about the evidence. For example, if we use the “Nothing
else considered” approach to interpret our statement, we will
conclude that the evidence is against David being the killer.
However, if we use the “All things considered” interpretation,
it is not clear whether the evidence is for or against, unless
we know the original probability that David is the killer. If,
for example, David is one of four suspects who are equally
likely to be the killer, then originally we have:Pr(α) = 3/4.
Therefore, this evidence has actually increased the probabil-
ity that David is the killer! Because of this, Pearl argues for
the “Nothing else considered” interpretation, as it provides
a summary of the evidence and the evidence alone, and dis-
cusses how people tend to use betting odds to quantify their
beliefs even when they are based on the evidence only[Pearl,
2001].

Example 2 provides another opportunity to illustrate the
subtlety involved in interpreting evidential statements. The
evidential statement in this case is “Mr. Holmes concludes
that there is an 80% chance that Mrs. Gibbons did hear
the alarm going off.” Interpreting this statement using the
“All things considered” approach gives us the conclusion that
Pr ′(a) : Pr ′(a) = 4 : 1, wherea denotes the event that the
alarm has gone off. This interpretation assumes that the4 : 1
ratio applies to the posterior belief ina, after Mr. Holmes
has accommodated the evidence provided by Mrs. Gibson.
However, in Example 2, this statement was given a “Noth-
ing else considered” interpretation, as by Pearl[1988, Page
44-47], where the4 : 1 ratio is taken as a quantification of
the evidence strength. That is, the statement is interpreted
asPr(η | a) : Pr(η | a) = 4 : 1, whereη stands for the
evidence. In fact, the two interpretations will lead to two dif-
ferent probability distributions and, hence, give us different
answers to further probabilistic queries. For example, if we
use the “All things considered” approach in interpreting this
evidential statement, the probability of having a burglary will
bePr ′(b) = 7.53×10−3, which is much larger than the prob-
ability we get using the “Nothing else considered” approach
in Example 2, which is3.85× 10−4.

From the discussions above, the formal interpretation of
evidential statements appears to be a non–trivial task, which
can be sensitive to context and communication protocols. Re-

gardless of how this is accomplished though, we need to
stress that the process of mapping an informal evidential
statement into a revised probability distribution involves three
distinct elements:

1. One must adopt a formal method for specifying evi-
dence, such as Jeffrey’s rule or Pearl’s method.

2. One must interpret the informal evidential statement, by
translating it into a formal piece of evidence, using either
the “All things considered” or “Nothing else considered”
interpretation.

3. One must apply a revision, by mapping the original
probability distribution and formal piece of evidence
into a new distribution.

Our main point here is that Jeffrey’s rule and Pearl’s method
employs the same belief revision principle, i.e. probability
kinematics. Moreover, although they adopt different, formal
methods for specifying evidence, one can translate between
the two methods of specification. Finally, one may take the
view that Jeffrey’s rule and Pearl’s method constitute com-
mitments to how informal evidential statements should be in-
terpreted, making the first and second elements the same, but
we do not take this view here. Instead, we regard the issue of
interpretation as a third, orthogonal dimension which is best
addressed independently.

6 Commutativity of Iterated Revisions
We now discuss the problem of commutativity of iterated re-
visions, that is, whether the order in which we incorporate
uncertain evidence matters.2

It is well known that iterated revisions by Jeffrey’s rule are
not commutative[Diaconis & Zabell, 1982]. As a simple ex-
ample, assume that we are given a piece of uncertain evidence
which suggests that the probability of eventα is .7, followed
by another piece of uncertain evidence which suggests that
the probability ofα is .8. After incorporating both pieces
in that order, we will believe that the probability ofα is .8.
However, if the opposite order of revision is employed, we
will believe that this probability is.7. In general, even if we
are given pieces of uncertain evidence on different events, it-
erated revisions by Jeffrey’s rule are not commutative.

This was viewed as a problematic aspect of Jeffrey’s rule
for a long time, until clarified recently by Wagner[2002].
First, Wagner observed and stressed that the evidence spec-
ification method adopted by Jeffrey is suitable for the “All
things considered” interpretation of evidential statements.
Moreover, he argued convincingly that when evidential state-
ments carry this interpretation, they must not be commutative
to start with. So the lack of commutativity is not a problem
of the revision method, but a property of the method used to
specify evidence. In fact, Wagner suggested a third method
for specifying evidence based on Bayes factors[Good, 1950;

2There is a key distinction between iterated revisions using cer-
tain evidence versus uncertain evidence. In the former case, pieces
of evidence may be logically inconsistent, which adds another di-
mension of complexity to the problem[Darwiche & Pearl, 1997],
leading to different properties and treatments.



1983; Jeffrey, 1992], which leads to commutativity. Specif-
ically, if Pr andPr ′ are two probability distributions, and
γi andγj are two events, theBayes factor(or odds factor),
FPr ′,Pr (γi : γj), is defined as the ratio of new-to-old odds:

FPr ′,Pr (γi : γj)
def
=

Pr ′(γi)/Pr ′(γj)
Pr(γi)/Pr(γj)

.

Given this notion, one can specify uncertain evidence on a
set of mutually exclusive and exhaustive eventsγ1, . . . , γn

by specifying the Bayes factor for every pair of eventsγi and
γj . One interesting property of this method of specification
is that Bayes factors do not constrain the probability distribu-
tion Pr , i.e., any evidence specified in this way is compatible
with every distributionPr .3 Hence, they are suitable for a
“Nothing else considered” interpretation of evidential state-
ments.

Interestingly enough, Wagner[2002] showed that when
evidence is specified using Bayes factors and revisions are
accomplished by probability kinematics, belief revision be-
comes commutative.4 This was an illustration that Jeffrey’s
rule is indeed composed of two independent elements: an ev-
idence specification method, and a revision method.

In fact, we now show that the evidence specification
method adopted by Pearl’s method corresponds to the method
of specifying evidence by Bayes factors. This has a number
of implications. First, it shows that revisions by the virtual
evidence method are commutative. Second, it provides an
alternate, more classical, semantics for the virtual evidence
method. Finally, it shows again that Jeffrey’s rule and Pearl’s
method both revise distributions using probability kinemat-
ics.

Specifically, suppose that we revise a probability distribu-
tion Pr using the method of virtual evidence, with likelihood
ratiosλ1, . . . , λn bearing on eventsγ1, . . . , γn, and suppose
that we get distributionPr ′ as a result. We then have:

FPr ′,Pr (γi : γj) =
Pr ′(γi)/Pr ′(γj)
Pr(γi)/Pr(γj)

=

Pr(γi)λi/(
∑

k
Pr(γk)λk)

Pr(γj)λj/(
∑

k
Pr(γk)λk)

Pr(γi)
Pr(γj)

=
λi

λj
.

That is, if we specify evidence by Bayes factorλi/λj for ev-
ery pair of eventsγi andγj , and then revise distributionPr
using probability kinematics, we obtain the same distribution
that arises from applying the virtual evidence method.

3This is not true if we use ratios of probabilities instead of ratios
of odds. For example, ifPr ′(α) = 2Pr(α), we must havePr(α) ≤
.5 becausePr ′(α) ≤ 1 [Wagner, 2002].

4Wagner shows not only that the representation of uncertain ev-
idence using Bayes factors is sufficient for commutativity, but in a
large number of cases, necessary.

7 Bounding Belief Change Induced by
Probability Kinematics

One important question relating to belief revision is that of
measuring the extent to which a revision disturbs existing
beliefs. We have recently proposed a distance measure de-
fined between two probability distributions which can be used
to bound the amount of belief change induced by a revision
[Chan & Darwiche, 2002]. We review this measure next and
then use it to provide some guarantees on any revision which
is based on probability kinematics.5

Definition 1 [Chan & Darwiche, 2002] Let Pr andPr ′ be
two probability distributions over the same set of worldsω.
We define a measureD(Pr ,Pr ′) as follows:

D(Pr ,Pr ′)
def
= ln max

ω

Pr ′(ω)
Pr(ω)

− lnmin
ω

Pr ′(ω)
Pr(ω)

,

where0/0 is defined as 1.

This distance measure can also be expressed using the Bayes
factor:

D(Pr ,Pr ′) = ln max
ωi,ωj

FPr ′,Pr (ωi : ωj).

This measure satisfies the three properties of distance: posi-
tiveness, symmetry, and the triangle inequality. It is useful to
compute this distance measure between two probability dis-
tributions as it allows us to bound the difference in beliefs
captured by them.

Theorem 1 [Chan & Darwiche, 2002] Let Pr and Pr ′ be
two probability distributions over the same set of worlds. Let
α andβ be two events. We then have:

e−D(Pr ,Pr ′) ≤ O′(α | β)
O(α | β)

≤ eD(Pr ,Pr ′),

whereO(α | β) = Pr(α | β)/Pr(α | β) is the odds of
eventα givenβ with respect toPr , andO′(α | β) = Pr ′(α |
β)/Pr ′(α | β) is the odds of eventα givenβ with respect to
Pr ′.6 The bound is tight in the sense that for every pair of
distributionsPr andPr ′, there are eventsα andβ such that:

O′(α | β)
O(α | β)

= eD(Pr ,Pr ′);
O′(α | β)
O(α | β)

= e−D(Pr ,Pr ′).

According to Theorem 1, if we are able to compute the dis-
tance measure between the original and revised distributions,
we can get a tight bound on the new belief in any conditional
event given our original belief in that event. The following
theorem computes this distance measure for belief revision
methods based on probability kinematics.

5The results in this section are reformulations of previous results
[Chan & Darwiche, 2002], and are inspired by a new understand-
ing of Jeffrey’s rule and Pearl’s method as two specific instances of
revision based on probability kinematics, and the understanding of
Pearl’s method in terms of Bayes factors.

6Of course, we must havePr(β) 6= 0 andPr ′(β) 6= 0 for the
odds to be defined.



Theorem 2 If Pr ′ comes fromPr by probability kinematics
on γ1, . . . , γn, the distance measure betweenPr andPr ′ is
given by:

D(Pr ,Pr ′) = ln max
i

Pr ′(γi)
Pr(γi)

− lnmin
i

Pr ′(γi)
Pr(γi)

.

Theorem 2 allows us to compute the distance measure for
revisions based on Jeffrey’s rule and virtual evidence.

Corollary 1 If Pr ′ comes fromPr by applying Jeffrey’s rule
on γ1, . . . , γn, with posterior probabilitiesq1, . . . , qn, the
distance measure betweenPr andPr ′ is given by:

D(Pr ,Pr ′) = lnmax
i

qi

Pr(γi)
− lnmin

i

qi

Pr(γi)
.

Corollary 2 If Pr ′ comes fromPr by applying the method
of virtual evidence, with likelihood ratiosλ1, . . . , λn bearing
on γ1, . . . , γn, the distance measure betweenPr andPr ′ is
given by:

D(Pr ,Pr ′) = lnmax
i

λi − lnmin
i

λi.

The importance of Corollaries 1 and 2 is that we can com-
pute the distance measure easily in both cases. For Jef-
frey’s rule, we can compute the distance measure by knowing
only the prior and posterior probabilities of eventsγ1, . . . , γn.
For Pearl’s method, we can compute the distance measure
by knowing only the likelihood ratiosλ1, . . . , λn. For both
cases, the distance measure can be computed in constant time
from the uncertain evidence, and we can guarantee a bound
on the belief change due to the revision principle of probabil-
ity kinematics, without explicitly knowing the revised proba-
bility distribution.

We close this section by showing that the principle of prob-
ability kinematics is optimal in a very precise sense: it com-
mits to a probability distribution that minimizes our distance
measure.

Theorem 3 If Pr ′ comes fromPr by probability kinematics
onγ1, . . . , γn, it is optimal in the following sense. Among all
possible distributions that agree withPr ′ on the probabilities
of eventsγ1, . . . , γn, Pr ′ is the closest toPr according to the
distance measure given by Definition 1.

8 Conclusion
In this paper, we analyzed two main methods for revising
probability distributions given uncertain evidence: Jeffrey’s
rule and Pearl’s method of virtual evidence. We showed that
the two methods use the same belief revision principle, i.e.
probability kinematics, with their difference being only in the
manner in which they specify uncertain evidence, and showed
how to translate between the two methods for specifying evi-
dence. We also discussed the much debated problem of inter-
preting evidential statements. Moreover, we showed that the
method of virtual evidence can be reformulated in terms of
Bayes factors, which implies a number of results, including
the commutativity of revisions based on this method. Finally,
we showed that revisions based on probability kinematics are
optimal in a very specific way, and pointed to a distance mea-
sure for bounding belief change triggered by any revision
based on probability kinematics. Our bounds included Jef-
frey’s rule and Pearl’s method as special cases.
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