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Abstract way uncertain evidence is specified. Jeffrey requires uncer-
tain evidence to be specified in terms of #féectit has on
beliefs once accepted, which is a function of both evidence
strength and beliefs held before the evidence is obtained.
Pearl, on the other hand, requires uncertain evidence to be
specified in terms of itstrengthonly. Despite this differ-
ence, we show that one can easily translate between the two
methods of specifying evidence and provide the method for
carrying out this translation.

The multiplicity of methods for specifying evidence also
raises an important question: How should informal state-
ments about evidence be captured formally using available
methods? For example, what should the following statement
translate to: “Seeing these clouds, | believe there is an 80%
chance that it will rain?” We will discuss this problem of
1 Introduction interpreting informal evidential statements in a separate sec-

. . . .. .. tion.
We consider in this paper the problem of revising beliefs . . . . .
pap P g %As to the question of iterated belief revision: It is well

given uncertain evidence, where beliefs are represented usin )

a probability distribution. There are two main methods forKown that Jeffrey's rule does not commute; hence, the or-
revising probabilistic beliefs in this case. The first method isd€r in which evidence is incorporated mattéiaconis &
known asleffrey’s ruleand is based on the principlepioba- ~ 2abell, 1982. This has long been perceived as a problem,
bility kinematicswhich can be viewed as a principle for min- Until clarified recently by the work of Wagner who observed
imizing belief changdJeffrey, 1965 The second method is that Jeffrey’s method of specifying evidence is dependent on
calledvirtual evidenceand is proposed by Pearl in the context What is believed before the evidence is obtained and, hence,
of belief networks—even though it can be easily generalizeghould not be commutative to start withVagner, 200P

to arbitrary probability distributions—and is based on reduc-"/agner proposed a method for specifying evidence, based
ing uncertain evidence into certain evidence on some virtug?" the notion ofBayes factorand argued that this method
event[Pearl, 1988 We analyze both of these methods in this specifies only the strength of evidence, and is independent of

We revisit the problem of revising probabilistic be-
liefs using uncertain evidence, and report results on
four major issues relating to this problem: How
to specify uncertain evidence? How to revise a
distribution? Should, and do, iterated belief revi-
sions commute? And how to provide guarantees on
the amount of belief change induced by a revision?
Our discussion is focused on two main methods for
probabilistic revision: Jeffrey’s rule of probability
kinematics and Pearl’'s method of virtual evidence,
where we analyze and unify these methods from the
perspective of the questions posed above.

paper with respect to the following four questions: the beliefs held when attaining evidence. Wagner argued that

) . . when evidence is specified in that particular way, iterated re-

1. How should one specify uncertain evidence? visions should commute. He even showed that combining this
2. How should one revise a probability distribution? method for specifying evidence with the principle of proba-

3. Should, and do, iterated belief revisions commute? ~ Pility kinematics leads to a revision rule that commutes. We
' ' _actually show that Pearl’s method of virtual evidence is speci-
4. What guarantees can be offered on the amount of beliefing evidence according to Bayes factor, exactly as proposed
change induced by a particular revision? by Wagner and, hence, corresponds exactly to the proposal he
Our main findings can be summarized as follows. First, wecalls for. Therefore, the results we discuss in this paper unify
show that Jeffrey’s rule and Pearl’s method both revise bethe two main methods for probabilistic belief revision pro-
liefs using the principle of probability kinematics; Jeffrey’s posed by Jeffrey and Pearl, and show that differences between
rule explicitly commits to this principle, while Pearl’s method them amount to a difference in the protocol for specifying un-
is based on a different principle, yet we show that Pearl’scertain evidence.
method implies the principle of probability kinematics, lead- Our last set of results relate to the problem of providing
ing to the same revision method as that of Jeffrey’s. The dif-guarantees on the amount of belief change induced by a re-
ference between Jeffrey’s rule and Pearl’'s method is in theision. We have recently proposed a distance measure for



bounding belief changes, and showed how one can use it Ywban: Prw) 55

to provide such guarante¢€han & Darwiche, 200R We = 4
show in this paper how this distance measure can be com- > Pr(w)
puted when one distribution is obtained from another using — wEoy:
the principle of probability kinematics. We then show how Pr(vi)
the guarantees provided by this measure can be realized when Pr(a,v;)
applying either Jeffrey’s rule or Pearl's method, since they = W
both are performing revision based on the principle of proba- !
bility kinematics. = Pria]).
- . . Therefore, for any event, its probability under the new dis-

2 Probability Kinematics and Jeffrey’s Rule tribution Pr' is: y P y
Suppose that we have two probability distributiaRs and , , ,
Pr" which disagree on the probabilities they assign to a set of Pri(a) = Z Pria| vi) Pri(vi)
mutually exclusive and exhaustive events. .., v,, yet: i

Pr(ac| %) = Pr'(a | %), (1) = > Prlalma
fori = 1,...,n, and for every event in the probability ‘ Pr(a,v)
space. We say here thBt” is obtained fromPr by probabil- — Z g i)
ity kinematicson vy, ...,v,. This concept was proposed by 2 Pr(v:)

Jeffrey[1969 to capture the notion that even though and o
Pr’ disagree on the probabilities of events they agree on which is the cl_osed form for Jeffrey’s rule. We now show an
their relevance to every other event example of using Jeffrey’s rule.

Consider now the problem of revising a probability distri-
bution Pr given uncertain evidence relating to a set of mutu-
ally exclusive and exhaustive events ... ., v,. One method
of specifying uncertain evidence is through #féectthat it
would have on beliefs once accepted. That is, we can say th
the evidence is such that the probabilityypbecomeg; once
the evidence is accepted. If we adopt this method of evidence Pr(s,cy) = .12, Pr(s,c) =.12, Pr(s,c,) = .32,
specification, we conclude that thereoisly onedistribution Pr(s,cy) = .18, Pr(3,¢,) =.18, Pr(s,c,) = .08.
Pr’ such that:

o Pri(yi)=¢qifori=1,...,n.

Example 1 (Due to Jeffrey) Assume that we are given a
piece of cloth, where its color can be one of: greey),(blue
(cp), or violet (c,). We want to know whether, in the next day,
the cloth will be sold £), or not sold §). Our original state
2k belief is given by the distributioRr:

Therefore, our original state of belief on the color of the cloth
. i o . (cg,cp,cy) is given by the distributior{.3,.3,.4). Assume
e Pr’is obtained fromPr by probability kinematics on  that we now inspect the cloth by candlelight, and we want

Vs I to revise our state of belief on the color of the cloth to the
Moreover, this specific distribution is given by: new distribution(.7, .25, .05) using Jeffrey’s rule. If we apply
, def i ) Jeffrey’s rule (Equation 2), we get the new distributiBr’:
Pr'(w) = Pr(w) , ifwkEv, 2
Pr(v:) Pr'(s,cq) = .28, Pr'(s,c) =.10, Pr'(s,c,) = .04,
wherew is an atomic event, also known as a world, anads Pr'(s,cy) = 42, Pr'(s,¢) = .15, Pr'(s,c,) = .01

the logical entailment relationship. This is exactly the distri-

bution that Jeffrey suggests and, hence, this method of re3  Virtual Evidence and Pearl’s Method

vision is known asleffrey’s rule We stress here that we - S

are drawing a distinction between the principle of probabil-1 N€ Problem of revising a probability distribution under un-

ity kinematics and Jeffrey’s rule, which are often considered-€"t@in evidence can be approached from a different perspec-

synonymous. Specifically, Jeffrey’s rule arises from a comJlive than that of probability kinematics. Specifically, when we

bination of two proposals: (1) the principle of probability have uncertain evidence about some mutually exclusive and

kinematics, and (2) the specification of uncertain evidence u€xhaustive events,, ..., v,, we can interpret that evidence
ing a posterior distribution. It is possible for one to combine@Shard evidencen somevirtual event), where the relevance

the principle of probability kinematics with other methods for ©f 71 - - - » 7 t0 77 iS uncertain. Itis assumed that the virtual

specifying evidence as we discuss later. eventy depends only on the evenis, ..., and, therefore,
It is not hard to show that the above distributigh” IS independent of any other evengiven;:
is indeed obtained fronPr by probability kinematics on
Y1y, 7n, as it satisfies Equa){iopn 1; g Prin | i) = Prn| 7). (3)
. Pr' (o, i) According to this a_pproach, the uncer_taint_y regarding evi-
Pri(a | v:) “Pri() dence onyy, ..., y, IS recast as uncertainty in the relevance
() of v1,...,v, to the virtual event). Specifically, the uncer-
Zw|=a,'yi Pr'(w) tainty is recast as the likelihood ef given virtual evidence

4 n: Pr(n|v),fori=1,... ,n.



We next show that the new distribution obtained after ac-The uncertainty of evidence is quantified by the likelihood ra-
cepting the uncertain evidence on ..., v, Pr(- | n), is: tios: Pr(z|y1):...: Pr(z | yn) = A1 :...: Ay, Which are
A\, specified in the CPT of variablg. Finally, we incorporate
i , fwE~, (4) thepresence of the virtual evenby adding the observation
Zj Pr(vj)A; Z = z to the rest of evidence in the belief network. We now
show a simple example.

Pr(w|n) = Pr(w)

whereq, ..., A, are ratios chosen such that:
Example 2 (Due to Pearl) We are given a belief network

Mt An = Pr(n o) Prin | am)- with tvF\)/o va(riables:A rep)resents W%ether the alarm of Mr.
Hence, the specific likelihoodBr(n | ;) are not important Holmes’ house goes off, anfd represents whether there is
here, but their ratios are. This is why this method usuallya burglary. To represent the influence between the two vari-
specifies uncertain evidence using a set of likelihood ratiosibles, there is a directed edde — A. The CPTs ofd and
M,..., A, [Pearl, 1988 The derivation of Equation 4 is B are given by:Pr(a | b) = .95, meaning the alarm goes off
based on the assumptions underlying the method of virtuaf there is a burglary with probability95; Pr(a | b) = .01,

evidence given by Equation 3: meaning the alarm goes off if there is no burglary with prob-
Pr(w,n) ability .01; and Pr(b) = 10~*, meaning on any given day,
Priwl|n) = —~=* there is a burglary on any given house with probability*.
Pr(n) One day, Mr. Holmes’ receives a call from his neighbor,
Pr(n|w)Pr(w) Mrs. Gibbons, saying she may have heard the alarm of his
Zj Pr(n | v;)Pr(v;) house going off. Since Mrs. Gibbons suffers from a hearing
problem, Mr. Holmes concludes that there is an 80% chance
Pr(n | ~i,w) Pr(w) that Mrs. Gibbons did hear the alarm going off. According
2o Prn | v)Pr(vy) to the method of virtual evidence, this uncertain evidence can
Pr(n | v)Pr(w) be specified by the virtual eventand the likelihood ratio:
S Pr(y | 7,)Pr(7;) Pr(n|a): Pr(n|a) =4 : 1. Toincorporate the virtual
A N PERANY evidence into the belief network, we add the variakjend
— Pr(w) i if w = the directed edgel — Z, and specify the CPT df such tha_tt
> Pr(vi)A,’ i Pr(z|a): Pr(z|a) =4 :1. For example, we can assign

_ _ Pr(z | a) = 4and Pr(z | @) = .1. After incorporating
The last step is based dr(n | ;) = k);, wherek isa  the virtual evidence by adding the observatién= » to the
constant. For any eveant, the new probability after accom- evidence, we can easily compute the answers to queries in

modating the virtual evidence is: the belief network. For example, the probability that there
is a burglary at Mr. Holmes’ house is noWr(b | z) =~
Pr(aln) = > Prla,|n) 3.85 x 10,
i
— ZMW,W# 4 Comparing the Revision Methods
i 225 2 Priv;) From the illustrations of the two belief revision methods, Jef-
> hiPr(o, ) frey’s rule and Pearl’s method of virtual evidence, we can see
= SN Pr(v;) that a belief revision method can be broken into two parts: a
o 379 ! formal method of specifying uncertain evidence, and a prin-
which is the closed form for Pearl’s method. ciple of belief revision that commits to a unique distribution

The above revision method is a generalization of theamong many which satisfy the uncertain evidence.
method of virtual evidence proposed by P44889 in the o _
context of belief networks. A belief network is a graphi- 4.1 Pearl’s method and Probability Kinematics

cal probabilistic model, composed of two parts: a directedye now show that Pearl’s method, like Jeffrey’s rule, also

acyclic graph where nodes represent variables, and a set gheys the principle of probability kinematics; what they differ
conditional probability tables (CPTs), one for each variablejn js how uncertain evidence is specified.

[Pearl, 1988; Jensen, 2Q01The CPT for variableX' with Suppose that a probability distributidfr was revised us-
parentsU defines a set of conditional probabilities of the jng the method of virtual evidence, with likelihood ratios
form Pr(z | u), wherex is a value of variableX, andu /7 '\ pearing on events,,...,~,, obtaining the new

is an instantiation of paren®s. Suppose now that we have (jstribution Pr(- | ). We can easily see that the revision sat-

some virtual evidence bearing on variablewhich has val-  isfies the principle of probability kinematics, i.e. Equation 1:
uesyi,...,yn. Thisvirtual evidence is represented in the be-

lief network by adding a dummy nodg and a directed edge Pr(a,v; | n)

Y — Z, where one value of, sayz, corresponds to the vir- Pr(a|ni,n) = Pr(v; | 1)

tual event). This ensures the assumption of Equation 3, that s
virtual eventz is independent of every other evengiven ev- Pr(e, ) S Pr(n
eryy;, i.e., Pr(z | y;,a) = Pr(z | y;), which follows from = i =

the independence semantics of belief netwdPearl, 1988 2 Pr?w)&-



Pr(a, ) 4.3 From Jeffrey’s Rule to Pearl’s Method

Pr(v:) We can also easily translate from Jeffrey’s rule to Pearl’s
= Pr(a]| ). method. The new probabilities of events . .. , v, after ap-
lying Jeffrey’s rule are given by:
Therefore, both Jeffrey’s rule and Pearl's method uses thgy g y g y
principle of probability kinematics for belief revision. Pr'(v;) = q;-
4.2 From Pearl’'s Method to Jeffrey’s Rule Suppose instead that we want to revise the distribuffon
using Pearl’s method. We can do this by applying the method

With the previous result, we now show how we can easily,¢ i al evidence, with likelihood ratio, . . .., \,, such
translate between the two methods of specifying uncertaig, ..

evidence. For example, to translate from Pearl’s method to g . dn

Jeffrey’s rule, we note that the new probabilities of events Arioi A = Pr(v1) " Pr(y)’
gé’s /\ » af\ter :Pepgﬂlnegnvlljcyal evidence, with likelihood ra- Therefore \; = kq;/Pr(v;), wherek is a constant. Substi-
Lo ' tuting \; in Pearl’s method (Equation 4), we get:
Pr(yi|n) = > Pr(w|n) s
wEyi Pr(w|n) = Pr(w) L T
S Py b 5, Privy) pis
= rwW) ="+
225 Pr(v)A - P Tt :
wE; /\J 3N r(w) Pr()’ w = i,
= PT(%)ZTE_))\_- which is exactly the distribution obtained by Jeffrey’s rule
i A (Equation 2). We now illustrate this translation by revisiting

Suppose instead that we want to revise the distribuffion Example 1.
using Jeffrey’s rule, assuming that after accepting uncertaifExample 4 In Example 1, we applied Jeffrey’s rule on the

evidence, the probability of; becomes: original distribution Pr to obtain new distributionPr’. We
) can also do this by applying the method of virtual evidence.
G = Pr(%)ﬁ. We can interpret the inspection of the cloth by candlelight as
225 Pr(vi)A; virtual evidencen, wherePr(n | ¢4) : Pq(n | ) : Pr(7.7'|
Substituting the above probability in Jeffrey’s rule (Equa- €v) = Ag @ Ap + Ay = 7 : 2.5 : .375.° The probability
tion 2), we get: distribution of the color of the cloth after applying virtual
’ evidence is therefore given by:
P’"(’Yi)zlfii
Pr(vi)X; Pr(cg)A
! = 2 P = 98 =.T;
pPr (w) Pr(w) P'r(fyi) T(CQ | 77) PT’(CQ)/\g + PT‘(Cb)/\b + PT’(CU)/\U
)\7; . PT‘(Cb))\b
r(w) > Prvi)X;’ W r(es [) Pr(cg)A\g + Pr(cp) o + Pr(cy) g
which is exactly the distribution obtained by the method of py(. — Pr(co) = .05.
(co I m)
virtual evidence (Equation 4). We now illustrate this transla- Pr(cg)Ag + Pr(ce) Ao + Pr(cy) Ao

tion by revisiting Example 2. We can easily verify that this probability distributidfy(- |

Example 3 In Example 2, we applied the method of virtual n) obtained by virtual evidence is the same as the distribution
evidence onPr, by specifying the virtual evidence?r(n | Pr' obtained by Jeffrey’s rule.

a) : Pr(n | @) = Mo : A\g = 4 : 1. The original prob-

abilities of « and @ are given by: Pr(a) = .010094, and 5 Interpreting Evidential Statements

nP gv(va) r(?b é%éigl?t?g S .off\ fatﬁég [;rr)(leylr}\%let: % \{|rtual evidence, the The evidence specification protocols adopted by Jeffrey’s rule
P 9 y: and Pearl’'s method have been discussed by P2ad1, in

Aa relation to the problem of formally interpreting evidential
Pr(a|n) = Pr(a) Pr(a)\q + Pr(@)is ~ .039189; statements. Consider the following statement as an example:
_ _ g Looking at this evidence, | am willing to bet 2:1
Pr@lm = Pr@) gy P~ 6081 that David is not the killer.

This statement can be formally interpreted using either pro-
tocol. For example, ifx denotes the event “David is not the
killer,” this statement can be interpreted in two ways:

Alternatively, we can apply Jeffrey’s rule to obtain the new
distribution Pr’ such thatPr’(a) = Pr(a | n) ~ .039189
and Pr'(a) = Pr(a | n) ~ .960811, and Pr’ will be the
same to the distributiorPr(- | 7)) obtained by virtual evi- 'The \'s are chosen such that = kPr'(c;)/ Pr(c;), wherek
dence. is a constant.



1. After accepting the evidence, the probability that Davidgardless of how this is accomplished though, we need to
is not the killer becomes twice the probability that David stress that the process of mapping an informal evidential
is the killer: Pr'(a) = 2/3 and Pr' (@) = 1/3. statement into a revised probability distribution involves three

2. The probability that | will see this evideneggiven that distinct elements:

David is not the killer is twice the probability that | will 1. One must adopt a formal method for specifying evi-
see it given that David is the kille®r(n | ) : Pr(n | dence, such as Jeffrey’s rule or Pearl’s method.
@)=2:1 2. One must interpret the informal evidential statement, by

The first interpretation translates directly into a formal piece  translating itinto a formal piece of evidence, using either
of evidence, Jeffrey’s style, and can be characterized as an the “All things considered” or “Nothing else considered”
“All things considered” interpretation since it is a statement interpretation.
about the agent’s final beliefs, which are a function of both 3 one must a i ; P
o ; : . pply a revision, by mapping the original
his prior beliefs and the eviden¢Bearl, 200 On the other probability distribution and formal piece of evidence
hand, the second interpretation translates directly into a for- ; istribyti
: ; . into a new distribution.
mal piece of evidence, Pearl's style, and can be character- . . ) , ,
ized as a “Nothing else considered” interpretation since it i<OUr main point here is that Jeffrey’s rule and Pearl's method
a statement about the evidence ofiearl, 2001 employs the same belief revision principle, i.e. probability
The two interpretations can lead to contradictory concluXinématics. Moreover, although they adopt different, formal
sions about the evidence. For example, if we use the “Nothing:ethodS for specifying evidence, one can translate between
else considered” approach to interpret our statement, we wif’® two methods of specification. Finally, one may take the
conclude that the evidence is against David being the killerV/eW that Jeffrey’s rule and Pearl's method constitute com-
However, if we use the “All things considered” interpretation, Mitments to how informal evidential statements should be in-

it is not clear whether the evidence is for or against, unlesé€rpreted, making the first and second elements the same, but
we know the original probability that David is the killer. If, We do not take this view here. Instead, we regard the issue of
for example, David is one of four suspects who are equa||);nterpretat|c_)n as a third, orthogonal dimension which is best
likely to be the killer, then originally we havePr(a) = 3/4.  addressed independently.

Therefore, this evidence has actually increased the probabil-

ity that David is the killer! Because of this, Pearl argues for6  Commutativity of Iterated Revisions

the “Nothing else considered” interpretation, as it provide . . .
a summary of the evidence and the evidence alone, and digre "OW discuss the problem of commutativity of iterated re-
' fisions, that is, whether the order in which we incorporate

cusses how people tend to use betting odds to quantify thelr

beliefs even when they are based on the evidence[®agrl, uncgrtam evidence ma}tte%s. . ,
2001. It is well known that iterated revisions by Jeffrey’s rule are

Example 2 provides another opportunity to illustrate thenOt commutativdDiaconis & Zabell, 198P As a simple ex-

subtlety involved in interpreting evidential statements. Theample, assume that we are given a piece of uncertain evidence

) . LR S which suggests that the probability of evenis .7, followed
evidential statement in this case is “Mr. Holmes conclude ; . : .
that there is an 80% chance that Mrs. Gibbons did hea?” another piece of uncertain evidence which suggests that

: ” ; . : he probability ofa is .8. After incorporating both pieces
the alarm going off.” Interpreting this statement using the. . : - !
« : : " - : n that order, we will believe that the probability efis .8.
‘All things considered” approach gives us the conclusion tha o : R
Pr'(a) : Pr'(@) — 4 : 1, wherea denotes the event that the 1—|owever, if the opposite order of revision is employed, we

alarm has gone off. This interpretation assumes that the will believe that this probability is7. In general, even if we
ratio appliegs to thé posterior %elief in after Mr. Holmes &€ given pieces of uncertain evidence on different events, it-

has accommodated the evidence provided by Mrs. Gibsor%a.rate.d revisions by Jeffrey's rule are not commutative. ,
However, in Example 2, this statement was given a “Noth- This was viewed as a problematic aspect of Jeffrey’s rule

ing else considered” interpretation, as by P¢48i88, Page for & long time, until clarified recently by Wagng2003.

44-47, where thel : 1 ratio is taken as a quantification of First, Wagner observed and stressed that the evidence spec-

the evidence strength. That is, the statement is interpretecation method adopted by Jefirey is suitable for the "Al
. N things considered” interpretation of evidential statements.
asPr(n | a) : Pr(n | @) = 4 : 1, wheren stands for the Moreover, he argued convincingly that when evidential state-
evidence. In fact, the two interpretations will lead to two dif- Ver, Argu vincingly W Vi ' ;
ments carry this interpretation, they must not be commutative

ferent probability distributions and, hence, give us different

answers to further probabilistic queries. For example, if wel Start with. So the lack of commutativity is not a problem

“ : : " s : ._of the revision method, but a property of the method used to
use the “All things considered” approach in interpreting thisO! e . )
evidential statement, the probability of having a burglary will SPECiy évidence. In fact, Wagner suggested a third method
be Pr/(b) = 7.53x 10~2, which is much larger than the prob- for specifying evidence based on Bayes faci@sod, 1950;

.ab'“ty we get using t_he Nothln_g4else considered” approach 2There is a key distinction between iterated revisions using cer-
in Example 2’,Wh'Ch_'§'85 x 1077 . . tain evidence versus uncertain evidence. In the former case, pieces
From the discussions above, the formal interpretation obf evidence may be logically inconsistent, which adds another di-
evidential statements appears to be a non-trivial task, whichension of complexity to the problefibarwiche & Pearl, 19917

can be sensitive to context and communication protocols. Rdeading to different properties and treatments.



1983; Jeffrey, 1992 which leads to commutativity. Specif- 7 Bounding Belief Change Induced by
ically, if Pr and Pr’ are two probability distributions, and Probability Kinematics
~; and+~; are two events, thBayes factor(or odds factor),

Fpp pr(7i ), is defined as the ratio of new-to-old odds: One important question relating to belief revision is that of
' measuring the extent to which a revision disturbs existing

def Pr'(7)/Pr'(v;) beliefs. We have recently proposed a distance measure de-
Fprpr(vi i) = # fined between two probability distributions which can be used
r(i)/ Pr(v;) to bound the amount of belief change induced by a revision

Chan & Darwiche, 200R We review this measure next and
en use it to provide some guarantees on any revision which
is based on probability kinematiés.

Given this notion, one can specify uncertain evidence on

set of mutually exclusive and exhaustive evefis. .., ,

by specifying the Bayes factor for every pair of eventand

7v;. One interesting property of this method of specificationDefinition 1 [Chan & Darwiche, 200R Let Pr and Pr’ be

is that Bayes factors do not constrain the probability distributwo probability distributions over the same set of worlds

tion Pr, i.e., any evidence specified in this way is compatibleWe define a measui@(Pr, Pr') as follows:

with every distributionPr.2 Hence, they are suitable for a

“Nothing else considered” interpretation of evidential state- 1y p,. pr) 4 110 priw) o Priw)

ments. ’ w  Pr(w) w Pr(w)’
Interestingly enough, WagndéR00d showed that when

evidence is specified using Bayes factors and revisions a

accomplished by probability kinematics, belief revision be-This distance measure can also be expressed using the Bayes

comes commutativé. This was an illustration that Jeffrey’s factor:

rule is indeed composed of two independent elements: an ev-

idence specification method, and a revision method. D(Pr, Pr') = Inmax Fpy pr(w; : w;).

In fact, we now show that the evidence specification o
method adopted by Pearl's method corresponds to the methaddhis measure satisfies the three properties of distance: posi-
of specifying evidence by Bayes factors. This has a numbeliveness, symmetry, and the triangle inequality. It is useful to
of implications. First, it shows that revisions by the virtual compute this distance measure between two probability dis-
evidence method are commutative. Second, it provides affibutions as it allows us to bound the difference in beliefs
alternate, more classical, semantics for the virtual evidenceaptured by them.

method. Finally, it shows again that Jeffrey’s rule and Pearl’ . ,
method both revise distributions using probability kinemat_strvxr/]c?grrg?atiI[ig/hoﬁgtfbllj)t?orrvnvslcgveérztr?gpsla_lfrfep STE?QS VfIDOT i dbsé Lot

I)ghereO/O is defined as 1.

ics.
. . S and( be two events. We then have:
Specifically, suppose that we revise a probability distribu-" h
tion Pr using the method of virtual evidence, with likelihood _pprpry - O] B) _ pprpey
ratios\q,..., A\, bearing on eventsy,...,~,, and suppose € ’ = O(a | B) = T

that we get distributiorPr’ as a result. We then have:
whereO(a | 8) = Pr(a | 8)/Pr(a | B) is the odds of
_ Pr'(v;)/ Pr'(v;) eventu givens with respect taPr, andO’(a | 8) = Pr'(«a |
Fpopr(vitv) = Pr(v)/Pr(v;) B)/Pr'(a | B) is the odds of event given 3 with respect to
' ! Pr'% The bound is tight in the sense that for every pair of

Preoni/(, Privoie) M g y P

T k i distributions Pr and Pr’, there are events and 5 such that:
Pr(vj)As/ (3, Prve)Ar)

) % M = eD(PT’PTI)~ M = e_D(PT,PT/)
Y According to Theorem 1, if we are able to compute the dis-

tance measure between the original and revised distributions,

That is, if we specify evidence by Bayes factoy \; for ev- ~ We can geta tight bound on the new belief in any conditional
ery pair of events;; and;, and then revise distributiofr ~ €vent given our original belief in that event. The following
using probability kinematics, we obtain the same distributiontheorem computes this distance measure for belief revision
that arises from applying the virtual evidence method. methods based on probability kinematics.

- 5The results in this section are reformulations of previous results
3This is not true if we use ratios of probabilities instead of ratios[Chan & Darwiche, 200R and are inspired by a new understand-

of odds. For example, iPr’(a) = 2Pr(«a), we must havePr(a) < ing of Jeffrey’s rule and Pearl’s method as two specific instances of

.5 becausePr’(«) < 1 [Wagner, 200R revision based on probability kinematics, and the understanding of
“Wagner shows not only that the representation of uncertain evPearl’s method in terms of Bayes factors.

idence using Bayes factors is sufficient for commutativity, but in a  °Of course, we must havBr(8) # 0 and Pr’(3) # 0 for the

large number of cases, necessary. odds to be defined.
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