
An Exact Algorithm for Computing the Same-Decision Probability

Suming Chen and Arthur Choi and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
{suming,aychoi,darwiche}@cs.ucla.edu

Abstract

When using graphical models for decision making,
the presence of unobserved variables may hinder
our ability to reach the correct decision. A fun-
damental question here is whether or not one is
ready to make a decision (stopping criteria), and if
not, what additional observations should be made
in order to better prepare for a decision (selection
criteria). A recently introduced notion, the Same-
Decision Probability (SDP), has been shown to be
useful as both a stopping and a selection criteria.
This query has been shown to be highly intractable,
being PPPP–complete, and is exemplary of a class
of queries which correspond to the computation of
certain expectations. We propose the first exact al-
gorithm for computing the SDP in this paper, and
demonstrate its effectiveness on several real and
synthetic networks. We also present a new com-
plexity result for computing the SDP on models
with a Naive Bayes structure.

1 Introduction
When making any kind of decision under uncertainty, infor-
mation gathering is crucial. Consider for example a physician
who is examining an ill patient. The physician may perform
a few tests and then strongly believe that the patient is suffer-
ing from substance-abuse induced depression. However, by
not gathering more information in the form of further testing,
the doctor could unwittingly be making a grave misdiagnosis.
After all, 41% to 83% of patients being treated for psychiatric
disorders, including depression, have been misdiagnosed and
have an unresolved physical ailment that ranges from hy-
pothyroidism to cancer [Klonoff and Landrine, 1997]. If the
patient, say, was actually suffering from hypothyroidism, this
misdiagnosis could have been prevented quite easily if the
doctor had either checked the patient’s neck carefully or per-
formed a blood test. This example can also be seen as a warn-
ing to not make decisions that could easily change given some
new information (i.e., decisions that may not be robust).

This paper is dedicated to the computation of a new prob-
abilistic notion, called the Same-Decision Probability (SDP),
which is mainly concerned with quantifying the robustness

of a decision with respect to some hidden information. In-
tuitively, the SDP is the probability that one would make the
same decision, had one observed the values of some hidden
variables of interest.

The SDP is formulated in the context of probabilistic
graphical models, which have often been used to model a va-
riety of decision problems, e.g., in medical diagnosis [van der
Gaag and Coupé, 1999], troubleshooting [Heckerman et al.,
1995], and in classification [Friedman et al., 1997]. In these
applications, there is often some unobservable variable, such
as the state of a patient’s health. There are also often some
hidden variables which could influence our belief on this vari-
able of interest. Before making a decision, there are two fun-
damental questions. The first question is whether, given the
current observations, the decision maker is ready to commit
to a decision. We will refer to this as the stopping criteria
for making a decision.1 Assuming the stopping criteria is
not met, the second question is what additional observations
should be made before the decision maker is ready to make
a decision. This typically requires a selection criteria based
on some measure for quantifying an observation’s value of
information (VOI).

The literature contains a number of proposals for both stop-
ping and selection criteria. For stopping criteria, one may
commit to a decision once the belief about a certain event
crosses some threshold, as in [Pauker and Kassirer, 1980;
Lu and Przytula, 2006]. Alternatively, we may simply
perform as many observations as our budget allows, as in
[Greiner et al., 1996; Krause and Guestrin, 2009]. As for
selection criteria, different observations may have different
value of information (VOI) with respect to the decision we
are interested in making. The value of an observation may
depend upon how much it minimizes our expected uncer-
tainty about an event, or it may depend on how much it raises
the expected utility. Researchers have explored how to com-
pute myopic VOI [Dittmer and Jensen, 1997] as well as non-
myopic VOI [Heckerman et al., 1993; Krause and Guestrin,
2009]. Additionally, [Bilgic and Getoor, 2011] have devel-
oped the Value of Information Lattice (VOILA), a framework
in which all subsets of hidden variables are examined, and the

1[van der Gaag and Bodlaender, 2011] pose the STOP problem
that asks whether or not the present evidence gathered is sufficient
for diagnosis, or if there exists further relevant evidence that can and
should be gathered.

most cost-efficient subset of features can be found.
The Same-Decision Probability (SDP) has been introduced

recently and shown to be an effective stopping and selection
criteria [Darwiche and Choi, 2010; Chen et al., 2012]. The
SDP is defined as a measure of potential stability in a decision
given further observations of some set of hidden variables. In
short, the SDP is the probability that we would have made
the same decision, had we known the states of variables that
have not yet been observed. Compared to calculating a low
SDP, calculating a high SDP would indicate a higher degree
of readiness to make a decision, as the chances of the decision
changing post observation would be lower.

The SDP is hard to compute. For example, we show in
this paper that computing the SDP is NP–hard even in Naive
Bayes networks. In [Choi et al., 2012], computing the SDP
is shown to be generally PPPP–complete. The PPPP class
can be thought of as a counting variant of the NPPP class,
for which the MAP problem is complete [Park and Darwiche,
2004]. Non-myopic value of information (VOI) is a similar
query that is shown to be PPPP-complete as well in [Chen
et al., 2012]. These problems are not only closely related
in terms of complexity, but also, they both involve comput-
ing the expectation over some unobserved variables. Existing
algorithms for computing the non-myopic VOI are either ap-
proximate algorithms [Heckerman et al., 1993; Liao and Ji,
2008] or brute-force algorithms that are restricted to tree net-
works with few leaf variables [Krause and Guestrin, 2009].

The main contribution of this paper is in presenting the first
exact algorithm for computing the SDP, which is based on a
novel combination of branch-and-bound search with classical
inference techniques for graphical models. As non-myopic
VOI is in the same complexity class as SDP, our proposed al-
gorithm can then serve as an example for developing similar
exact algorithms for non-myopic VOI as well as other prob-
lems that are complete for PPPP.

This paper is structured as follows. Section 2 provides a
formal definition of the SDP and some background knowl-
edge. Section 3 presents our algorithm and discusses its com-
plexity. Section 4 exhibits empirical results. Section 5 closes
with some concluding remarks.

2 Background
We use standard notation for variables and their instantia-
tions, where variables are denoted by upper case letters X
and their instantiations by lower case letters x. Sets of vari-
ables are then denoted by bold upper case letters X and their
instantiations by bold lower case letters x.

We will consistently use X to denote all variables in our
model, E ⊆ X to denote evidence variables (i.e., observed
ones), and U ⊆ X to denote the set of all hidden variables
(i.e., unobserved ones). Hence, E ∩ U = ∅ and E ∪ U =
X. We will also use D ∈ U to denote a binary hypothesis
variable with states d and d, which is sometimes referred to
as the decision variable.

Given some evidence e, we assume that a decision will be
made depending on whether Pr(d | e) ≥ T , for some thresh-
old T . We are particularly interested in measuring the stabil-
ity of this decision with respect to the state of some variables

D Pr(D)
+ 0.3
− 0.7

D

H1 H2 H3E1

Figure 1: A Naive Bayes network (more CPTs in Table 1).

Table 1: Pr(H3 | D), Pr(E1 | D) and Pr(H2|D) are equal.
D H1 Pr(H1 | D)
+ + 0.80
+ − 0.20
− + 0.10
− − 0.90

D H2 Pr(H2 | D)
+ + 0.70
+ − 0.30
− + 0.30
− − 0.70

H ⊆ U \D, which are called query variables.
The Same-Decision Probability (SDP) is defined in [Dar-

wiche and Choi, 2010] for this purpose.
Definition 1. Given hypothesis variableD, evidence e, unob-
served variables H, and threshold T , suppose we are making
a decision that is confirmed by Pr(d | e) ≥ T . The same-
decision probability (SDP) is defined as

SDP (d,H, e, T) =
∑
h

[Pr(d | h, e) ≥ T]Pr(h | e) (1)

where [Pr(d | h, e) ≥ T] is an indicator function that = 1
when Pr(d | h, e) ≥ T and = 0 otherwise.

In other words, SDP is the probability that we would have
made the same decision had we known the variables H.

Consider the simple Naive Bayes network presented in Fig-
ure 1, which will serve as a running example through this
paper. We will make a decision here if Pr(d | e) ≥ T ,
where d is the event D = + and T is 0.50. For example,
we would make this decision under evidence E1 = +, since
Pr(D = + | E1 = +) ≥ 0.5. Our goal now is to quantify
the robustness of this decision with respect to hidden vari-
ables H = {H1, H2, H3}. That is, we wish to compute the
probability that we would still make the same decision after
having observed H.

Consider Table 2 which enumerates all possible instantia-
tions h. We see that in 5 of the 8 cases, Pr(d | h, e) ≥ 0.50.
We take the sum of the probability of those instantiations and
we find that SDP (d, {H1, H2, H3}, {E1}, 0.50) = 0.5395.
Hence, according to this example, there is a good chance that
we would make a different decision after having observed H.

Computing the SDP helps us in quantifying how ready we
are to make a decision, and can also help us decide which
variables to observe next. There is an in-depth discussion of
how SDP is useful as a stopping criteria and as a selection
criteria in [Chen et al., 2012]. In particular, the SDP is con-
trasted with classical notions such as entropy and value of
information and is shown to be a useful decision-making tool
that can quantify the robustness of a decision in ways that are
not evident when we consider beliefs and utilities alone.

3 Computing the SDP Exactly
Computing the SDP involves computing an expectation over
the hidden variables H. The naive brute-force algorithm

Table 2: Scenarios h for the network in Figure 1. The cases
where Pr(d | h, e) ≥ 0.5 are bolded.

H1 H1 H3 Pr(h | e) Pr(d | h, e)
+ + + 0.2005 0.977
+ + − 0.0945 0.888
+ − + 0.0945 0.888
+ − − 0.0605 0.595
− + + 0.0895 0.547
− + − 0.1155 0.181
− − + 0.1155 0.181
− − − 0.2295 0.039

Table 3: Weights of evidence for the attributes in Figure 1.
i whi whi

1 3.0 -2.17
2 1.22 -1.22
3 1.22 -1.22

would enumerate and check whether Pr(d | h, e) ≥ T for
all instantiations H. We now present an algorithm that can
save us the need to explore every possible instantiation of h.
To make the algorithm easier to understand, we will first de-
scribe how to compute the SDP in a Naive Bayes network,
which we also show to be NP–hard. We then generalize our
algorithm to arbitrary networks.

3.1 Computing the SDP in Naive Bayes Networks
We will find it more convenient to implement the test Pr(d |
h, e) ≥ T in the log-odds domain, where:

logO(d | h, e) = log
Pr(d | h, e)
Pr(d | h, e)

(2)

We then define the log-odds threshold as λ = log T
1−T and,

equivalently, test logO(d | h, e) ≥ λ.
In a Naive Bayes network with D as the class variable, H

and E as the leaf variables, and Q ⊆ H, the posterior log-
odds after observing a partial instantiation q = {h1, . . . , hj}
can be written as:

logO(d | q, e) = logO(d | e) +
j∑

i=1

whi (3)

where whi is the weight of evidence hi and defined as:

whi = log
Pr(hi | d, e)
Pr(hi | d, e)

(4)

The weight of evidence whi
is then the contribution of evi-

dence hi to the quantity logO(d | q, e) [Chan and Darwiche,
2003]. Note that all weights can be computed in time and
space linear in |H|. Table 3 depicts the weights of evidence
for the network in Figure 1.

One can then compute the SDP by enumerating the in-
stantiations of variables H and then using Equation 3 to test
whether logO(d | h, e) ≥ λ. Figure 2 depicts a search tree
for the Naive Bayes network in Figure 1, which can be used

H2

H1

H2

H3 H3 H3 H3

0.0

3.0 -2.17

−0.95 −3.394.22 1.78

3.0 0.565.44 3.0 0.27 −2.17 −2.17 −4.61

Figure 2: The search tree for the network of Figure 1. A solid
line indicates + and a dashed line indicates −. The quantity
logO(d | q, e) is displayed next to each node q in the tree.
Nodes with logO(d | q, e) ≥ λ = 0 are shown in bold.

for this purpose. The leaves of this tree correspond to instan-
tiations h of variables H. More generally, every node in the
tree corresponds to an instantiation q, where Q ⊆ H.

A brute-force computation of the SDP would then entail:
1.) Initializing the total SDP to 0, 2.) Visiting every leaf node
h in the search tree, 3.) Checking whether logO(d | h, e) ≥
λ, and if so, adding Pr(h | e) to the total SDP. Figure 2
depicts the quantity logO(d | q, e) for each node q in the
tree, indicating that five leaf nodes (i.e., five instantiations of
variables H) will indeed contribute to the SDP.

We now state the key observation underlying our proposed
algorithm. Consider the node corresponding to instantiation
H1 = + in the search tree, with logO(d | H1 = +, e) = 3.0.
All four completions h of this instantiation (i.e., the four leaf
nodes below it) are such that logO(d | h, e) ≥ λ = 0.
Hence, we really do not need to visit all such leaves and add
their contributions Pr(h|e) individually to the SDP. Instead,
we can simply add Pr(H1 = +|e) to the SDP, which equals
the sum of Pr(h|e) for these leaves. More importantly, we
can detect that all such leaves will contribute to the SDP by
computing a lower bound using the weights depicted in Ta-
ble 3. That is, there are two weights for variable H2, the min-
imum of which is−1.22. Moreover, there are two weights for
variable H3, the minimum of which −1.22. Hence, the low-
est contribution to the log-odds made by any leaf below node
H1 = + will be −1.22− 1.22 = −2.44. Adding this contri-
bution to the current log-odds of 3.0 will lead to a log-odds
of .56, which still passes the given threshold.

A similar technique can be used to compute upper bounds,
allowing us to detect nodes in the search tree where no leaf
below them will contribute to the SDP. Consider for example
the node corresponding to instantiation H1 = −, H2 = −,
with logO(d | H1 = −, H2 = −, e) = −3.39. Neither
of the leaves below this node will contribute to the SDP as
their log-odds do not pass the threshold. This can be de-
tected by considering the weights of evidence for variable
H3 and computing the maximum of these weights (1.22).
Adding this to the current log-odds of −3.39 gives −2.17,
which is still below the threshold. Hence, no leaf node below
H1 = −, H2 = − will contribute to the SDP and this part of
the search tree can also be pruned.

If we apply this pruning technique based on lower and up-
per bounds, we will actually end up exploring only the par-
tition of the tree shown in Figure 3. The pseudocode of our

H1

H2

H3

0.0

3.0

-2.17

−0.95
−3.39

0.27 −2.17

Figure 3: The reduced search tree for the network of Figure 2.

Algorithm 1 Computing the SDP in a Naive Bayes network.
Note: For q = {h1, . . . , hj}, wq is defined as

∑j
i=1 whi .

input:
N : Naive Bayes network with class variable D
H: attributes {H1, . . . ,Hk}
λ: log-odds threshold
e: evidence

output: Same-Decision Probability p
main:
p← 0.0 (initial probability)
q← φ (initial instantiation)
DFS SDP(q, H, 0)
return p

1: procedure DFS SDP(q, H, d)
2: if (logO(d | e) + wq +

∑k
i=d+1 maxhi

whi
) < λ

then return
3: else if (logO(d | e)+wq+

∑k
i=d+1 minhi

whi
) ≥ λ

then
4: add Pr(q | e) to p, return
5: else
6: if d < k then
7: for each value hd+1 of attribute Hd+1 do
8: DFS SDP(qhd+1,H \Hd+1,d+ 1)

final algorithm is shown in Algorithm 1.2

3.2 The SDP for Naive Bayes is Hard
SDP is known to be PPPP–complete [Choi et al., 2012]. We
now show that SDP remains hard for Naive Bayes networks.

Theorem 1. Computing the Same-Decision Probability in a
Naive Bayes network is NP-hard.

Proof. We reduce the number partition problem [Karp, 1972]
to computing the SDP in a Naive Bayes model. Suppose we
are given a set of positive integers c1, . . . , cn, and we wish
to determine whether there exists I ⊆ {1, . . . , n} such that∑

j∈I ci =
∑

j 6∈I cj . We can solve this by considering a
Naive Bayes network with a binary class variable D having
uniform probability, and binary attributes H1, . . . ,Hn hav-
ing CPTs leading to weights of evidence wHi=T = ci and

2The specific ordering of H in which the search tree is con-
structed is directly linked to the amount of pruning. We use an or-
dering heuristic that ranks each query variable Hi by the difference
of its corresponding upper and lower bound — H is then ordered
from greatest difference to lowest difference.

D

H1

H2

E2

H4

H5

E1

H6

X1

H3X2 X3

Figure 4: The partition of H given D and E is: S1 =
{H1, H2, H3} S2 = {H4}, S3 = {H5, H6}.

wHi=F = −ci. In particular, the set of integers can be par-
titioned if there is an instantiation h = {h1, . . . , hn} with∑n

i=1 whi
= 0 since I would then include all indices i with

hi = T in this case.
The Naive Bayes network satisfies a number of proper-

ties that we shall use next. First,
∑n

i=1 whi is either 0,
≥ 1, or ≤ −1 since all weights whi are integers. Next, if∑n

i=1 whi
= c, then

∑n
i=1 wh′

i
= −c where h′i 6= hi. Fi-

nally, Pr(h1, . . . , hn) = Pr(h′1, . . . , h
′
n) when h′i 6= hi.

Consider now the following SDP (the last step below is
based on the above properties):

SDP (D = T, {H1, . . . ,Hn}, {}, 2/3)
=

∑
h1,...,hn

[Pr(D = T | h1, . . . , hn) ≥ 2/3]Pr(h1, . . . , hn)

=
∑

h1,...,hn

[logO(D = T | h1, . . . , hn) ≥ 1]Pr(h1, . . . , hn)

=
∑

h1,...,hn

[
n∑

i=1

whi ≥ 1

]
Pr(h1, . . . , hn)

=
1

2

∑
h1,...,hn

[
n∑

i=1

whi 6= 0

]
Pr(h1, . . . , hn)

We then have
∑n

i=1 whi
= 0 for some instantiation

h1, . . . , hn iff
∑

h1,...,hn
[
∑n

i=1 whi
6= 0]Pr(h1, . . . , hn) <

1. Hence, the partitioning problem can be solved iff
SDP (D = T, {H1, . . . ,Hn}, {}, 2/3) < 1/2.

3.3 Computing the SDP in Arbitrary Networks
We will generalize our algorithm to arbitrary networks by
viewing such networks as Naive Bayes networks but with ag-
gregate attributes. For this, we first need the following notion.
Definition 2. A partition of H given D and E is a set
S1, . . . ,Sk such that: Si ⊆ H; Si∩Sj = ∅; S1∪ . . .∪Sk =
H; and Si is independent from Sj , i 6= j, given D and E.

Figure 4 depicts an example partition.
The intuition behind a partition is that it allows us to view

an arbitrary network as a Naive Bayes network, with class
variable D and aggregate attributes S1, . . . ,Sk. That is, each
aggregate attribute Si is viewed as a variable with states si,

allowing us to view each instantiation h as a set of values
s1, . . . , sk. We now have:
Theorem 2. For a partial instantiation q = {s1, . . . , sj},

logO(d | q, e) = logO(d | e) +
j∑

i=1

wsi , (5)

where

wsi = log
Pr(si, | d, e)
Pr(si | d, e)

(6)

Proof. logO(d | q, e) = log Pr(d|q,e)
Pr(d|q,e)

= log
Pr(d|e)Pr(s1|d,e)...Pr(sj |d,e)
Pr(d|e)Pr(s1|d,e)...Pr(sj |d,e)

= logO(d | e) +∑j
i=1 wsi

Since Equations 5 and 6 are analogous to Equations 3
and 4, we can now use Algorithm 1 on an arbitrary net-
work. This usage, however, requires some auxiliary computa-
tions that were not needed or were readily available for Naive
Bayes networks. We discuss these computations next.

Finding a Partition
We first need to compute a partition S1, . . . ,Sk, which
is done by pruning the network structure as follows: we
delete edges outgoing from nodes in evidence E and hy-
pothesis D, and delete (successively) all leaf nodes that are
neither in H, E or D. We then identify the components
X1, . . . ,Xk of the resulting network and define each non-
empty Si = H ∩ Xi as an element of the partition. This
guarantees that in the original network structure, Si is d-
separated from Sj by D and E for i 6= j (see [Darwiche,
2009]). In Figure 4, network pruning leads to the compo-
nents X1 = {X1, X2, E2, H1, H2, H3}, X2 = {D,E1, H4}
and X3 = {X3, H5, H6}.
Computing O(d | e), Pr(q | e) and wsi
These quantities, which are referenced on Lines 2–4 of the al-
gorithm, have simple closed forms in Naive Bayes networks.
For arbitrary networks, however, computing these quantities
requires inference which we do using the algorithm of vari-
able elimination as described in [Darwiche, 2009]. Note that
network pruning, as discussed above, guarantees that each
factor used by variable elimination will have all its variables
in some component Xi. Hence, variable elimination can be
applied to each component Xi in isolation, which is sufficient
to obtain all needed quantities. We omit the details of these
computations, however, for space limitations.

Computing the Min and Max of Evidence Weights
We finally show how to compute maxsi wsi and minsi wsi ,
which are referenced on Lines 2 and 3 of the algorithm. These
quantities can also be computed using variable elimination,
applied to each component Xi in isolation. In this case, how-
ever, we must eliminate variables Xi \ Si first and then vari-
ables Si. Moreover, the first set of variables is summed-out,
while the second set of variables is max’d-out or min’d-out,
depending on whether we need maxsi wsi or minsi wsi . Fi-
nally, this elimination process is applied twice, once with ev-
idence d, e and a second time with evidence d, e. Again, we
leave out the details of this computation for space limitations.

3.4 Complexity Analysis
Let n be the number of variables in the network, h = |H|,
and w = maxi wi, where wi is the width of constrained
elimination order used on component Xi. The best-case
time complexity of our algorithm is then O

(
n expw

)
and the

worst-case time complexity is O
(
n exp (w + h)

)
. The intu-

ition behind these bounds is that computing the maximum
and minimum weights for each aggregate attribute takes time
O
(
n expw

)
. This also bounds the complexity of comput-

ing O(d|e), Pr(q|e) and corresponding weights wsi . More-
over, depending on the weights and the threshold T , travers-
ing the search tree can take anywhere from constant time to
O
(
exph

)
. Since depth-first search can be implemented with

linear space, the space complexity is O
(
n expw

)
.

4 Experimental Results
We performed several experiments on both real and synthetic
networks to test the performance of our algorithm across
a wide variety of network structures, ranging from simple
Naive Bayes networks to highly connected networks. Real
networks were either learned from datasets provided by the
UCI Machine Learning Repository or provided by HRL Lab-
oratories and CRESST.3 For the majority of the real networks,
it was clear which variable should be selected as the deci-
sion variable. For the unclear cases, the decision variable
was picked at random. Query and evidence variables were
selected at random for all real networks.

Besides this algorithm, there are two other options avail-
able to compute the SDP: 1. the naive method to brute–force
the computation by enumerating over all possible instantia-
tions or 2. the approximate algorithm developed by [Choi et
al., 2012]. To compare our algorithm with these two other
approaches, we compute the SDP over the real networks.
For each network we selected at least 80% of the total net-
work variables to be query variables so that we could em-
phasize how the size of the query set greatly influences the
computation time. Each computation was given 20 minutes
to complete. As we believe that the value of the threshold
can greatly affect running time, we computed the SDP with
thresholds T = [0.01, 0.1, 0.2, . . . , 0.8, 0.9, 0.99] and took
the worst-case time. The results of our experiments with the
three algorithms are shown in Table 4. Note that |H| is the
number of query variables and |h| is the number of instanti-
ations the naive algorithm must enumerate over. Moreover,
φ indicates that the computation did not complete in the 20
minute time limit and * indicates that there was not suffi-
cient memory to complete the computation. The networks
{car,ttt,voting,nav,chess} are Naive Bayes networks whereas
the others are polytree networks.

Given the real networks that we tested our algorithm on,
it is clear that the algorithm outperforms both the naive im-
plementation and the approximate algorithm for both Naive
Bayes networks and polytree networks. Note that the approx-
imation algorithm is based on variable elimination but can
only use certain constrained orders. For a Naive Bayes net-
work with hypothesis D being the root, the approximation

3http://www.cse.ucla.edu/

Table 4: Algorithm comparison on real networks. We show
the time, in seconds, it takes each algorithm, naive, approx,
and new to compute SDP in different networks.

Network source |H| |h| naive approx new
car UCI 6 144 0.131 0.118 0.049

emdec6g HRL 8 256 0.407 0.245 0.294
tcc4e HRL 9 512 0.470 0.257 0.149

ttt UCI 9 19683 6.234 0.133 0.091
caa CRESST 14 16384 6.801 0.145 0.167

voting UCI 16 65536 21.35 0.176 0.128
nav CRESST 20 1572864 642.88 0.856 0.178
fire CRESST 24 16777216 φ 0.183 0.508

chess UCI 30 1610612736 φ * 15.53

1 2 3 4 5 6 7 8
Number of subnetworks

0

500

1000

1500

2000

2500

3000

3500

4000
Average Explored Instantiations and Running Time

Number of instantiations (x 10e3)

Time (s)

Figure 5: Synthetic network average running time and av-
erage number of instantiations explored by number of con-
nected components.

algorithm will be forced to use a particularly poor ordering,
which explains its failure on the chess network.

To analyze how a more general network structure and the
selected threshold affects the performance of our algorithm,
we generated synthetic networks with 100 variables and vary-
ing treewidth using BNGenerator [Ide et al., 2004]. For
each network, we randomly selected the decision variable,
25 query variables, and evidence variables.4 We then gener-
ated a partition for each network and grouped the networks
by the size of obtained partition (k). Our goal was to test how
our algorithm’s running time and ability to prune the search–
space depends on k. The average time and average number
of instantiations explored are shown in Figure 5.

In general, we can see that as k increases, the number of in-
stantiations explored by the algorithm decreases and its run-
time improves. The network becomes more similar to a Naive
Bayes structure with increasing k. Moreover, the larger k is,
the more levels there are in the search tree, which means that
our algorithm will have more opportunities to prune. In the
worst case, a network may be unable to be disconnected at

4As the synthetic networks are binary, a brute–force approach
would need to explore 225 instantiations.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Threshold distance from initial posterior

0

200

400

600

800

1000

1200

1400

1600

1800
Average Explored Instantiations and Running Time

Number of instantiations (x 10e3)

Time (s)

Figure 6: Synthetic network average running time and aver-
age number of instantiations explored by threshold distance
from the initial posterior probability.

all (k = 1). However, even in this case our algorithm is still,
on average, more efficient compared to the brute-force imple-
mentation as for some cases, after computing the maximum
and minimum weight of observing H, it will find that there
does not exist any h that will change the decision. We found
that, given a time limit of 2 hours, the brute-force algorithm
could not solve any synthetic networks whereas our approach
solved greater than 70% of such networks.

We also test how the threshold affects computation time.
Here, we calculate the posterior probability of the decision
variable and then run repeatedly our algorithm with thresh-
olds that are varying increments away. The average running
time for all increments can be seen in Figure 6. It is evident
that when the threshold is set to be further away from the ini-
tial posterior probability, the algorithm finishes much faster,
which is perhaps expected since the usage of more extreme
thresholds would allow for more search space pruning.

Overall, our experimental results show that our algorithm
is able to solve many SDP problems that are out of reach of
existing methods. We also confirm that our algorithm com-
pletes much faster when the network can be disconnected or
when the threshold is far away from the initial posterior prob-
ability of the decision variable.

5 Conclusion
We have introduced the first exact algorithm for computing
the SDP. Experimental results show that this algorithm has
comparable running time to the previous approximate algo-
rithm and is also much faster than the naive brute-force algo-
rithm. Our algorithm is able to compute the SDP for query
sets that previous algorithms are unable to solve.

Acknowledgements
This work has been partially supported by ONR grant
#N00014-12-1-0423, NSF grant #IIS-1118122, and NSF
grant #IIS-0916161.

References
[Bilgic and Getoor, 2011] Mustafa Bilgic and Lise Getoor.

Value of information lattice: Exploiting probabilistic inde-
pendence for effective feature subset acquisition. Journal
of Artificial Intelligence Research (JAIR), 41:69–95, 2011.

[Chan and Darwiche, 2003] Hei Chan and Adnan Darwiche.
Reasoning about bayesian network classifiers. In UAI,
pages 107–115, 2003.

[Chen et al., 2012] Suming Chen, Arthur Choi, and Adnan
Darwiche. The same-decision probability: A new tool for
decision making. In Proceedings of the Sixth European
Workshop on Probabilistic Graphical Models, pages 51–
58. PGM, 2012.

[Choi et al., 2012] Arthur Choi, Yexiang Xue, and Adnan
Darwiche. Same-decision probability: A confidence mea-
sure for threshold-based decisions. International Journal
of Approximate Reasoning (IJAR), 2, 2012.

[Darwiche and Choi, 2010] Adnan Darwiche and Arthur
Choi. Same-decision probability: A confidence measure
for threshold-based decisions under noisy sensors. In Pro-
ceedings of the Fifth European Workshop on Probabilistic
Graphical Models, pages 113–120. PGM, 2010.

[Darwiche, 2009] Adnan Darwiche. Modeling and Reason-
ing with Bayesian Networks. Cambridge University Press,
New York, NY, USA, 1st edition, 2009.

[Dittmer and Jensen, 1997] Soren Dittmer and Finn Jensen.
Myopic value of information in influence diagrams. In
Proceedings of the Thirteenth Conference Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI-97),
pages 142–149, 1997.

[Friedman et al., 1997] Nir Friedman, Dan Geiger, and Moi-
ses Goldszmidt. Bayesian network classifiers. In Machine
Learning, pages 131–163, 1997.

[Greiner et al., 1996] Russell Greiner, Adam J. Grove, and
Dan Roth. Learning active classifiers. In Proceedings
of the Thirteenth International Conference on Machine
Learning (ICML96, 1996.

[Heckerman et al., 1993] David Heckerman, Eric Horvitz,
and Blackford Middleton. An approximate nonmyopic
computation for value of information. IEEE Trans. Pat-
tern Anal. Mach. Intell., 15(3):292–298, 1993.

[Heckerman et al., 1995] David Heckerman, John S. Breese,
and Koos Rommelse. Decision-theoretic troubleshooting.
Commun. ACM, 38(3):49–57, March 1995.

[Ide et al., 2004] Jaime S. Ide, Fabio G. Cozman, and
Fabio T. Ramos. Generating random bayesian networks
with constraints on induced width. In In Proceedings of
the 16th Eureopean Conference on Artificial Intelligence,
pages 323–327, 2004.

[Karp, 1972] Richard M. Karp. Reducibility among combi-
natorial problems. In R. E. Miller and J. W. Thatcher, ed-
itors, Complexity of Computer Computations, pages 85–
103. Plenum Press, 1972.

[Klonoff and Landrine, 1997] Elizabeth Adele Klonoff and
Hope Landrine. Introduction. In Preventing Misdiagno-
sis of Women: A Guide to Physical Disorders That Have
Psychiatric Symptoms, page xxi. SAGE Publications, Inc.,
1997.

[Krause and Guestrin, 2009] Andreas Krause and Carlos
Guestrin. Optimal value of information in graphical mod-
els. Journal of Artificial Intelligence Research (JAIR),
35:557–591, 2009.

[Liao and Ji, 2008] Wenhui Liao and Qiang Ji. Efficient
non-myopic value-of-information computation for influ-
ence diagrams. Int. J. Approx. Reasoning, 49(2):436–450,
2008.

[Lu and Przytula, 2006] Tsai-Ching Lu and K. Wojtek Przy-
tula. Focusing strategies for multiple fault diagnosis. In
FLAIRS Conference, pages 842–847, 2006.

[Park and Darwiche, 2004] James D. Park and Adnan Dar-
wiche. Complexity Results and Approximation Strate-
gies for MAP Explanations. J. Artif. Intell. Res. (JAIR),
21:101–133, 2004.

[Pauker and Kassirer, 1980] Steven G. Pauker and Jerome P.
Kassirer. The threshold approach to clinical decision mak-
ing. N Engl J Med, 302(20):1109–17, 1980.

[van der Gaag and Bodlaender, 2011] Linda C. van der Gaag
and Hans L. Bodlaender. On stopping evidence gathering
for diagnostic bayesian networks. In ECSQARU, pages
170–181, 2011.

[van der Gaag and Coupé, 1999] Linda C. van der Gaag and
Veerle M. H. Coupé. Sensitive analysis for threshold de-
cision making with bayesian belief networks. In AI*IA,
pages 37–48, 1999.

