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Abstract

Statistical relational learning (SRL) augments probabilistic
models with relational representations and facilitates reason-
ing over sets of objects. When learning the probabilistic pa-
rameters for SRL models, however, one often resorts to rea-
soning over individual objects. To address this challenge, we
compile a Markov logic network into a compact and efficient
first-order data structure and use weighted first-order model
counting to exactly optimize the likelihood of the parame-
ters in a lifted manner. By exploiting the relational structure
in the model, it is possible to learn more accurate parame-
ters and dramatically improve the run time of the likelihood
calculation. This allows us to calculate the exact likelihood
for models where previously only approximate inference was
feasible. Results on real-world data sets show that this ap-
proach learns more accurate models.

Introduction
Statistical relational learning (SRL) (Getoor and Taskar
2007) seeks to develop representations that combine the ben-
efits of probabilistic models, such as Markov or Bayesian
networks, with those of relational representations, like first-
order logic. Markov logic networks (MLNs), which com-
bine first-order logic with Markov networks, are one of the
most widely used SRL formalisms (Richardson and Domin-
gos 2006). MLNs use a variant of first-order logic that at-
taches a weight to each formula in a theory. Then, given a
set of objects, the theory specifies how to construct a propo-
sitional Markov network. In essense, Markov logic provides
a language for compactly describing very large propositional
Markov networks.

This paper addresses the problem of learning the weight
associated with each formula in a MLN theory from data. A
natural objective function is to learn weights that maximize
the training set likelihood. Since, in general, this cannot be
done in closed form, weight learning is addressed via convex
optimization. However, each iteration of the optimization in-
volves the (often) intractable task of running inference over
the current model to compute the likelihood and its gradient.
Consequently, people often optimize an approximate objec-
tive function such as pseudolikelihood (Koller and Friedman
2009).
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Lifted inference improves the efficiency of inference by
exploiting symmetries in SRL models to avoid repeated
computations (Poole 2003; de Salvo Braz, Amir, and Roth
2005; Jaimovich, Meshi, and Friedman 2007; Milch et al.
2008; Gogate and Domingos 2011; Van den Broeck et al.
2011). In this paper, we investigate using lifted inference in
order to efficiently and exactly learn maximum likelihood
weights. First, we provide a generic overview of how lifted
inference can be integrated into weight learning. A key in-
sight from lifting is the possibility to identify indistinguish-
able groups of objects, which can be reasoned about as a
whole. Grouping together indistinguishable objects can sig-
nificantly reduce the number of inferences needed to com-
pute gradients. Furthermore, lifting can compute gradients
and likelihoods in time polynomial in the size of the data, as
opposed to exponential when using classical methods.

Second, we describe a concrete weight learning algorithm
for Markov logic based on weighted first-order model count-
ing (WFOMC) (Van den Broeck et al. 2011; Van den Broeck
2011). WFOMC is a state-of-the-art inference algorithm that
compiles the MLN into a circuit language which permits in-
ference in polynomial time in the domain size of the MLN.
Its most appealing property for weight learning is that com-
pilation only needs to be performed once. On each iteration
of convex optimization, the circuit can be reparametrized
with updated weights to compute a new likelihood and its
gradient.

We evaluate our approach on three standard real-world
SRL data sets. We find that our algorithm learns models with
better test-set likelihood than two competing approaches.
We can employ exact lifted inference, because the generative
setting does not require conditioning on evidence, which is
#P-hard (Van den Broeck and Davis 2012), as it breaks the
symmetries in the model. This is an exciting new application
of exact lifted inference algorithms to real-world data.

Background: Markov Logic
Representation
Markov networks are undirected probabilistic graphical
models that represent a joint probability distribution over
a set of random variables X1, . . . Xn (Della Pietra, Della
Pietra, and Lafferty 1997). Each clique of variables Xk in
the graph has a potential function, φk(Xk), associated with



it. The probability of a possible world ω represented by a
Markov network is Pr(ω) = 1

Z

∏
k φk(ωk), where ωk is

the state of the kth clique (i.e., the state of the variables
that appear in that clique), and Z is a normalization con-
stant. Markov networks are often conveniently represented
as log-linear models, where clique potentials are replaced
by an exponentiated weighted sum of features of the state:
Pr(ω) = 1

Z exp (
∑
i wifi(ω)). A feature fj may be any

real-valued function of the state.
For the relational representation we use function-free

first-order logic which consists of three types of symbols:
(uppercase) constants, (lowercase) variables, and predi-
cates. Constant symbols represent objects in the domain
(e.g., people: Alice, Bob, etc.). Variable symbols range over
the objects in the domain. Predicate symbols represent rela-
tions among objects in the domain (e.g., Friends) or at-
tributes of objects (e.g., Smokes). A term is a variable or a
constant. A predicate applied to a tuple of terms is an atom.
A literal is an atom or its negation. A formula is constructed
by connecting literals using logical connectives. Following
the convention for lifted inference, we assume that all vari-
ables are free, that is, formulas have no quantifiers. A ground
atom (formula) is an atom (formula) that contains no vari-
ables. A database (i.e., a possible world) assigns a truth
value to each possible ground atom.

Markov logic (Richardson and Domingos 2006) com-
bines Markov networks with first-order logic. Formally, a
Markov logic network (MLN) is a set of pairs, (Fi, wi),
where Fi is a first-order formula and wi ∈ R. MLNs soften
logic by associating a weight with each formula. Worlds that
violate formulas become less likely, but not impossible. Intu-
itively, as wi increases, so does the strength of the constraint
Fi imposes on the world. Formulas with infinite weights rep-
resent a pure logic formula.

MLNs provide a template for constructing Markov net-
works. When given a finite set of constants (the domain), the
formulas from an MLN define a Markov network. Nodes in
the network, representing random variables, are the ground
instances of the atoms in the formulas. Edges connect lit-
erals that appear in the same ground instance of a formula.
An MLN induces the following probability distribution over
logical interpretations, that is, relational databases db:

Pr(db) =
1

Z
exp

 |F |∑
j

wjnj(db)

 (1)

where F is the set of formulas in the MLN, wi is the weight
of the jth formula, and nj(db) is the number of true ground-
ings of formula Fj in database db.

Weight Learning
This paper focuses on the weight learning task for
MLNs (Huynh and Mooney 2009; Lowd and Domingos
2007; Singla and Domingos 2005; Richardson and Domin-
gos 2006). Weight learning uses data to automatically learn
the weight associated with each feature (formula) by opti-
mizing a given objective function. Ideally, each candidate
model would be scored by its training set (log-)likelihood.

For MLNs, the likelihood is a convex function of the weights
and learning can be solved via convex optimization. The
derivative of the log-likelihood (Richardson and Domingos
2006) with respect to the jth feature is:

∂

∂wj
log Prw(db) = nj(db)− Ew[nj ] (2)

where nj(db) is the number of true groundings of Fi in
training data and Ew[nj ] is computed using the current
weight vector. The jth component of the gradient is simply
the difference between the empirical counts of the jth fea-
ture in the data and its expectation according to the current
model. Thus, each iteration of weight learning must perform
inference on the current model to compute the expectations.
This is often computationally infeasible.

Currently, the default generative weight learning approach
for MLNs is to optimize the pseudo-likelihood (Besag
1975), which is more efficient to compute. The pseudo-
likelihood is defined as

Pr•w(ω) =

V∏
j=1

Prw(Xj = ωj |MBXj
= MBXj

(ω)),

where V is the number of random variables, ωj is the value
of the jth variable, MBXj is Xj’s Markov blanket and
MBXj (ω) is its state in the data. This can also be optimized
via convex optimization. The (pseudo-) likelihood for a set
of training examples is the product of the (pseudo-) likeli-
hoods for the individual examples.

There has been work on optimizing the conditional like-
lihood and the most advanced work is by Lowd and Domin-
gos (2007). They propose several approaches, the best of
which is a second-order method called pre-conditioned
scaled conjugate gradient (PCSG). They use MC-SAT (Poon
and Domingos 2006), which is a slice-sampling Markov
chain Monte Carlo method, to approximate the expected
counts. Generative learning is a special case of discrimina-
tive learning where the query set contains all the variables in
the domain and the evidence set is empty. Therefore this ap-
proach is suitable for learning maximum likelihood weights,
although, to the best of our knowledge, this has yet to be at-
tempted until this paper.

Inference
Probabilistic logic models combine aspects of first-order
logic and probabilistic graphical models, enabling them to
model complex logical and probabilistic interactions be-
tween large numbers of objects (Getoor and Taskar 2007;
De Raedt et al. 2008). This level of expressivity comes at the
cost of increased complexity of inference, motivating a new
line of research in lifted inference algorithms (Poole 2003).
These algorithms exploit logical structure and symmetries
in probabilistic logics to perform efficient inference in these
models. Large domains lead to very large graphical models
causing inference to be intractable. Recent advances in lifted
inference deal with a broad class of models that now can
deal with large domains. We use the definition of Van den
Broeck (2011) to formally define what lifting means:



Definition 1 (Domain-Lifted Probabilistic Inference). A
probabilistic inference procedure is domain-lifted for a
model M , query q and evidence e iff the inference proce-
dure runs in polynomial time in |D1|, . . . , |Dk| with Di the
domain of the logical variable vi appearing in M , q or e.

Lifted Generative Weight Learning
In this section, we provide a general overview about how
lifted inference can be used in the context of weight learning.
This approach yields two benefits:

First Benefit Leveraging insights from the lifted inference
literature allows weight learning to compute a small num-
ber of marginals to compute the gradient,

Second Benefit Each query is computed more efficiently
using lifted inference. Namely, it is polynomial in the
size of the databases, that is, the number of objects in the
databases, whereas propositional inference is in general
exponential in this size.

To illustrate the intuition behind the approach, assume
that we want to learn the weight for a MLN that contains a
single formulaw : F (x1, . . . , xn). Furthermore, we have ac-
cess to a lifted inference oracle that can efficiently compute
the marginal probability of any random variable (ground
atom) in the MLN, even for large domain sizes. Learning
a weight that maximizes the likelihood of the MLN is chal-
lenging because it requires computing Ew[nF ] at each it-
eration of an optimization algorithm, by summing over the
probability of each possible grounding of F :

Ew[nF ] = Pr(F (x1, . . . , xn)θ1) + . . .

+ Pr(F (x1, . . . , xn)θm) (3)

where θi is a grounding substitution which replaces all the
logical variables (xi) in the atom by constants.

We now first review some techniques from the lifted in-
ference literature. Second, we will show how to use these
techniques to efficiently compute Equation 3.

Equiprobable Random Variables
A set of random variables V is called equiprobable w.r.t.
a given MLN iff for all v1, v2 ∈ V : Pr(v1) = Pr(v2).
In the absence of evidence, many of the queries in an MLN
will be equiprobable, because of the symmetries imposed by
the model. Lifted inferences excels at answering these types
of queries. In fact, one of the key insights from lifted in-
ference is that we can partition the set of random variables
into equiprobable sets by purely syntactic operations on
the first-order model (Poole, Bacchus, and Kisynski 2011;
Van den Broeck, Choi, and Darwiche 2012; Van den Broeck
2013).

Example 1. To illustrate this point, consider the model
w Smokes(x) ∧ Friends(x, y)⇒ Smokes(y).

which states that smokers are more likely to be friends
with other smokers. Assuming a domain of three con-
stants, Alice , Bob, and Charlie, Friends(Alice,Bob)
and Friends(Bob,Charlie) are equiprobable, but
Friends(Alice,Alice) and Friends(Bob,Charlie) are

not. The first two queries have identical probabilities
because they are indistinguishable w.r.t. the MLN. In-
tuitively, this can be seen by looking at a permutation
of the constants, mapping Alice into Bob and Bob into
Charlie. This permutation turns Pr(Friends(Alice,Bob))
into Pr(Friends(Bob,Charlie)), whereas the MLN model
is invariant under this permutation (it does not even ex-
plicitly mention the constants). Therefore, these atoms are
indistinguishable and they must have the same marginal
probability.

The question then is how to partition the queries into
equiprobable sets. This can be done based on syntactic prop-
erties of the MLN by a technique called preemptive shatter-
ing (Poole, Bacchus, and Kisynski 2011). It is a conceptu-
ally simpler version of the influential shattering algorithm
proposed by Poole (2003) and de Salvo Braz, Amir, and
Roth (2005) in the context of lifted inference. This technique
can be applied to a model with an arbitrary number of for-
mulas. If the model does not mention specific constants, the
algorithm enumerates all ways in which the logical variables
in the same formula can be equal or different. More for-
mally, in the single formula case, Pr(F (X1, . . . , Xn)θk) =
Pr(F (X1, . . . , Xn)θl)) when two arguments Xiθk = Xjθk
iff Xiθl = Xjθl. If the model itself mentions certain unique
information about specific constants, we can still partition
the queries into equiprobable sets, but finding such sets
gets slightly more complicated. Poole, Bacchus, and Kisyn-
ski (2011) contains the full details for this procedure.

Evaluating Expected Counts
We will now show how to use lifted inference techniques to
compute the gradient.

First Benefit To achieve the first benefit, we identify
equiprobable sets. This allows us to reduce the number of
queries (Equation 3) that need to be answered during weight
learning. For each set of equiprobable queries, only one rep-
resentive query needs to be answered as each other query in
the group will have the identical marginal probability. An-
swering these queries simply requires calculating the proba-
bility that each formula is true according to the model, and
does not involve conditioning on the data. The only way in
which the probabilities depend on the data is the domain size
of each variable, that is, the number of objects in the world.

Let P = {E1, . . . Eq} denote the equiprobable partition
found for formula F (x1, . . . , xn) by preemptive shattering,
and let F (x1, . . . , xn)θEi

be some element of Ei. We can
then reduce the computation of Equation 3 to computing

Ew[nφ] =|E1| · Pr(F (x1, . . . , xn)θE1) + . . .

+ |Eq| · Pr(F (x1, . . . , xn)θEq
), (4)

involving as many queries as there are elements in the parti-
tion (|P| = q).

In the multiple database setting (as arises when perform-
ing cross-validation), it is necessary to compute the gradient
for each database, as the domain size and therefore the size
of each Ei can vary according to the fold. The size of the
partition |P|, however, does not depend on the domain size,
only on the structure of the MLN formulas.



Theorem 1. Given b databases and an equiprobable parti-
tion P , evaluating the gradient of the likelihood of the MLN
(Equation 2) requires computing b · |P| marginal probabili-
ties.

In the special case of a single formula with n logical vari-
ables, the number of queries we need to pose is the Bell num-
ber Bn (Bell 1934; Rota 1964).

Definition 2 (Bell Number). Bell numbers are recursively
defined as

Bn+1 =

n∑
k=0

(
n

k

)
Bk with B0 = B1 = 1.

The Bell number Bn represents the number of partitions
of n elements into non-empty sets. In our case, it is the num-
ber of equivalence relations on the n logical variables in the
formula, which does not depend on the size of the domains
or database. Assuming a domain size of D, that same for-
mula will have Dn groundings and computing Equation 2
without using these insights from lifted inference would re-
quire answering Dn queries.

When more generally, we have multiple formulas that do
not explicitly mention any constants from the database, the
analysis is also easy, based on properties of the preemptive
shattering algorithm.

Proposition 2. A Markov logic network with k formu-
las (w1, F1(x11, . . . , x

n1
1 )) to (wk, Fk(x1k, . . . , x

nk

k )) without
constants has an equiprobable partition P such that |P| =∑k
i=1Bni

.

For this case, Equation 3 requires computing
∑k
i=1D

ni

marginals per database, whereas lifted learning requires
computing

∑k
i=1Bni

, essentially removing the dependency
on the size of the database from Equation 3. This difference
can be significant. Typically, formulas have a bounded num-
ber of variables ni, on the order of between two and four,
which gives Bell numbers B2 = 2, B3 = 5 and B4 = 15.
Databases in SRL, on the other hand, typically describe re-
lations between hundreds of objects (D), resulting in mod-
els with tens of thousands of random variables. This is also
true for the databases used in Section . In the most general
case where the MLN being learned explicitly mentions cer-
tain constants, the analysis becomes more complex. How-
ever, the size of the partition found by preemptive shattering
will still be polynomial in the number of such constants and
independent of the number of constants in the entire domain
and in the databases used for learning.

Second Benefit The second benefit of lifted learning over
its proposition counterpart is the complexity of inference
for each query. When using a lifted inference oracle that is
domain-lifted, computing the probabilities in Equation 4 will
be polynomial in the domain size, and therefore polynomial
in the size of the databases. On the other hand, when doing
propositional inference to compute the same numbers, infer-
ence is in general exponential in the domain size. Treewidth
is a polynomial of domain size for most non-trivial MLNs
and propositional inference is exponential in treewidth.

Lifted Weight Learning by First-Order
Knowledge Compilation

The previous section assumed the presence of a lifted in-
ference oracle. We will now look at the implications of
choosing one particular algorithm, Weighted First-Order
Model Counting (WFOMC) (Van den Broeck et al. 2011;
Van den Broeck 2013). First, we give the necessary back-
ground on WFOMC and then describe its application to
lifted learning.

Background on WFOMC
WFOMC’s approach to lifted probabilistic inference con-
sisting of the following three steps: (i) convert the MLN to
a WFOMC problem, (ii) compile the WFOMC problem into
a First-Order d-DNNF (FO d-DNNF) circuit, and (iii) eval-
uate the circuit for a given set of weights and domain sizes
to compute probabilities.

WFOMC Representation. A WFOMC problem is sim-
ilar to a Markov logic network. The difference is that in
a WFOMC problem, weights can only be associated with
predicates. For example, for the predicate Q, only weighted
formulas of the form (w,Q(x1, . . . , xn)) are allowed. For-
mulas that are complex (containing logical connectives)
must be hard formulas, with infinite weight. Any MLN can
be transformed into a WFOMC problem by adding new
atoms to the theory that represent the truth value of each
weighted complex formula.
Example 2. Example 1 contains one weighted complex for-
mula. Its WFOMC representation is

w F(x, y)

∞ F(x, y) ≡ [Smokes(x) ∧ Friends(x, y)⇒ Smokes(y)]

where we introduce the additional atom F(x, y) to carry the
weight of the MLN formula.

First-Order d-DNNF Circuits. First-order knowledge
compilation compiles a first-order knowledge base into a tar-
get circuit language called FO d-DNNF (Van den Broeck et
al. 2011), that represents theories in first-order logic with do-
main constraints. Domain constraints define a finite domain
for each logical variable.

A FO d-DNNF circuit is a directed, acyclic graph, where
the leaves represent first-order literals and the inner nodes
represent formulas. A FO d-DNNF includes the following
inner node types: decomposable conjunction, a conjunction
of children that do not share any random variables, deter-
ministic disjunction, a disjunction whose children cannot be
true at the same time, and first-order generalizations of these
types of operators.
Example 3. Figure 1 illustrates a FO d-DNNF for the for-
mula of Example 1. The circuit introduces a new domain S,
which is a subset of People . It states that there exists such
a S for which (i) all people in S are smokers (ii) no other
people are smokers and (iii) smokers are not friends with
non smokers. Or alternatively, someone who is friends with
a smoker is also a smoker.



Smokes(x), x ∈ S ¬Smokes(x), x ∈ People, x /∈ S ¬Friends(x, y), x ∈ S, y ∈ People, y /∈ S

∧

∨
S⊆People

set disjunction

decomposable conjunction

Figure 1: First-Order d-DNNF Circuit for the Formula of Example 1.

A top-down compilation algorithm transforms a logical
theory into a FO d-DNNF by applying a sequence of oper-
ations that simplify the logical theory (see Van den Broeck
et al. (2011) for algorithmic details). Van den Broeck (2011)
proved that any theory where each formula has at most two
logical variables and no quantifiers are guaranteed to be
domain-liftable and can be compiled to a fully lifted circuit.
Furthermore, many commonly used MLN theories outside
this class can be compiled to a fully lifted circuit. In other
cases, the theory can be compiled by grounding parts of the
theory.1

Inference. The compiled circuit for a WFOMC problem
can be used to answer probabilistic queries. The marginal
probability of a query q for a modelM , weight vector w̄ and
domain size D is

P(q|M) =
WMC(q ∧M, w̄,D)

WMC(M, w̄,D)
(5)

where WMC stands for the weighted model count. We will
drop the arguments w and D when they are clear from the
context. The WMC(q ∧M) is simply the weight of all pos-
sible worlds where q is true. The WMC(M) is simply the
partition function Z for the model. Darwiche (2009) gives
a more detailed overview of the weighted model counting
approach to propositional probabilistic inference. The FO d-
DNNF circuit for a WFOMC problem is independent of the
domain size of the WFOMC problem. Furthermore, comput-
ing weighted model counts is polynomial in the size of the
domains. One of the advantages of using knowledge compi-
lation for inference is that it exploits context-specific inde-
pendence and determinism in the MLN.

Lifted Weight Learning
To illustrate the benefits of using a knowledge compilation
approach, we first consider computing the gradient of the
likelihood for a single formula. Then we present our full
lifted weight learning algorithm.

In the single formula case, computing the expected num-
ber of groundings of F (x1, . . . , xn) requires estimating
Pr(F (x1, . . . , xn)θEi

) once for each equiprobable partition.

1Any other exact lifted inference technique could be used (e.g.,
FOVE or PTP). WFOMC is chosen because it can lift a larger vari-
ety of symmetries and offer circuit reuse which is unique to knowl-
edge compilation.

WFOMC solves this by computing the ratio:

WMC(F (x1, . . . , xn)θEi ∧M)

WMC(M)

Notice that each partition has the same denominator
WMC(M), which corresponds to the partition function of
the MLN. If we have q equiprobable partitions, evaluating
the weighted model counts requires compiling q+1 circuits:
one for each equiprobable partition, and one for the parti-
tion function. These circuits are independent of the weights
and domains of the first-order model and can therefore be
used to compute Equation 4 for any database size and weight
vector. Thus, each circuit can be reused on each iteration
of weight learning. This exemplifies the idea behind the
knowledge compilation approach to inference: transform the
model from a representation where a certain task is hard to
a representation where the task is easy, and reuse that repre-
sentation to solve multiple problems.

Algorithm 1 outlines our Lifted Weight Learning (LWL)
approach. It takes a MLN M and a set of databases DB as
inputs and returns a weight vector w̄. The algorithm works
as follows. First, it builds all the circuits needed to com-
pute the likelihood and its gradient. It compiles one circuit
for M to compute the partition function. Then it preemp-
tively shatters each weighted formula F in M to identify
its equiprobable partition. It compiles one circuit for every
equiprobable partition of the formula. Second, it runs an it-
erative procedure to learn the weights. During each iteration
i of the convex optimization, it computes the gradient of the
likelihood given the current weights w̄i. First it computes
the partition function. Then, for each of the b databases, the
expected counts for each formula are calculated by reevalu-
ating the compiled circuit associated with every one of the
formula’s equiprobable partitions. Traditionally, this is the
most challenging step in computing Equation 2 (the gradi-
ent). The algorithm terminates when a stop condition is met
(e.g., after a predefined number of iterations).

The computational saving of employing WFOMC dur-
ing inference can be characterized as follows. Over t it-
erations of the convex optimization algorithm, instead of
answering t · b · |P| hard inference queries, as done by a
vanilla lifted learning algorithm, the knowledge compilation
approach performs 1+|P| hard compilation steps and reuses
each circuit t · b times by reevaluating it for different weight
vectors wi and domain sizes D.

For the special case of a single formula with n logical
variables, by using both knowledge compilation and lifted



Algorithm 1 LIFTEDWEIGHTLEARNING(M ,DB)

Input.
M : A set of MLN formulas with initial weights
DB : A set of databases.

Supporting Functions.
COMPILE Compile to FO d-DNNF circuit
SHATTER Partition into equiprobable sets
WFOMC Compute weighted FO model count
LBFGS Optimization algorithm

Function.
1: let Ddb be the domain sizes in database db
2: let ndbF be the number of true groundings of formula F

in database db
3: let w̄ be the initial weight vector of M
4: CZ ← COMPILE(M )
5: for each F ∈ M do
6: PF ← SHATTER(M , F ) // Partition
7: for each E ∈ PF do
8: for some F (x1, . . . , xn)θE ∈ E do
9: CE ← COMPILE(M ∧ F (x1, . . . , xn)θE)

10: repeat
11: L ← 0 // Log-likelihood
12: ∇L ← 0̄ // Log-likelihood gradient vector
13: for each db ∈ DB do
14: Z ← WFOMC(CZ , w̄,D

db)
15: L ← L− log(Z)
16: for each Fi ∈ M do
17: L ← L+ w̄i · ndbFi

18: ∇Li ← ∇Li + ndbFi

19: for each E ∈ PFi
do

20: p ← WFOMC(CE , w̄,D
db)/Z

21: ∇Li ← ∇Li − |E| · p
22: w̄ ← LBFGS(L, w̄,∇L)
23: until convergence
24: return w̄

inference, we went from answering t · b · Dn queries that
are exponential in the size of the databases to 1 + Bn com-
pilations that are independent of the training examples and
t · b circuit evaluations that are polynomial in the size of the
databases.

Empirical Evaluation
We evaluate our approach on one synthetic domain and three
real-world datasets.

Synethetic Data: Scaling Behavior
We use the friends and smokers model from Example 1
(Singla and Domingos 2005) as a controlled enviroment to
explore how our algorithm scales with respect to domain
size. We vary the number of people in the domain from
100 to 30,000 and randomly generate a training database
for each size. The results are in Fig. 2. This model is fully
liftable and training time is polynomial in the domain size.
The largest database, for domain size 30, 000, assigns truth
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Figure 2: Timings for friends-smokers.

values to 30, 0002 + 30, 000 or approximately 900 million
ground atoms.

Real-World Data: Test-Set Likelihood
We use three real-world datasets to compare the following
three MLN weight learning algorithms:

PLL optimizes the pseudo-likelihood of the MLN given the
data via the LBFGS algorithm (Liu and Nocedal 1989)
and is the default generative weight learning algorithm in
the Alchemy package (Kok et al. 2008).

PSCG is a weight learning algorithm (Lowd and Domin-
gos 2007) in Alchemy that uses approximate inference
to estimate the gradient of the objective function. It
optimizes the likelihood of the MLN when all predicates
are treated as query atoms (i.e., the evidence set is empty).

LWL is our proposed approach. It uses the WFOMC pack-
age (Van den Broeck et al. 2011) to compute the likeli-
hood and its gradient and the limited-memory BFGS op-
timizer in the Factorie system (McCallum, Schultz, and
Singh 2009). Our implementation of LWL is available as
open-source software.2

The goal of our empirical evaluation is to compare whether
exactly optimizing the likelihood is better than optimiz-
ing the approximated likelihood. We evaluate all models
based on their test set likelihood, which is a standard met-
ric for generative learning. Additionally, we are interested in
whether it is possible to apply exact lifted learning to learned
theories.

Datasets and Methodology
We first briefly describe the datasets we use.3 The IMDB
data comes from the IMDB.com website. The data set con-
tains information about attributes (e.g., gender) and rela-
tionships among actors, directors, and movies. The data is
divided into five different folds. The UWCSE data con-
tains information about the University of Washington CSE
Department. The data contains information about students,
professors, and classes and models relationships (e.g., TAs
and Advisor) among these entities. The data consists of five
folds, each one corresponding to a different group in the
CSE Department. The WebKB data consists of Web pages

2http://dtai.cs.kuleuven.be/wfomc/
3Available on http://alchemy.cs.washington.edu



UWCSE
PSCG PLL LWL

BUSL -1671 -2564 -1523
-684 -909 -541

-1702 -2871 -1283
-3291 -2660 -2565
-3399 -5280 -2362

MSL -25745 -1519 -1497
-1070 -535 -524

-21936 -1213 -1209
-2756 -2472 -2471

-51903 -2261 -2274

IMDB
PSCG PLL LWL

BUSL -379 -1190 -377
-580 -1241 -558
-907 -1581 -968
-291 -660 -284
-608 -539 -267

MSL -1641792 -9672 -831
-1690616 -12471 -766

-32286 -18242 -1307
-229063 -1354 -698

-16250 -982 -700

WebKB
PSCG PLL LWL

MSL -9453 -5860 -5655
-27628 -5129 -5047
-26548 -4135 -3917
-18052 -4367 -4280

Table 1: Log-likelihoods for models learned in the UWCSE, IMDB and WebKB domains.

from the computer science departments of four universi-
ties (Craven and Slattery 2001). The data has information
about words that appear on pages, labels of pages and links
between Web pages. There are four folds, one for each uni-
versity. We limit the number of words considered on each
fold to the ten with the highest information gain with respect
to a page’s class.

To generate a set of models, we use two standard
MLN structure learning algorithms: BUSL (Mihalkova and
Mooney 2007), which works bottom-up, and MSL (Kok and
Domingos 2005), which works top-down. During structure
learning, we limit each clause to contain at most four liter-
als and three variables.4 In all domains, we perform cross-
validation and hold out one fold as the test set, and use the
remaining folds to learn the model. Each fold serves as a test
set once. Given the learned structure, each weight learning
algorithm uses the same data that produced the structure to
learn weights. Then we compute the test-set likelihood for
each learned model. We always use WFOMC to compute
the test-set likelihood so the only difference among the three
approaches is how the weights were learned.

Results and Discussion
Table 1 reports results for all learned models. LWL consis-
tenly outperforms both PLL and PSCG in terms of test-set
likelihood. It loses once to PLL and once to PSCG. The
magnitude of differences varies. LWL does better than PLL
if the pseudo-likelihood assumption is violated (e.g., long
chains of interactions). For some of the learned theories this
results in large differences between LWL and PLL. For mod-
els that contain mostly nearly deterministic formulas, LWL
and PLL tend to have similar test-set likelihoods. For exam-
ple, MSL learns a number of such formulas for the UWCSE
domain, which express statements like ‘all people are either
students or professors’. PSCG performance is quite variable.
PSCG performs very poorly for some models as MC-SAT
can sometimes give very bad estimates of the gradient. This
can occur if MC-SAT fails to converge (e.g., because it gets
stuck in a single mode of the distribution).

LWL is able to compile all the learned theories, except for

4The objective function for structure learning is pseudo-
likelihood.

those learned by BUSL on WebKB. These theories, while
theoretically compilable, are very large as they contain more
than 50 learned complex, first order formulas. The compi-
lation ran out of 25 GB of memory. In terms of run time,
on average PLL takes 1 second, LWL takes 2 minutes, and
PSCG takes 40 minutes. For LWL, about 25% of the time is
spent on compilation.

Related Work and Conclusions

Jaimovich, Meshi, and Friedman (2007) described a formal-
ism similar to Markov logic and proposed a form of lifted
belief propagation for generative parameter learning in that
language. Our work provides a much more detailed and for-
mal treatment of the subject. Also, we looked at using ex-
act inference as opposed to approximate. Our empirical re-
sults provide some initial evidence that sampling based ap-
proximations can provide sub-optimal results. Ahmadi, Ker-
sting, and Natarajan (2012) recently proposed the use of
approximate lifted inference, namely lifted belief propaga-
tion (Singla and Domingos 2008; Kersting, Ahmadi, and
Natarajan 2009), in a stochastic gradient optimization ap-
proach to piecewise discriminative weight learning.

We investigated the effect of lifted inference for parameter
learning in the statistical relational learning setting. Specifi-
cally, we proposed a weight learning algorithm for Markov
logic based on weighted first-order model counting. Calcu-
lating the gradient of the likelihood is the crucial step in
parameter learning. Applying insights from lifted inference
allows us to compute the gradient exactly while querying
fewer marginals and answering each query more efficiently.
WFOMC yields a further benefit in that its compiled circuits
are independent of the database and can be reused over all
databases and iterations during optimization. Our proposed
approach was evaluated on learned models from three real-
world data sets. Our approach consistently resulted in better
test-set likelihoods than two approximate weight learning al-
gorithms.
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