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Abstract Software Health Management (SWHM) is

an emerging field which addresses the critical need to

detect, diagnose, predict, and mitigate adverse events

due to software faults and failures. These faults could

arise for numerous reasons including coding errors, un-

anticipated faults or failures in hardware, or problem-

atic interactions with the external environment. This

paper demonstrates a novel approach to software health

management based on a rigorous Bayesian formulation

that monitors the behavior of software and operating

system, performs probabilistic diagnosis, and provides

information about the most likely root causes of a fail-

ure or software problem. Translation of the Bayesian

network model into an efficient data structure, an arith-

metic circuit, makes it possible to perform SWHM on
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resource-restricted embedded computing platforms as

found in aircraft, unmanned aircraft, or satellites. SW-

HM is especially important for safety critical systems

such as aircraft control systems. In this paper, we demon-

strate our Bayesian SWHM system on three realistic

scenarios from an aircraft control system: (1) aircraft

file-system based faults, (2) signal handling faults, and

(3) navigation faults due to IMU (inertial measurement

unit) failure or compromised GPS (Global Positioning

System) integrity. We show that the method successful-

ly detects and diagnoses faults in these scenarios. We

also discuss the importance of verification and valida-

tion of SWHM systems.

1 Introduction: Software Health Management

Modern aircraft increasingly rely on highly safety crit-

ical functions (e.g., aircraft control, auto-throttle, au-

topilot, communications) implemented in software for

digital control (fly-by-wire). Despite strict rules for cer-

tification (e.g., DO-178B [66] for civil aviation) and

immense efforts to perform verification and validation

(V&V) on the software during its development, software

failures occur, threatening mission, safety and life of

passengers and crew. Such failures are typically caused

by latent bugs in the code or unexpected hardware-

software interactions.

These potentially dangerous failures can occur not

only in aircraft, but in other systems as well. Many

safety critical applications contain embedded software

and face the same type of problems (e.g., cars, medical

devices, space applications, and industrial control).

In this paper, we present our approach to Software

Health Management (SWHM). The SWHM system is

powerful on-board software, which has the potential
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to detect many possible software-related faults in real-

time, as soon as they occur while the system is in opera-

tion; diagnose the root cause(s); and initiate mitigation

measures. SWHM therefore substantially contributes to

overall system safety and reliability. Such a SWHM sys-

tem

– monitors the behavior of the software, the operat-

ing system, and the attached sensors during system

operation. Information about operational status,

signal quality, quality of computation, reported er-

rors, etc., is collected and processed on-board. Much

of this information is readily available without the

need to further instrument or otherwise modify the

software.

– performs substantial diagnostic reasoning in order

to identify the most likely root cause(s) for the fault

and provides a quality measure for that result. Safe-

ty critical systems with fast dynamics require a suit-

able reaction to an off-nominal condition within a

very short time frame. Thus, diagnosis with the help

of a ground station is in most cases infeasible.

– provides prognostic information. In many cases, soft-

ware failures do not manifest themselves immedi-

ately, and prognosis of future problems can improve

safety substantially as mitigation can be initiated

before the actual fault occurs. For example, a pro-

gram with an observed memory leak can continue

to operate in the short term, but may crash in the

long term. An estimate of when all available memo-

ry will be used up can be used by an SWHM system

to prevent actual memory overflow.

Most aircraft, like other complex machinery, have
fault detection and diagnosis systems for all larger hard-

ware components (e.g., power plant, generators, pow-

er distribution). These systems (usually called FDDR

(Fault Detection, Diagnosis, Recovery) or IVHM (Inte-

grated Vehicle Health Management) continuously mon-

itor the hardware components. If a malfunction occurs,

a diagnostic message is displayed in the cockpit. Howev-

er, such systems currently do not monitor critical soft-

ware subsystems or software-hardware interactions.

In this paper, we present a Bayesian approach to

SWHM. The system health model is developed using a

Bayesian network. During monitoring, an efficient SW-

HM executive performs fault detection and reasoning

using probabilistic and statistical methods founded on

Bayes’ rule.

Our Software Health Management System, which

monitors and diagnoses software and interfacing hard-

ware components, has to meet important criteria in or-

der to be useful and safe. In our paper, we will need to

address the following issues for SWHM.

The SWHM must provide reliable answers. The no-

torious “Check Engine” light in a car, which is actually

the output of a simple fault detection system, is often

not reliable. This lamp is coming on, but a subsequent

check at the shop does not reveal any problems with the

engine. Such a situation, called a false alarm, can reduce

the usability of the system (e.g., down time for diagno-

sis). A missed alarm, where the diagnosis system does

not recognize a real failure, is more serious. Reliance

on the responses of the diagnosis system can lead to se-

rious events, when the monitored component suddenly

fails during flight in the case of a missed alarm.

On the other hand, repeated false alarms tend to

be ignored by the operator; sometimes even leading to

intentional disabling of the health management system.

During the investigation of the accident of Northwest

Flight 255 [53] it was detected that a circuit breaker for

the central aural warning system had most likely been

disabled intentionally, because [53] “. . . the same pilots

had intentionally disconnected the alarm on another

MD-80 two days before. . . ”.

Traditionally, each individual system component has

its own fault detection and diagnosis system with its

own annunciator. In complex systems, however, sin-

gle faults can have substantial adverse effects on other

subsystems. An integrated diagnosis system must take

those effects into account in order to efficiently diagnose

the failure.

The recent incident with the Qantas Airbus A-3801

illustrates this issue. When one of the four engines ex-

ploded during flight, not only the engine, but also sev-

eral other subsystems were affected. Several wing tanks

had been pierced by debris and hydraulic power was

lost. The pilots had to manually sort through “liter-

ally hundreds of diagnostic messages”1 in order to find

out what happened. In addition, several diagnostic mes-

sages contradicted each other or did not make sense,

given the overall state of the aircraft. For example, one

message suggested to pump fuel from one galley to an-

other to better balance the aircraft. However, the fuel

pumps did not work due to the loss of hydraulic power.

An integrated health management system, which can

perform reasoning across subsystems would not have

displayed such a diagnostic message, as it was known

that there was no hydraulic power. Luckily, the aircraft

was flying stable and the pilot had the opportunity to

spend several hours on this diagnostics list before they

landed.

The far-reaching impact of one fault can be par-

ticularly serious in distributed software systems, which

1 http://www.aerosocietychannel.

com/aerospace-insight/2010/12/

exclusive-qantas-qf32-flight-from-the-cockpit/
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communicate with each other. In most aircraft (and also

in cars) multiple software systems, running on individ-

ual computers or microcontrollers (“boxes”), exchange

data over dedicated buses. Thus, a single software fail-

ure can have a dramatic effect elsewhere. For example,

“. . . while attempting its first overseas deployment to

the Kadena Air Base in Okinawa, Japan, on 11 Febru-

ary 2007, a group of six F-22 Raptors flying from Hick-

am AFB, Hawaii experienced multiple computer crash-

es coincident with their crossing of the 180th meridian

of longitude (the International Date Line)” [38]. The

obvious software error did not only cause a total loss

of navigation, but also communication was heavily af-

fected. Luckily, the “... fighters were able to return to

Hawaii by following their tankers in good weather. The

error was fixed within 48 hours and the F-22s continued

their journey to Kadena” [38].

This again is an indication that SWHM must be able

to obtain information from multiple subsystems and it

must perform advanced diagnostic reasoning. The SW-

HM and its reasoning must be powerful enough to be

able to reliably detect and diagnose important failures.

Bayesian networks and the associated advanced reason-

ing algorithms, discussed in this paper, provide such ca-

pabilities. Furthermore, the SWHM system (which is a

piece of software in itself) must not fail. Thus, rigorous

verification and validation of the SWHM and the health

models must be performed. We will discuss approaches

for V&V of SWHM systems in this paper.

The remainder of this paper is structured as follows:

Section 2 discusses other approaches to monitoring soft-

ware, performing runtime verification, or to dynamical-

ly initiate mitigation and recovery actions. We will dis-

cuss several approaches and highlight their advantages

and shortcomings.

In Section 3 we introduce our Bayesian Software

Health Management approach. We present a brief in-

troduction to its underlying Bayesian networks and rea-

soning algorithms and discuss how software- and sensor-

related data are preprocessed before being fed into the

network.

We illustrate our approach using a case study: a

small and simplified but typical aircraft control sys-

tem, running on an emulated real-time operating sys-

tem, performs GN&C (Guidance, Navigation, and Con-

trol) functions for the aircraft. An SWHM system mon-

itors that software system, the operating system, as well

the aircraft sensor data. In Section 4, we present an

overview of the full system and discuss different failure

scenarios that could be properly diagnosed using our

Bayesian SWHM system. Results of simulation runs are

shown.

Section 5 opens a discussion on specific requirements

as well as techniques and tools for the verification and

validation (V&V) for SWHM as well as the V&V tasks

that have to be performed on the model (i.e., Bayesian

network) and on the actual implementation level. Fi-

nally, Section 6 discusses future work and concludes.

2 Related Work

When taking a broad view, there is much related re-

search in the area of dependable and secure comput-

ing. These techniques can be classified according to the

life-cycle phase in which they are applied [5], see Table

1. The life-cycle phase we are primarily focused on in

software health management is the deployment phase.

Even within this phase there is a number of related

techniques and approaches (see bottom of Table 1); we

base our discussion in this section on a well-established

classification of deployment-phase techniques [5].

2.1 Redundancy-Based Fault Tolerance

Fault tolerance is the ability of a system to preserve,

without external assistance, its correct functionalities in

the presence of faults [60,3,35,45]. Redundancy is one

requirement for achieving fault tolerance [27], and there

are two main techniques for achieving redundancy:

1. Recovery block schemes serialize redundant software

components which have the same function [62,2]. At

any given time, one component is activated, such

that if a fault is detected, an alternative component

is activated to complete the task.

2. N -version schemes utilize redundancy by maintain-

ing N versions of the same algorithm, ideally devel-

oped independently by N programmers [4,13]. At

runtime, all N versions are executed and their re-

sults are compared. The underlying assumption of

this approach is that the probability of two versions

of the program having the same bug is low. There-

fore, the chance of any two versions producing the

same incorrect behavior is very small, and in aggre-

gate the accuracy is improved.

2.2 Checkpointing and Rolling Back

Another approach to software health management is

based on periodically storing the state of a software

system, typically in stable storage. Upon failure, com-

putation can be restarted (rolled back) from the latest

saved state [19,24], which is called a checkpoint [62].
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In software systems with multiple components, a

failure in one component may require rolling back mul-

tiple components to ensure consistency [41]. This sit-

uation may give rise to what is known as the domino

effect [62], in which multiple components are forced to

roll back because of a failure of a root component.

2.3 Runtime Monitoring

Runtime monitoring [69] and runtime verification (e.g.,

[6,7]) are approaches for observing a system’s behavior

and detecting errors. There is a range of runtime mon-

itoring techniques with varying properties [20]. These

techniques include safety property monitoring using lin-

ear temporal logic (LTL) [34] and runtime certifica-

tion [67]. Multiple approaches to performing verifica-

tion tasks on a software system while it is in operation

have been investigated [6,7].

2.4 Trace Analysis

Trace analysis, or log-file analysis, is a technique for

analyzing the behavior of software systems from their

traces [10]. In contrast to runtime monitoring, trace

analysis puts emphasis on analyzing the output gen-

erated by a target system, which could be performed

during or, most often, after the execution of a program

(post-mortem analysis). A variety of methods have been

proposed to deal with the challenge of efficiently ex-

tracting relevant information from potentially large log

files [79,31,30]. Another key challenge in log file anal-

ysis is the automatic construction of a test oracle from
formal specifications of systems, where a test oracle is

a program which determines whether a given system’s

behavior is correct or not [11,22,54,59,64].

2.5 Software Rejuvenation

Long-running software can suffer from the deterioration

of system resources (e.g., memory leaks) and accumu-

lated calculation errors, which may cause a system to

fail. Note that these errors often occur in extremely

rare cases and may be difficult to reproduce, making

them hard to catch during software development. This

phenomenon of decreasing software quality/reliability,

due to long use/running times, is called software/pro-

cess aging [36].

A well-known example of software aging is a failure

in the Patriot missile system’s software systems [8]. A

Patriot missile battery had been running for a long pe-

riod of time and some imperfect rounding mechanism in

the software (a fault) had caused the internal clock to

be off by approximately 0.34 seconds (an error). Such a

discrepancy was enough to cause the system to fail to

intercept a Scud missile, which was moving at approx-

imately 1600 meters per second.2 The idea of software

rejuvenation is to gracefully restart the aging process

at an appropriate time to prevent a fault or an error

from turning into catastrophic failures and to maximize

computing system availability.

2.6 Built-In Test (BIT)

Built-in test is a methodology in which testing is viewed

as an integrated part of software [25,9,84]. This view is

to be contrasted with the conventional approach which

views testing as a separate process to be built and

applied independently of software development. Built-

in test requires developers to embed testing code in-

to the software module or class for which the tests

are intended. This allows the software to operate in

two modes, normal mode and maintenance mode, and

testing code is only activated in maintenance mode.

One of the main advantages of built-in test, especial-

ly when coupled with the object-oriented programming

paradigm, is that it increases test reusability [32,84–86].

For example, built-in tests can be inherited like other

functionalities in object-oriented programming [86].

2.7 Computer Immunology

Computer immunology is an area inspired by immune

systems found in nature (usually the human immune

system) [80,26]. When applied to software health man-

agement, computer immunology is concerned with the

construction of mechanisms that prevent or hinder the

system from being compromised by external agents (e.g.,

viruses or hackers) [33].

Examples of such approaches include the use of pat-

terns in detection of malicious attacks in Windows sys-

tems [51]. An intrusion (a fault) is then determined

by the number of observed sequences not found in the

database. While the detection approach presented in

this example is not complete, it is relatively inexpensive

and can be easily distributed. Moreover, it can poten-

tially provide protection against unseen abnormal ac-

tivities. An immune-system inspired approach for fault

detection and diagnosis in automotive engines has also

been developed [21].

2 http://www.ima.umn.edu/~arnold/disasters/patriot.

html
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2.8 Self-Healing Software

Self-healing software [28,83,39,40,29] is a relatively new

concept that is also inspired by biology. This area of

research is concerned with the construction of mecha-

nisms for automatically detecting and mitigating faults,

and also automatically recovering from a fault state.

For example, a self-healing mechanism for contain-

ing the spread of Internet worms has been developed

[15]. In such a self-healing system, each computer is

equipped with the ability to detect an infection. Once

a computer detects an infection, it broadcasts an alert

to other computers in the network, allowing them to

filter and block future attacks. This mechanism could

effectively limit the spread of the attacks, thus mitigat-

ing the extent of system failure.

2.9 Discussion

The techniques discussed above have some commonal-

ities with software health management, which empha-

sizes fault detection, diagnosis, recovery, and mitiga-

tion. For example, approaches such as runtime monitor-

ing, trace analysis, built-in test and computer immunol-

ogy are typically employed for fault detection and diag-

nosis. Approaches such as redundancy-based fault toler-

ance, checkpointing, and software roll-back are, in con-

trast, typically employed for fault tolerance and fault

recovery. Approaches such as software rejuvenation and

self-healing software are approaches that can assist in

fault mitigation. Similar to many of the above tech-

niques, software health management is also a process

that occurs at run-time, and is particularly important

as it serves to deal with unforeseen situations that were

not envisioned or addressed during the design, develop-

ment, and testing phases.

3 Bayesian SWHM

3.1 Bayesian Networks

Bayesian networks (BNs) represent multivariate prob-

ability distributions and are used for reasoning and

learning under uncertainty [57,18]. They are often used

to model systems of a (partly) probabilistic or uncertain

nature. Roughly speaking, random variables are rep-

resented as nodes in a directed acyclic graph (DAG),

while conditional dependencies between variables are

represented as graph edges (see Figure 1 for an exam-

ple). A key point is that a BN, whose graph structure

often reflects a domain’s causal structure, is a compact

representation of a joint probability table if the DAG is

relatively sparse. In a discrete BN (as we are using for

SWHM in this work), each random variable (or node)

has a finite number of states and is parameterized by a

relatively compact conditional probability table (CPT).

During system operation, observations about the

software and system (e.g., monitoring signals and com-

mands) clamp the states of some of the nodes, so-called

evidence nodes, in an SWHM BN. Various probabilis-

tic queries can be formulated based on the assertion

of these observations to yield predictions or diagnoses

for the system. Common BN queries of interest include

computing posterior probabilities and finding the most

probable explanation (MPE). For example, an observa-

tion about the abnormal behavior of a software compo-

nent could, by computing the MPE, be used to identify

one or more components that are most likely to be in

faulty states (“root causes”).

Different BN inference algorithms can be used to an-

swer these queries. These algorithms include join tree

propagation [42,37,77], conditioning [16], variable elim-

ination [43,88], stochastic local search [55,49,50], and

arithmetic circuit evaluation [17,12]. In resource-boun-

ded systems, including real-time avionics systems, there

is a strong need to align the resource consumption of

diagnostic computation with resource bounds [52,46]

while also providing predictable real-time performance.

The compilation approach—which includes join tree pro-

pagation and arithmetic circuit evaluation—is attrac-

tive in such resource-bounded systems, since it typically

meets those needs.

We note that traditional diagnostics (“flight rules”)

can easily be modeled as a Bayesian network. Here,

many relationships between variables can be described
by functional dependencies, which lead to CPT values

that are only 0 or 1. With our approach, we are thus

able to incorporate flight rules into our models and rea-

son about them. For example, different flight rules (or

even parts thereof) can be “weighted” differently and

their probability of occurring merged in a principled

way. In addition, with an appropriate SWHM model,

the Bayesian network can be exploited for sensor vali-

dation as well as for diagnosis [48].

3.2 Bayesian SWHM Example

The goal of a Bayesian SWHM technique is to detect

and identify active software bugs, which may be software-

only or involve both software and hardware. A distin-

guishing feature of our approach is that we use the well-

established technology of Bayesian networks.

A very simple example of a Bayesian network (Fig-

ure 1) as it could be used in diagnostics is as follows.
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Technique Purposes Automation Resources Completeness

Design and programming methodologies (design/development phase)
Model-based design fault prevention man N/A No
Goal-based operations fault prevention man N/A No
Aspect-oriented programming fault prevention semi-auto N/A No
Recovery-based computing fault prevention, fault tolerance man N/A No

Verification and Validation (V&V) (testing phase)
Testing fault removal man,semi-auto adjustable No
Simulation fault removal auto moderate-high No
Debugging fault removal semi-auto varied No
Numerical analysis fault removal man low No
Model checking fault removal auto high In some cases
Theorem proving fault removal auto high In some cases

Runtime techniques (post-deployment phase)
Redundancy-based fault tol. (Sec 2.1) fault tolerance auto varied No
Checkpointing/roll-back (Sec 2.2) fault tolerance auto varied No
Runtime monitoring (Sec 2.3) fault detection auto minimal No
Trace analysis (Sec 2.4) fault detection, diagnosis auto varied No
Built-in tests (Sec 2.6) fault detection auto minimal No
Software rejuvenation (Sec 2.5) detection, rollback auto minimal No
Computer immunology (Sec 2.7) fault detection, isolation auto usually minimal No
Self-healing software (Sec 2.8) fault detection, compensation auto varied No

Table 1 Classifications of software health management techniques.

Bearing   ok     worn

Bearing   ok         worn 

no            0.9        0.05
yes           0.1        0.95

low         

Bearing Health

ok        0.99

ok 0.95 0.1
0.05         0.9         

worn    0.01

Vibration

Oil Pressure

Fig. 1 Simple Bayesian network. CPT tables are shown near
each node. The discrete states of each node comprise the rows
of the CPT; columns correspond to states of nodes from in-
coming edges.

We have a node Bearing Health (BH) representing

the health of a ball bearing in a diesel engine, a sen-

sor node Vibration (V ) representing whether vibration

is measured or not, and a node Oil Pressure (OP )

representing measured oil pressure. Clearly, the sen-

sor readings depend on the health status of the ball

bearing, and this is reflected by the directed edges.

The degrees of influence are defined in the two Condi-

tional Probability Tables (CPTs) depicted next to the

sensor nodes. For example, if there is onset of vibra-

tion, the belief b(BH 6= ok) increases, more formally

p(BH 6= ok | V = yes) > p(BH 6= ok). To obtain

the health of the ball bearing, we input (or clamp) the

states of the BN sensor nodes and compute the poste-

rior distribution (or belief) over BH. The prior distri-

bution of failure, as reflected in the CPT shown next to

BH, is also taken into account in this calculation.

3.3 Bayesian System Health Models

At a first glance, an SWHM system may look very sim-

ilar to a traditional integrated vehicle health manage-

ment (IVHM) system: sensor signals are interpreted to

detect and identity any faults, which are then report-

ed. Such FDIR systems are nowadays commonplace in

aircraft and other complex machinery. It seems like it

would be straight-forward to attach software to be mon-

itored (application software) to such an FDIR system.

However, there are several critical differences between

FDIR for hardware and software health management.

Most prominently, many software faults do not devel-

op gradually over time (e.g., like an oil leak); rather

they occur instantaneously. Whereas some of the soft-

ware faults directly impact the current software mod-

ule (e.g., when a division-by-zero is detected), there are

situations where the effects of a software fault mani-

fest themselves in an entirely different subsystem, as

discussed in the F-22 example above. For this reason,

and the fact that many software problems occur due to

problematic SW/HW interactions, both software and

hardware must be monitored in an integrated fashion.

Based upon requirements as laid out in Section 1, we

are using Bayesian networks to develop SWHM mod-

els. On a top-level, data from software and hardware

sensors are presented to the nodes of the Bayesian net-

work, which in turn performs its reasoning (i.e., updat-

ing the internal health and status nodes) and returns

information about the health of the software (or spe-

cific components thereof). The information about the
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health of the software is extracted from the posteri-

or distribution, specifically from the Bayesian network

health nodes.

3.4 Hardware and Software Sensors

Information that is needed to reason about application

software health must be extracted from the software it-

self as well as from all components that interact with it.

Examples of this include hardware sensors, actuators,

the operating system, middleware, and the computer

hardware. Different software sensors provide informa-

tion about the software on different levels of granular-

ity and abstraction. Table 2 gives an impression of the

various layers of information extraction.

The SWHM gets a reasonably complete picture of

the current situation only if information from different

levels is made available. Such multi-level information

therefore becomes an enabling factor for fault detec-

tion and identification. Information directly extracted

from the application software (Table 2, top) provides

very detailed and timely information. However, this in-

formation might not be sufficient to identify a failure.

For example, the aircraft control task might be work-

ing properly (i.e., no faults show up from the software

sensors). However, some other task might consume too

many resources (e.g., CPU time, memory, etc.), which

in turn can lead to failures related to the control task.

We therefore extract a multitude of different, usually

readily available, information about the software. This

information can be of continuous or discrete nature and

usually is provided at different rates. Therefore, signif-

icant preprocessing of the sensor signals is important.

3.5 Processing of Sensor Data

In our modeling approach, we chose to use so-called

static Bayesian networks, which do not reason about

temporal sequences (i.e., dynamic Bayesian networks).

Therefore, all sensor data, which are usually time se-

ries, must undergo a preprocessing step, where certain

(scalar) features are extracted (Figure 2). We use stan-

dard techniques for extracting features from time se-

ries, e.g., sliding window algorithms for calculation of

mean values, maximal values, rates, or integrals. A Fast

Fourier Transform is used to detect recurrent behav-

ior (e.g., oscillation). Model-specific feature extraction

using state estimation with Kalman filters or particle

filters is possible, but has not been exploited in this pa-

per. The extracted feature values are then, as we are

using discrete BNs, discretized with given fixed thresh-

olds into symbolic states (e.g., low and high) before

GN&C Software
errors flagged errors and exceptions
memsize available memory
quality signal quality
reset filter reset (for navigation)

Software Intent
fs write intent to write to FS
fork intent to create new process(es)
malloc intent to allocate memory
use msg intent to use message queues
use sem using semaphores
use recursion using recursion

Sensors and Actuators
sensor signals signals from hardware sensors
actuator signals command signals to actuators

Operating System
cpu CPU load
n proc number of active processes
m free available system memory
d free percentage of free disk space
shm size of available shared memory
l msgqueue length of message queues
sema information about semaphores
realtime missed deadlines
n intr number of interrupts

Table 2 SWHM information sources that are representative
of inputs (i.e., evidence) to our Bayesian software health man-
agement approach.

being presented to the BN. We do not use continuous

values and probability density functions as inputs to

our Bayesian networks.

Analysis

Extraction

Feature

D
is

cr
et

iz
ti

o
n

Bayesian

Network

sensor signals

time series

discrete values
State

Estimation

FFT

Fig. 2 From continuous sensor readings to input for Bayesian
SWHM model: Feature extraction from time-series sensor da-
ta, discretization, and input to Bayesian network (or Arith-
metic Circuit) SWHM model as evidence. For simplicity, dis-
crete sensor readings and commands that are not discretized
are not shown here, even though they are also input to our
Bayesian SWHM model.
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3.6 Constructing the Model

Nodes. Our Bayesian SWHM models are set up using

several kinds of nodes. All nodes are discrete, i.e., each

node has a finite number of mutually exclusive and ex-

haustive states. Figure 3 shows the different node types

and their connectivity.

CMD node C: Signals sent to these nodes are handled

as ground truth and are used to indicate commands,

actions, modes, or other (known) states. For exam-

ple, a node Write File System represents that an

action, which eventually will write some data into

the file system, has been commanded. In Figure 7,

Write File System is an example CMD node. It is

used to input, to the BN, a file system operation.3

The CMD nodes are root nodes (have no incoming

edges); see Pearl’s discussion of interventions [58].

During the execution of the SWHM model, these

nodes are always directly connected (clamped) to

the appropriate command signals.

SENSOR node S: A sensor node S is an input node

similar to the CMD node. The data fed into this

node is sensor data, i.e., measurements that have

been obtained from monitoring the software or the

hardware. Thus, this signal is not necessarily cor-

rect. It can be noisy or wrong altogether. There-

fore, a sensor node is typically connected to a health

node, which describes the health status of the sen-

sor node (see Figure 3). In another example in Fig-

ure 7, S File System and S Queue length are ex-

ample SENSOR nodes, used to input (to the BN)

the readings of sensors that reflect the status of the

file system and the length of the message queue, re-

spectively.

HEALTH node H: A health node reflects the health

status of a sensor or component. The posterior prob-

abilities of the health nodes comprise the output

of an SWHM model. A health node can be binary

(with states, say, ok or bad), or can have more states

that reflect health status at a more fine-grained lev-

el. Health nodes are usually connected to sensor

and status nodes. In Figure 7, H File System and

H Msg queue are example HEALTH nodes, used to

compute and output the health status of the file

system and the message queue, respectively.

STATUS node U : A status node reflects the (unobserv-

able) status of a software or hardware component or

subsystem. Examples of STATUS nodes in Figure 7

are U File System and U Msg queue. They reflect

3 If there is a reason that this command signal is not reli-
able, the command node C is used in combination with a H
node to impact state U (Figure 3) as further discussed below.

the internal status of the file system and the mes-

sage queue, respectively.

BEHAVIOR node B: Behavior nodes connect sensor,

command, and status nodes and are used to rec-

ognize certain behavioral patterns. The status of

these nodes is also unobservable, similar to the sta-

tus nodes. However, usually no health node is at-

tached to the behavioral nodes. In Figure 7, Delay

is an example BEHAVIOR node.

CMD and SENSOR nodes are observable (in other

words, input or evidence) nodes; all other nodes are un-

observable. The posterior distribution over the HEALTH

nodes makes up the essential output for our model.

Our approach inherently handles the identification

of multiple faults. Specifically, this is enabled by the

inclusion of multiple HEALTH nodes in a model. For

example, the model in Figure 7 has two health nodes,

H File System and H Msg queue. Each health node con-

tains multiple states, and the states can be partitioned

into healthy (or normal) states and faulty (or abnor-

mal) states. A fault state constitutes a root cause for

observed abnormal behavior. In the simplest case, a

health node has two states representing healthy and

faulty behavior respectively. For example, in Figure 1

the health node has two states ok and worn.

Strictly speaking, only input (CMD and SENSOR)

nodes and output (HEALTH) nodes are needed in a

Bayesian SWHM model. The other node types have

been found to be useful but are not required. Employing

only CMD, SENSOR, and HEALTH nodes, one would

typically create a bipartite BN in which HEALTH nodes

are root nodes, SENSOR nodes are leaf nodes, and

CMD nodes are either root nodes or leaf nodes. The

benefit of going beyond CMD, SENSOR, and HEALTH

nodes is that it often leads to SWHM models that are

more natural and perform better, both in terms of ac-

curacy and computational speed.

The following informal way to think about edges in

Bayesian networks are useful for knowledge engineering

purposes: an edge (arrow) from node X to node Y in-

dicates that the state of X has a (causal) influence on

the state of Y . More generally, the types of influences

typically seen in SWHM BNs are as indicated by the

following patterns (see Figure 3):

{H,C} → U represents how status U may be command-

ed through command C, which may not always work

as indicated. This is reflected by the health H of the

command mechanism’s influence on the status.

{C} → U represents how the status U may be changed

through command C; the health of the command

mechanism is not explicitly represented. Instead, im-

perfections in the command mechanism can be rep-

resented in the CPT of U .
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{H,U} → S represents the influence of system status

U on a sensor S, which may also fail as reflected in

H. We use a sensor to better understand what is

happening in a system. However, the sensor might

give noisy readings; the level of noise is reflected in

the CPT of S.

{H} → S represents a direct influence of system health

H on a sensor S, without modeling of status (as is

done in the {H,U} → S pattern). An example of

this approach is given in Figure 1.

{U} → S represents how system status U influences a

sensor S. Sensor noise and failure can both be rolled

into the CPT of S.

S

C U

H_S

H_U

Fig. 3 Example pattern of nodes and edges in an SWHM
Bayesian network. Here, the observable nodes are a COM-
MAND node C and a SENSOR node S. HEALTH nodes are
HS (for the sensor) and HU (for the STATUS node U). Note
how the HEALTH nodes have no parents and are indepen-
dent given no evidence, but are conditionally dependent given
evidence S = s. Evidence in the form of a COMMAND C = c
does not, on the other hand, create conditional dependency
between the HEALTH nodes.

Once the nodes and edges are in place, the condi-

tional probability tables (CPTs) need to be considered.

The CPT entries are set based on a priori and em-

pirical knowledge of a system’s components and their

interactions [65,47]. This knowledge may come from dif-

ferent sources, including (but not restricted to) system

schematics, source code, analysis of prior software fail-

ures, and system testing. As far as a system’s individual

components, mean-time-between-failure (MTBF) statis-

tics are known for certain hardware components, how-

ever similar statistics are not well-established for soft-

ware. Consequently, further research is needed to deter-

mine the prior distribution for health states, including

bugs, for a broad range of software components. As far

as the interaction between a system’s components, CPT

entries can also be obtained from understanding com-

ponent interactions, a priori, or testing how different

components impact each other.

As an example, consider a testbed like NASA’s ad-

vanced diagnostic and prognostic testbed (ADAPT) [61],

which provides both schematics and testing opportu-

nities. Using a testing approach, one may inject spe-

cific states into the navigation system and record the

impact on states of the guidance system, and perform

statistical analysis, in order to guide the development

of CPT entries for the guidance system. Setting of soft-

ware component CPTs to reflect their interactions with

hardware can be conducted in a similar way. Clearly,

the well-known limitations of brute-force testing apply,

and when this occurs one needs to utilize design arti-

facts, system schematics, source code, and other sources

of knowledge about component interactions to devel-

op CPTs. Typical frequencies of operations or inter-

nal states should be modeled in detail for the SWHM

model to improve reasoning accuracy. For example, in

a system, where there are only very infrequent writes

into the file system, a low probability p(writeFS) (com-

pared to p(readFS) which is almost 1) would enable the

Bayesian network to disambiguate failures related to er-

roneous writes into the file system against, for example,

other software problems or hardware errors.

The knowledge engineering process employed to con-

struct the BNs involves different tasks, which are part-

ly manual and partly automatic. The construction part

typically starts from the sensors and commands avail-

able as well as the required health states. It is then

a matter of creating a BN structure; the patterns dis-

cussed above provide helpful heuristics. If there is no

or minimal structure, or it is difficult to come up with,

a bipartite BN can be created as discussed above. Al-

though it has been demonstrated that Bayesian health

models for monitoring an electrical power distribution

system can be generated automatically [47], the situa-

tion appears to be different for the monitoring of soft-

ware. An automatically generated health model for the

software (e.g., derived from a Simulink model) would

likely be too low-level and large for reasoning purposes.

Furthermore, the health of individual calculation steps

would be of limited use.

A good starting point for the generation of a model

could be system and software requirements as well as

fault trees. Requirements in the form of flight rules, for

example, can be transformed into a Bayesian network

as discussed above. In a similar manner, fault trees can

be translated into Bayesian networks (see, e.g., [14] for

a possible approach). As structural and architectural

information has to go into model construction, a fine

line between details and abstraction has to be walked;

this requires manual modeling work.



10 Johann Schumann et al.

3.7 Compilation to Arithmetic Circuits

In our approach, we compile Bayesian networks into

arithmetic circuits. An arithmetic circuit is a compact

representation of a network polynomial. More specif-

ically, an arithmetic circuit (AC) is a DAG in which

leaf nodes represent variables (parameters and indica-

tors) while other nodes represent addition and multi-

plication operators. Size, in terms of the number of AC

edges, is a measure of the complexity of inference. Un-

like tree-width, a coarser complexity measure, AC can

have significantly reduced complexities, as an AC can

take advantage of BN determinism and local structure

during compilation, reducing the complexity of infer-

ence [12].

Our example network in Figure 1 represents the

joint probability p(BH,V,OP ) and is shown in Table 3.

For simplicity, we replace all CPT entries with θx (i.e.,

θok ↔ “BH is ok,” and θ∼ok ↔ “BH is worn”). Here,

we also use indicators λx to incorporate evidence when

the state of a variable is observed [18], where λx = 1 if

x is consistent with our observations and λx = 0 if x is

inconsistent with our observations.4

BH V OP p(BH,V,OP )
ok v op λokλvλopθv|okθokθop|ok
ok v ∼op λokλvλ∼opθv|okθokθ∼op|ok
ok ∼v op λokλ∼vλopθ∼v|okθokθop|ok
ok ∼v ∼op λokλ∼vλ∼opθ∼v|okθokθ∼op|ok
∼ok v op λ∼okλvλopθv|∼okθ∼okθop|∼ok

∼ok v ∼op λ∼okλvλ∼opθv|∼okθ∼okθ∼op|∼ok

∼ok ∼v op λ∼okλ∼vλopθ∼v|∼okθ∼okθop|∼ok

∼ok ∼v ∼op λ∼okλ∼vλ∼opθ∼v|∼okθ∼okθ∼op|∼ok

Table 3 Probability distribution for p(BH,V,OP )

According to this joint probability distribution ta-

ble, the first row (λokλvλopθv|okθokθop|ok) is represent-

ing the probability that the health of the ball bearing

is okay (BH = ok and λok = 1) and that vibrations

and good oil pressure are observed (V = v, OP = op

and λv = 1, λop = 1). Given the corresponding nu-

merical CPT entries, this probability is calculated as

θv|okθokθop|ok = 0.1× 0.99× 0.95 = 0.09405, indicating

a very low degree of prior belief in such a state. On the

other hand, the third row (λokλ∼vλopθ∼v|okθokθop|ok)

representing the probability that the ball bearing is

okay (BH = ok and λok = 1), and there are no vi-

brations and good oil pressure (V = ∼ v, OP = op and

λ∼v = 1, λop = 1) is much higher (85%) and is com-

4 For example, if we observe a vibration on sensor V , then
λv = 1 and λ∼v = 0; if we observe no vibration on sensor V ,
then λ∼v = 1 and λv = 0; if we have not yet observed the
sensor V , we leave λv = 1 and λ∼v = 1

puted as follows: θ∼v|okθokθop|ok = 0.9 × 0.99 × 0.95 =

0.84645.

Posterior marginals can be computed from the joint

distribution:

p(BH,V,OP ) =
∏
λx

λx
∏
θx|u

θx|u

where θx|u are the parameters of the Bayesian network,

i.e., the conditional probabilities that a variable X is in

state x given that its parents U are in the joint state

u, i.e., p(X = x | U = u). Further, λs are indicators

that indicate whether or not state s is consistent with

the observations.

Taking the sum of all individual joint distribution

entries yields a multi-linear function, referred to as the

network polynomial f [17]:

f = λokλvλopθv|okθokθop|ok+

λokλvλ∼opθv|okθokθ∼op|ok+

λokλ∼vλ∼opθ∼v|okθokθ∼op|ok+

λokλ∼vλopθ∼v|okθokθop|ok+

λ∼okλvλopθv|∼okθ∼okθop|∼ok+

λ∼okλ∼vλopθ∼v|∼okθ∼okθop|∼ok+

λ∼okλvλ∼opθv|∼okθ∼okθ∼op|∼ok+

λ∼okλ∼vλ∼opθ∼v|∼okθ∼okθ∼op|∼ok,

or in other words

f =
∑
x

∏
λx

λx
∏
θx|u

θx|u

where the summation is over assignments x of all vari-

ables X, i.e., each row of the joint probability table.

When there are no observations, this summation will

evaluate to one.

An arithmetic circuit is a compact representation

of a network polynomial [18], which clearly are expo-

nential in size and thus unrealistic in the general case.

Answers to probabilistic queries, including marginals

and MPE, are computed using algorithms that operate

directly on the arithmetic circuit. A bottom-up pass

over the circuit, from input to output, evaluates the

probability of a particular evidence setting (or clamp-

ing of λ parameters). And a subsequent top-down pass

over the circuit, from output to input, computes partial

derivatives. From these partial derivatives one can com-

pute many marginal probabilities, provide information

about how change in a specific node affects the whole

network (sensitivity analysis), and perform MPE com-

putation [17,18].
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4 Case Study: Aircraft Control System

4.1 System Architecture

In order to conduct realistic experiments, we used a sim-

ulation of a real-time architecture platform reflective of

timing and memory constraints of real-time execution

in embedded systems. All flight software simulations,

including AC computation, have been implemented in

C, and a real-time operating system emulator for OS-

EK,5 Trampoline,6 was used. While the OSEK Real-

Time Operating System (RTOS) is mostly used in the

automotive industry, we decided on this RTOS plat-

form rather than other RTOSes well established in the

aerospace industry such as Wind River’s VxWorks7 or

GreenHills’ INTEGRITY8 because its basic functional-

ities and availability were sufficient for the purpose of

our experiments [76].

System Processes. The experiments are run on an RTOS

emulator, which schedules the flight software and SW-

HM processes to run at fixed rates. For simplicity, the

simulation model of the plant was integrated into a sin-

gle task running as one of the scheduled OSEK tasks

(see Figure 4). Hardware actuators and sensors are not

modeled in detail in order to avoid addition of drivers

and interrupts routines. This experimental architecture,

notwithstanding its simplicity, is sufficient to run sim-

ple simulations of aircraft dynamics and GN&C soft-

ware within real-time requirements (fixed time slots,

fixed memory, inter-process communication, shared re-

sources).

Our architecture consists of the following three rele-

vant tasks: the controller or GN&C (Guidance, Naviga-

tion and Control) task; the plant (aircraft or spacecraft)

task; and the inference engine SWHM task. The aircraft

plant task simulates a simplified aircraft model whose

state space is characterized by its Euler angles, veloci-

ty, acceleration, fuel mass, and altitude estimation. The

simulated fighter jet incorporates guidance, navigation,

and control software into a single controller task imple-

mented in C [76]. The plant task is run by the RTOS

every 20ms; the GN&C task and the SWHM inference

engine are run every 500ms. Listing 1 shows how our

SWHM is integrated as an OSEK task. This task, which

is scheduled to run every 500ms first reads sensor val-

ues, preprocesses them (not shown), and inputs them

as evidence (observe()) to the Arithmetic Circuit. Then

5 Open Systems and their Interfaces for the Electronics in
Motor Vehicles; http://www.osek-vdx.org/
6 http://trampoline.rts-software.org/
7 http://www.windriver.com
8 http://www.ghs.com

proper reasoning is carried out in several steps by eval-

uating and differentiating the Arithmetic Circuit, up-

dating the network nodes, and extract the posteriors of

the health nodes, which are placed back into the system

memory. All accesses to the global memory have to be

protected by calls to the OSEK functions GetResource

and ReleaseResource.

Listing 1 Code for core functionality of the SWHM execu-
tive as an OSEK task, which includes operations on the arith-
metic circuit model (compiled from the Bayesian network).

TASK( T iswhm 500ms ) {
t iswhm data mySWHM data ;
t ISHWM posteriors mySWHM posteriors ;

GetResource ( g l o b a l d a t a ) ;
mySWHM data = SWHM data ;

ReleaseResource ( g l o b a l d a t a ) ;
preProces s (mySWHM data ) ;
observe ( varIndex ( ” Sensor Fi l eSystem ” ) ,

mySWHM data . s enso r . sensor FS ) ;
. . .
eva luate ( ) ; d i f f e r e n t i a t e ( f a l s e ) ;
e va lua t i onResu l t s ( ) ;
mySWHM posteriors = g e t P o s t e r i o r s ( ) ;
getResource ( g l o b a l d a t a ) ;

SWHM posteriors = mySWHM posteriors ;
Re leaseResource ( g l o b a l d a t a ) ;
TerminateTask ( ) ;

}

System Architecture. The complete SWHM development

process and system architecture implemented to run ex-

periments is depicted in Figure 4. The SWHM model of

the whole aircraft system was developed as a Bayesian

network using the tool SamIam9 and compiled into an

arithmetic circuit, using UCLA’s ACE10 Arithmetic Cir-

cuit compiler package. The resulting data structure is

integrated with the rest of the system (tasks includ-

ing controller, plant, and the inference engine) running

on the OSEK operating system. The Bayesian network

model is compiled offline into an Arithmetic Circuit

serving as the knowledge base—amortizing compilation

overheads with real-time execution in the running sys-

tem.

4.2 Experimental Scenarios

Based on well-known actual software-related incidents

in the area of aerospace systems [81,75], a number of

relevant scenarios were designed for the purpose of con-

ducting experiments with our implementation of the

SWHM approach. The most relevant scenarios include:

– file system related faults,

9 http://reasoning.cs.ucla.edu/samiam/
10 http://reasoning.cs.ucla.edu/ace/
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ISWHM

(Knowledge Base)

Arithmetic Circuit

SWHM

RTOS Emulator
(OSEK/Trampoline)

Arithmetic Circuit
Inference Engine

GN&C
Guidance
Navigation

Control

Network
Bayesian

Diagnosis

Fig. 4 System Architecture and process for aircraft/space-
craft SWHM: the Bayesian Network model is compiled into an
arithmetic circuit representing the knowledge base. The OS-
EK real-time operating system schedules three main tasks:
the controller, the plant, and the SWHM inference engine.

– digital signal processing and handling faults,

– IMU or compromised GPS integrity navigation faults,

– software signal inversions/crossing,

– dead-band overlapping faults,

– signal bias/quality faults,

– resource allocation faults,

– non-matching signal ranges,

– priority inversion faults,

– transient signals faults,

– Euclidean geometry navigation faults,

– dateline crossing faults, and

– Euler angle computation faults.

In the following sections we will, in detail, discuss three

fault scenarios: aircraft file system-based faults, signal

handling faults, and navigation faults due to IMU fail-

ure or compromised GPS integrity.

4.2.1 Scenario I: Aircraft File System-based Faults

Many aircraft systems rely on subsystem communica-

tion through MIL-STD-1553 bus controllers, which can

also hold messages in a buffer before transmission to

the target terminal. Some real-life incidents involving

aerospace systems, such as the failure of the Mars rover

Spirit due to continuous reboot, have been caused by

software failure of on-board data storage or file sys-

tems. The incident involving the Mars rover Spirit was

attributed to an overflow of the embedded storage file

that resulted in a reboot cycle [1]. Such incidents moti-

vate the simulation of file system related fault scenar-

ios for SWHM demonstration purposes. These scenarios

are based on a simulated file system and involve delay,

overflow, and similar problems. For example, writing

to a full file system or buffer might have ripple effects

throughout an avionics system by causing delays in sub-

system communication, which again may result in in-

duced aircraft oscillations, shutdowns, or other faults.

For our experimental purposes, a flawed software archi-

tecture was designed with a global message queue that

buffers all sensor, controller, and science camera sig-

nals, and logs them in the on-board file system before

transmitting (Figure 5).

File

Guidance
Navigation
Control

RTOS Emulator

(OSEK/Trampoline)

Message
Queue

Science
Camera

Transmitter

System

GN&C

Fig. 5 Software architecture for file system related fault sce-
narios.

Network

Rest of Bayesian SWHM

H_pitch

H_SW

H_accel

pitch_up

pitch_dwn pitch_dwn

pitch_up

S_accel

C_

C_

U_

U_

Fig. 6 Bayesian SWHM model (excerpt) for basic pitch dy-
namics.

The SWHM model. Figures 6 and 7 show the relevant

excerpts from our SWHM model for this scenario. Where-

as the network in Figure 6 focuses on the basic mecha-

nisms of pitching up and down, together with the IMU

accelerometer sensor, Figure 7 deals with the part of

the system consisting of the file system and the mes-

sage queue.
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The SWHM model for the monitoring of pitching

(Figure 6) receives inputs from the flight control sys-

tem (commands C pitch up and C pitch dwn). The ac-

celerometer is the only sensor input in this network.

Since it can fail, it has an associated health node H accel.

The given commands influence the (unobservable) pitch-

up and pitch-down states of the aircraft, which, in turn

have an influence on the acceleration (if the aircraft

pitches up, an increased acceleration can be measured).

Health and consistency of the pitch states is controlled

by the health nodes for the pitch mechanism and soft-

ware health H SW.

The software sensor nodes for the Bayesian SWHM

model for the file-system relevant parts (Figure 7) are

again located on the left-hand side of the network: a

sensor to detect writes to the file system, a sensor pro-

viding information on how full the file system is (with

states: empty, medium, almost-full, and full). A sim-

ilar sensor (S Queue length) provides information for

the message queue. Finally, S Delta queue receives in-

formation if the length of the message queue is increas-

ing or decreasing. The oscillation sensor in this SWHM

uses accelerometer or IMU data as raw inputs. During

preprocessing, a Fast Fourier Transform is used to ob-

tain the current frequency spectrum of vibrations and

oscillations. Oscillations are detected if the amplitude

of the low-frequency content is above a given threshold.

Our SWHM system has to detect and disambiguate

faults through real-time automated reasoning in differ-

ent failure scenarios such as the ones reported in [76]:

– A sudden induced oscillation of the aircraft occurs,

but there are no pilot inputs. The underlying causal

scenario, which our SWHM system has to detect is

the following: the on-board file system or data stor-

age is almost full. Writing the messages in the mes-

sage queue thus takes substantially more time and

causes delays in the control loop, which eventually

start dangerous oscillations of the entire aircraft. In

this scenario, the reasoning capability of our SW-

HM system is critical, as oscillations occur in the

aircraft, though the root cause originated in the file

system. Furthermore, no single component raised an

error flag.

– The source of oscillation might also be pilot inputs.

The SWHM reasoner is to disambiguate by evaluat-

ing whether the fault is due to Pilot Induced Oscil-

lations (PIOs) or rather one or more flight software

failures. For our experiments, the SWHM monitors

pilot’s control stick movements (not shown in Fig-

ure 7) because PIO might result from faulty flight

software where gain parameter values are incorrect-

ly preprocessed, for instance.

– In a science Unmanned Aerial System (UAS), sig-

nals may be dropped or system delays may result

from the science camera taking a large number high-

resolution images that need to be sent by a trans-

mitter with inappropriate bandwidth. Our SWHM

model needs to detect such failures involving re-

source competition and blocking. Non-trivial rea-

soning is important, because such failures can man-

ifest themselves in seemingly non-related manners

(aircraft oscillation, for example). The SWHM mod-

el needs to disambiguate between a message queue

overflow resulting from non-matching transmit re-

ceive rates during high activity, bugs in the flight

software itself, or failure of the unit’s hardware.

Error

Delta_queue

Oscillation

File_System

Queue_length

File_System

File_System

Msg_queue

Delay

Oscillation

Msg_queue

Rest of Bayesian SWHM

Network

S_

S_

S_

S_

U_ H_

H_

U_

File_System_

File_System

Write_

S_

Fig. 7 Bayesian SWHM model (excerpt) for file-system and
message-queue related software components.

Experiments and Results. Experimental runs show that

the system being monitored runs fine in the nominal

case as shown in Figure 8. Several pitch commands

are given by the flight management system (top pan-

el), which result in stretches of positive and negative

vertical speed and which increase or decrease the air-

craft’s altitude (middle panel). Pitch commands and ac-

celerometer signals, which are input to the health model

as shown in Figure 6, result in the posterior probabil-

ities shown in the bottom panel. A value close to 1

indicates that the accelerometer, the pitch component,

and the control software are healthy.
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Fig. 8 Temporal trace for the nominal case of file system
based scenarios. The degree of belief in the health of the sys-
tem software, in blue graph in the bottom panel, remains
high.

In an illustrative file system-induced fault scenario

[76], the flight controller pitch-up and pitch-down com-

mands to the aircraft plant are affected by faults origi-

nating in the file system, causing the aircraft to oscillate

up and down rather than maintaining the desired alti-

tude. For the purpose of our experiments, we set the file

system to almost full at the start of the run (which will

cause commands to accumulate in the message queue),

no additional pilot inputs were assumed, and the pitch

and accelerometer systems were assumed to work with

no or negligible faults.

As the system runs and control input commands

are issued and logged, delays in executions start taking

place after 30 time units (Figure 9). Eventually, alti-

tude oscillations are detected by a Fast Fourier Trans-

form and reflected by the altitude sensor as shown in

the middle panel of Figure 9. The SWHM then infers

that the posterior probability of nominal health of the

software is low, as the probability substantially drops

while the health of pitch and accelerometer systems are

mostly high despite some transient lows. This indicates

a low degree of belief in the health of the software and

that the most likely cause of oscillations would be a

software fault. Note that in this scenario the health of

the file system H File System and of the message queue

H Msg queue, when considered individually, do not drop

significantly.

4.2.2 Scenario II: aircraft/UAS Signal handling faults

Inappropriate software signal handling, such as han-

dling erroneous data due to values outside the valid

range, can have catastrophic impacts as the Ariane-
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Fig. 9 Temporal trace for a file system related fault scenario
resulting in oscillations. The SWHM inference engine’s eval-
uation indicate that the degree of belief in the health of the
system’s software (blue in bottom panel) substantially drops
when oscillations are detected at about t = 100, after over-
flow of the file system resulted in commands stalling in the
message queue and delayed pitch up and pitch down com-
mand signals from the controller. Readings from the altitude
sensor(blue in middle panel) show oscillating altitude starting
at about t = 30s.

V incident dramatically illustrates [87]. Defective soft-

ware has also led to incidents as experienced by Qantas

Flight 72 Airbus A330-300’s “sudden [uncommanded]

nose down” caused by defective control software in its

Air-Data Inertial-Reference Unit (ADIRU) [68]. These

incidents motivate experiments with a fault scenario in-

volving the control software’s inappropriate handling of
signals from a radar altimeter; we use simulated digital

signal processing (DSP) and Inertial Measurement Unit

(IMU) software for the purpose of SWHM demonstra-

tion. In this scenario (Figure 10) the Radar Altimeter

input signals are received and processed by signal han-

dling software within the digital signal processing task.

The signal handling software feeds the processed signals

to the Auto-Lander software system’s IMU, which will

use a Kalman filter altitude estimation in order to plan

a smooth descent of the aircraft. In addition, the esti-

mated output state of the IMU is corrected over time

with input from Global Positioning System (GPS) navi-

gation, to correct integrated errors inherent to the IMU

state estimation. In our simulation, the divergence be-

tween IMU and GPS is also tracked through additional

software (U IMU vs GPS conv node in the Bayesian net-

work model). A separate software module—similar to

a Watchdog timer—monitors whether the output state

vector from the IMU reaches some short term goals

within a time limit in its waypoint trajectory after the
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Auto-Lander system is engaged and the plant’s descent

glideslope is initiated.

Depending on the environment, the terrain, and hard-

ware health, the Radar Altimeter will send good or

bad (noisy) input signals to the DSP’s signal handling

software. However, the software handling the radar al-

timeter signal might have some undetected engineer-

ing defects. For the purpose of our demonstration, that

software can fail in the presence of very noisy input sig-

nals and resort to using the last good altimeter reading.

This injected fault is modeled in spirit after an actual

mishap with an AV-8B Harrier fighter jet’s AutoLan-

der at NASA Ames Research Center (ARC) (personal

communication). That software problem almost caused

a crash during a flight test when the radar altimeter

failed at a low altitude (≈ 20 meters) while on an an

Auto-Lander descent. The DSP signal handling soft-

ware kept returning the last good reading of 20 meters,

while the aircraft actually kept descending to lower alti-

tudes as the Auto-Lander assumed it was still 20 meters

off ground. A crash was averted by the pilot taking over

control a few feet from the ground based upon visual

localization and cues.

Estimation

Kalman
filter

GPS

GPS

satellites
Radar

altimeter
processing

signal
DSP

IMU

State

Fig. 10 Signal Handling fault scenario.

The SWHM model. For this case study, the system ar-

chitecture to be monitored was modeled with a Bayesian

network as shown in Figure 11 (excerpts). The relevant

nodes are as follows:

– Auto-pilot/Take-off/Landing Control command sen-

sor node ( for simplicity not shown in Figure 10)

– Radar altimeter status, sensor, and health nodes

– Signal handling control software health node

– IMU navigation confidence (Kalman filter altitude

estimation) sensor node

– IMU navigation health node

– Radar noise status and sensor nodes

– GPS navigation software health node (and relevant

GPS nodes)

– IMU and GPS divergence node

– Terrain irregularity grade

Radar

Nav

Kalman
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U_IMU/GPS
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Fig. 11 Bayesian SWHM model for UAS signal handling
(Section 4.2.2 and GPS navigation (Section 4.2.3) (excerpts).

The SWHM inference engine uses evidence from hard-

ware and software sensor nodes, along with the SWHM

model, to compute in real-time beliefs that reflect:

– whether the altitude estimated from the IMU (with

Kalman filtering) is likely to be correct or not,

– whether to initiate altitude estimation from backup

control software fed with GPS information rather

than the IMU (and Kalman filtering) control soft-

ware,

– whether the DSP signal handling software health

affects altitude estimation,
– whether altitude estimation is affected by hardware

health, and

– whether the GPS navigation software or the IMU

navigation software is the likely cause of the ex-

cessive divergence or convergence of both measure-

ments.

In cases such as the specific incident involving Qan-

tas Airbus A330-300 mentioned above, SWHM would

be an approach to evaluate the likelihood that control

software such as the Air-Data Inertial-Reference Unit

(ADIRU) is failing and provide real-time diagnosis and

mitigating solutions. The following three experimental

scenarios can be run with this architecture:

– The aircraft cruises at low altitude over very irregu-

lar terrain and the Auto-Lander is engaged for ver-

tical landing. The radar altimeter signals have much

noise, which might cause signal processing and han-

dling to fail and feed erroneous input to the IMU

for state estimation.
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– The Auto-Lander is engaged and the craft’s descent

glideslope is initiated, but the IMU output state’s

altitude is inconsistent with expected values and

GPS navigation.

– The GPS navigation state experiences a relative lo-

cation jump and excessive lock satellite signal strength

(possibly from spoofing, see Section 4.2.3), which re-

sults in inconsistent values or divergence IMU and

GPS state estimation.

Experiments and Results. Experimental runs of the faulty

signal handling scenario previously discussed—which

includes the first two scenarios above—show that the

system being monitored runs fine in the nominal case

as shown in Figure 12. In the nominal case, when the

radar signals have low noise, assuming hardware, IMU

and GPS navigation have no faults, the SWHM in-

ference engine reports—given reasoning from sensory

evidence—a high degree of belief in the health of the

signal processing and handling software and relative-

ly good health of the IMU and GPS navigation. The

degrees of belief in the health of the IMU and GPS

(Figure 11 nodes H IMU and H GPS respectively) are not

as high as the belief in the health of the signal han-

dling software (node H SigHandling). This is due to

the conditional relationship of IMU and GPS, see the

BN structure in Figure 11.
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Fig. 12 Temporal trace for the nominal case of Signal Han-
dling scenarios. When the auto-lander is engaged and the
glideslope initiated (top panel) from an initial altitude of
5000ft around time t = 105s, the IMU returns an altitude
estimation closely matching the aircraft’s physical altitude.
The degrees of belief in the signal handling software, IMU,
and GPS navigation’s health remain high (bottom panel). A
short glitch in Radar signal handling (t = 30s) does not affect
the health of the other navigation components.
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Fig. 13 Temporal trace for Signal Handling related fault
causing erroneous IMU altitude estimation. Around time
t = 111s the IMU altitude estimate increasingly diverges from
the plant actual altitude and erroneously indicates a constant
altitude of about 4080ft. The belief in the health of the signal
handling software remains high for approximately another 20
time units. Eventually, the SWHM inference engine reports a
substantial drop in the belief in the health of the signal han-
dling software after observation of further sensory evidence
(bottom panel). CLose to t = 140s, further drop in this belief
is indicated when excessive IMU and GPS navigations diver-
gence is observed. But the beliefs in GPS and IMU health rise
as the SWHM performs reasoning from all observed evidence
so far.

It can be observed in the second panel of Figure 12

that in the nominal case when the Auto-Lander is en-

gaged and the glideslope initiated from initial altitude,

the IMU returns an altitude estimate that is mostly

close to the actual plant altitude except for a some de-

viations accounted for by estimation error (due to the

sensors’ Gaussian error distribution, for instance). And

the degrees of belief in the health of the signal han-

dling software, the IMU, and GPS navigation remain

relatively high.

We next study an off-nominal situation illustrated in

Figure 13, when noise is injected into the radar altime-

ter’s signals. For this experiment, the signal handling

software is flawed and fails on the very noisy input at

some point. The IMU altitude estimate starts to signif-

icantly diverge from the actual altitude as the radar al-

timeter reading is stuck at a previous altitude(4,080ft).

The SWHM inference engine still reports a high degree

of belief in the health of the signal handling software for

about another 20 time units until further sensory evi-

dence is observed, especially when the watchdog-timer

raises a missed deadline flag. Given this additional sen-

sory evidence, the SWHM inference engine reports a

significant drop in the degree of belief in the health of
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the signal handling software, as can be seen in the bot-

tom panel of Figure 13. This belief drops even further

upon observation of excessive divergence between ac-

tual IMU and GPS estimates and the expected values

as provided by the IMU/GPS estimation. Meanwhile,

the degrees of belief in GPS and IMU health rise. The

SWHM system thus properly detects and diagnose this

situation thus enabling the system to initiate mitigating

or corrective actions.

4.2.3 Scenario III: GPS spoofing navigation fault

The use of Unmanned Aerial Systems (UASs) in critical

operations has substantially increased across a broad

range of applications. Recently, the 2012 National De-

fense Defense Authorization Act even provided for the

establishment of pilot sites for integration of UASs into

the national airspace.11 UASs rely heavily on IMU and

GPS navigation, and as their applications expand this

reliance is likely to necessitate a higher degree of au-

tonomous navigation and and decision making as well

as intelligent real-time health monitoring and fault di-

agnostics. This includes monitoring for GPS spoofing-

related navigation problems, a topic, which has recently

gained much attention. Research on GPS spoofing by a

Los Alamos National Laboratory team12 and research

by Tippenhauer et. al. pointed out specific spoofing

techniques and related characteristics in affected nav-

igation software [82]. A group at UT Austin has been

able to demonstrate that the GPS receiver on a UAS

can be deceived [78]. According to The Christian Sci-

ence Monitor there is a strong likelihood that the U.S.

RQ-170 Sentinel UAS was lost to Iran through GPS

spoofing.13

Based on work of GPS navigation and spoofing, we

have experimented with SWHM scenario whereby we

monitor navigation software health, including the de-

tection and diagnosis of failures or emergent behav-

iors in software caused by GPS navigation software

faults or spoofing. Intermittent faults or events likely

to occur in spoofing attacks, such as relative location

jump, increased signal strength, GPS network forma-

tion change, and brief satellite lock loss, can be regarded

as transient faults in navigation software leading to an

erroneous state. Effective SWHM of a navigation sys-

tem should therefore also address monitoring of GPS

navigation in order to be able to detect and diagnose

erroneous states caused by a spoofing attack.

11 http://defensesystems.com/articles/2011/12/22/

ndaa-domestic-uas-test-sites.aspx
12 http://www.homelandsecurity.org/bulletin/Dual\

%20Benefit/warner_gps_spoofing.html
13 http://www.csmonitor.com/layout/set/print/

content/view/print/437272

The SWHM model. The model for a navigation sys-

tem software health affected by emergent behaviors or

faults due to GPS spoofing is also depicted in Fig-

ure 11. The relevant software and hardware compo-

nents and sensors conditional dependencies—including

uncertainties—are effectively captured by the Bayesian

network’s nodes (on the right-hand side of Figure 11),

edges, and conditional probability tables. Our SWHM

model is designed to respond to situations including the

following:

– Whether the estimated UAS position and altitude

strays from the predicted values due to failure in the

IMU or compromised GPS integrity.

– Whether transient altitude estimation behaviors (i.e.

location jumps) are due to terrain irregularities or

compromised GPS integrity.

– Whether the estimated position strays from the pre-

dicted position due to a failure in DSP signal han-

dling software or compromised GPS navigation in-

tegrity.

The SWHM inference engine will provide real-time

reasoning as to the integrity of the GPS and Inertial

Measurement Unit navigation software for timely de-

cision-making in critical situations. Integration of this

SWHM reasoning capability with other monitoring sys-

tems can serve in real-time diagnosis disambiguation.

Experiments and Results. Temporal traces of an off-

nominal experimental run is shown in Figure 14. Giv-

en sensory evidence the degrees of belief in the health

of the GPS and IMU navigation software are most-

ly high, except for some terrain-related-transients be-

fore the simulated attack is injected. However, when

the simulated attack is injected, some transient faults—

such as excessive signal strength, location jump, forma-

tion change, and satellite lock loss—are eventually ob-

served by the navigation software. A jump in the UAS

location relative to desired position is briefly observed

during that time interval, and the aircraft’s estimated

location is gradually and erroneously advanced toward

the new destination—which will cause its belief state to

be at waypoints close to the goal and initiate landing

short of the actual goal. The middle panel of Figure 14

shows the perceived GPS position and the actual UAS

position relative to the original goal. Upon receiving

further subsystems’ sensory evidence, the SWHM in-

ference engine evaluates the belief in the integrity of

the GPS and IMU navigation software as well as the

signal handling software. At this point, SWHM system

briefly reports a significant drop in the belief in GPS

navigation integrity for about 5s, which slightly rises

again while the degree of belief in the integrity of IMU

navigation drops and subsequently plateaus.
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Fig. 14 Temporal trace for GPS spoofing scenario. The be-
liefs in the health of the GPS and IMU navigation software
(green and blue respectively in the bottom panel) are high ex-
cept for some terrain-related-transients before the simulated
attack. When the attack is injected at t = 40s, transient ex-
cessive signal strength, location jump, and satellite lock loss
are observed in the navigation software between t = 40s and
t = 50s (top panel). Within that time interval, a jump in
the plant location relative to satellites is observed(red in the
middle panel). About 5 seconds later within this same time
interval, a significant drop in the belief in GPS navigation
integrity/health is reported between t = 45s and t = 50s
(green in the bottom panel). This belief belief in GPS nav-
igation integrity remains low and plateaus after about time
t = 52s.

5 Towards V&V of SWHM

Obviously, we assume that the software to be moni-

tored has undergone substantial verification and vali-

dation (V&V) before being deployed. After all, SWHM

is not meant to replace traditional V&V but to provide

an additional layer of safety. That said, what happens

if an error does not show up in the application soft-

ware but in the SWHM system, which itself is a piece

of non-trivial software? According to “Quis custodiet

ipsos custodes?”14 we have to postulate that the SW-

HM must undergo V&V to at least the same level of

rigor as the software that it is monitoring. It has to

be made sure that an SWHM system never, under any

circumstances, causes problems for the overall system.

In particular, it must not corrupt any data in memo-

ry, cause timing overruns, crash the operating system,

or send wrong data over a communications bus (e.g., a

1553 bus). Additionally, the SWHM should have a low

rate of false alarms (false positives) and missed adverse

events (false negatives). Although false alarms are not

as dangerous as missed alarms, they should be avoided

as much as possible to achieve optimal operation.

14 Juvenal: “Who guards the guardians?”

Unfortunately, traditional V&V as defined in many

standards and processes (e.g., DO-178B) is not neces-

sarily suitable and sufficient for our purposes, because

our Bayesian SWHM approach is model-based and may

involve algorithms not readily found in safety critical

embedded systems. For our model-based approach, we

developed new techniques toward V&V for SWHM, in

particular for analysis and V&V on the model level

(Bayesian networks) as well as on the code level (arith-

metic circuits and circuit evaluators). A sketch of a pos-

sible V&V process is shown in Figure 15. The SWHM

model is constructed based upon given requirements,

background domain knowledge, and reliability data. For

the ultimate goal of system integration, the SWHM

model is first compiled into arithmetic circuits before it

is incorporated into the SWHM implementation. This

piece of code contains functionality for obtaining and

preprocessing data from sensors and software monitors,

as well as the reasoning executive. Finally, this software

component is integrated into the overall system.

For V&V, a number of important analyses are car-

ried out on the model level, including parametric mod-

el analysis (discussed below), (manual) model review,

and testcase generation on the model level (see be-

low for details). All errors detected during this V&V

phase directly feed back (dashed lines) into SWHM re-

quirements and the SWHM model (design). After com-

pilation and integration, the SWHM is “just another

piece of software,” which, however, might incorporate

non-standard algorithms. V&V on the code level (see

Section 5.2) includes manual code review, static anal-

ysis, model checking, testing and test case generation

for full code coverage, as well as worst-case execution

time analysis (WCET) for the data-driven components

of the SWHM implementation.

Even for different approaches to detection and di-

agnosis techniques (e.g., QSI TEAMS15 or Livingston

[44]), the V&V process will be similar to the one shown

here, because in most approaches, the health model is

translated or compiled into a highly compact and ef-

ficient data structure, which is then accessed by the

health management engine to compute system health

state.

5.1 Model-level V&V

An SWHM model captures essential information about

nominal and off-nominal operation of the software and

the host system on various levels of abstraction and is

used by the SWHM engine to perform reasoning. Thus,

V&V has to make sure that the model is adequate for

15 http://www.teamqsi.com
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Fig. 15 V&V activities for model-based (including Bayesian
network) SWHM that includes a compilation step (such as
compilation of Bayesian networks to arithmetic circuits).

the given domain and SWHM requirements, and further

that it is as complete and consistent as possible. State-

of-the-art V&V approaches for IVHM systems include

exhaustive model enumeration using a model checker,

for example, Livingston Pathfinder [44].

Larger and hybrid models can be analyzed using

parametric testing. This statistical approach combines

n-factor combinatorial exploration with advanced data

analysis [71] to exercise the SWHM model with wide

ranges of sensor inputs and internal parameters. This

approach scales to large systems, like fault detection

models for the Ares I rocket [70] or hardware health

management systems [63].

Lvl Coverage Tests trigger . . .
1 Output all states of each HEALTH node
2 Input all states of each SENSOR/CMD node
3 Node all states of each node
4 CPT all entries of each CPT table

Table 4 Coverage metrics for Bayesian SWHM.

For the purpose of complete model coverage during

model validation, we have defined SWHM-specific cov-

erage metrics. Table 4 shows our metrics: full output

coverage is obtained when there are test cases that ex-

ercise each health node in the model. In our example,

we would need test cases to trigger all the nodes, like

the H File System or H Msg queue nodes. A full cov-

erage ensures that all possible diagnoses can actually

be triggered. A more strict coverage is the input cover-

age: here, all possible values of all sensor and command

nodes of the network must be exercised. This results in

a full coverage of all possible behaviors of the SWHM,

which can be obtained by stimuli from the outside.

Even with a fully covered input, the model still

might contain inner status nodes, which are not yet ful-

ly covered. For example, the state of the U File System

node might never be set to full, because of some error

in the model (e.g., a missing edge from a sensor node).

Our node coverage metric covers these nodes and makes

it possible to expose such modeling errors.

Finally, the CPT metric looks into the individual

nodes: for a full coverage, each entry in the CPT (condi-

tional probability) table must be covered (i.e., used for

posterior calculation) at least once. The aim of this met-

ric is to detect fairly common modeling errors: unini-

tialized probabilities, i.e., no model-specific values were

entered when the model was designed. In such cases,

modeling tools like SamIam16 will initialize the CPT

table with uniform probabilities of p = 1/N , where N

is the number of states associated with a node. This ini-

tialization yields a syntactically correct Bayesian net-

work. Unfortunately, it may not correspond to the in-

tended model. Other errors, like when a CPT has orders

of magnitude too many CPT entries (e.g., 105 instead

of 10×5), should also be detected, as they can indicate

situations where model parameters (probabilities) may

not have been specified.

For the generation of test cases for coverage met-

rics 1, 2, and 3, we have used tools based on the Java

Pathfinder model checker and Symbolic Pathfinder [56].

For the CPT coverage metric, a specialized algorithm

has been developed, which, taking the actual Bayesian

network reasoning algorithm into account, generates a

surprisingly small number of test cases for full CPT

coverage [74].

Finally, sensitivity analysis of Bayesian Networks

[18] is useful to assess the quality of the model param-

eters. Typical questions, which can be addressed with

this analysis, are: “Do I still get the same diagnoses

if the reliability for the sensor is off by an order of

magnitude?” or “How does reasoning change if the file-

system-full threshold is moved from 95% to 99%?” Cer-

tain Bayesian network modeling tools, such as SamIam,

provide sensitivity analysis tools.

16 http://reasoning.cs.ucla.edu/samiam/
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5.2 Code-level V&V

Even after the SWHM model has been fully tested and

verified on the model level, it can still cause severe prob-

lems. After compilation of the model into an Arithmetic

Circuit (AC), the actual implementation of the SW-

HM evaluates the AC in order to obtain the proper

diagnosis. As becomes evident from Figure 4, there is

ample room for potential errors on the code level of

SWHM. In particular, critical areas include the inter-

process communication for obtaining the software and

hardware sensor data, preprocessing and discretization,

evaluation of the AC, and returning and processing of

the SWHM results. Typical errors might include buffer

overflows, memory leaks, arithmetic exceptions, round-

off errors, and deadlocks or race conditions (when ac-

cessing shared data).

Therefore, all pieces of the SWHM must undergo

rigorous V&V. While there are many standards and

tools for V&V of traditional safety critical code, the

reasoning algorithm used to evaluate the arithmetic cir-

cuit is non-standard and thus needs to face heightened

scrutiny.

Our minimalistic SWHM reasoning engines, which

are the target of model translation and compilation,

might even be amenable to formal verification. Because

of the high complexity of the compilation process from

BNs to ACs, however, it is hard to provide any guaran-

tees about the compiler implementation. Also, the data-

driven nature of the algorithm requires special care.

On the other hand, BN model compilation [18] elim-

inates the problems often associated with complex rea-

soning algorithms associated with BNs. The resulting

algorithms and data structures can be formally shown

to have limited resource bounds and do not require

dynamic memory allocation. By construction, all da-

ta structures are static, there is no nondeterminism,

and the execution times are bounded. Many V&V tech-

niques that have been developed for traditional software

can be used or extended easily. In particular, software

model checking for the automatic proof of safety prop-

erties, static analysis, automatic generation of test cas-

es and worst-case execution time analysis seem to be

suitable approaches to demonstrate software safety and

reliability and have been used for V&V of SWHM.

6 Conclusions

The ever-increasing reliance of aerospace on software for

mission and safety critical operations, such as aircraft

control and navigation, attests to the need for Software

Health Management (SWHM) to diagnose and avert

software-related faults in real-time. Bayesian networks

are powerful in capturing subsystem interdependencies

—as well as uncertainty factors—in order to perform

real-time SWHM. A SWHM system dynamically mon-

itors the target system (software, sensors, and hard-

ware) and uses a health model in the form of a (com-

piled) Bayesian network to detect and reliably diagnose

software-related faults in real-time. Bayesian networks

are an ideal framework for modeling software health,

because it allows complex reasoning with little com-

putational overhead—an important prerequisite for on-

board software health monitoring.

We have presented our approach and illustrated our

Bayesian SWHM with a simplified aircraft control sys-

tem. We have modeled several relevant failure scenarios,

which were efficiently detected by the SWHM inference

engine and which demonstrate the SWHM system’s di-

agnostic reasoning capabilities.

Because a SWHM system, which monitors safety

critical software, must be considered as a safety critical

component as well, its V&V is paramount. In this pa-

per, we have presented a two-stage V&V process, cov-

ering both the model level and the code level. Several

specific technologies and approaches can be customized

toward the specific requirements of SWHM V&V.

However, SWHM is still a young discipline and ad-

ditional research should be carried out to mature our

approach: automatic generation of SWHM models from

requirements or code, as well hierarchical and modular

modeling with Bayesian networks can substantially in-

crease the scalability of our approach. The use of specif-

ic architectures, which provide built-in capabilities for

SWHM integration (e.g., [23]), can facilitate instrumen-
tation and implementation.

Despite all the potential advantages of SWHM to

dynamically monitor the behavior of software in real-

time, we have to note that SWHM cannot (and should

not) lessen the burden of pre-deployment V&V and cer-

tification of the entire software. SWHM only provides

an additional layer of protection during run-time, as

it is capable of detecting and identifying faults that

have not been found during traditional V&V or that

are caused by unexpected environmental circumstances.

SWHM does not intend to replace pre-deployment V&V.
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