
Dual Decomposition from the Perspective of
Relax, Compensate and then Recover

Arthur Choi
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095
aychoi@cs.ucla.edu

Adnan Darwiche
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

darwiche@cs.ucla.edu

Abstract

Relax, Compensate and then Recover (RCR) is a paradigm for approximate infer-
ence in probabilistic graphical models that has previously provided theoretical and
practical insights on iterative belief propagation and some of its generalizations.
In this paper, we characterize the technique of dual decomposition in the terms
of RCR, viewing it as a specific way to compensate for relaxed equivalence con-
straints. Among other insights gathered from this perspective, we propose novel
heuristics for recovering relaxed equivalence constraints with the goal of incre-
mentally tightening dual decomposition approximations, all the way to reaching
exact solutions. We also show empirically that recovering equivalence constraints
can sometimes tighten the corresponding approximation (and obtaining exact re-
sults), without increasing much the complexity of inference.

1 Introduction

Relax, Compensate and then Recover (RCR) is a paradigm for approximate inference that is based
on performing three steps [1]. First, one relaxes equivalence constraints in a given model to obtain
a simplified model that is tractable for exact inference. Second, one compensates for the relaxed
equivalences by enforcing a weaker notion of equivalence. Finally, by recovering equivalence con-
straints in a selective way, one can incrementally obtain increasingly accurate approximations, all
the way to exact solutions. This paradigm is flexible enough to characterize existing algorithms
for approximate inference, such as iterative belief propagation (IBP) [2, 3, 4]. Moreover, a system
based on RCR was also successfully employed in the UAI 2010 evaluation of approximate inference,
where it was the leading system in two of the most time-constrained categories evaluated [5].

Dual decomposition is a popular and effective approach for approximating MPE problems in prob-
abilistic graphical models [6, 7, 8].1 This technique has a number of desirable properties. For
example, it provides an upper bound on the original MPE problem, which in some cases, can be
tight. Moreover, algorithms for solving the corresponding dual optimization problem have desirable
theoretical properties, such as monotonic improvements as in block coordinate descent algorithms.

In this paper, we formulate dual decomposition as an instance of RCR. In particular, we view dual
decomposition as a particular way of restoring a weaker notion of equivalence when one relaxes an
equivalence constraint. From the viewpoint of RCR, this perspective gives rise to a new family of
compensations with distinctive properties, such as upper bounds on MPE problems, but also upper
bounds on the partition function. From the viewpoint of dual decomposition, this perspective (a)

1MPE refers to the problem finding a complete instantiation of a graphical model with maximal probability.
This is commonly referred to as MAP as well. However, many authors reserve MAP to the problem of finding
a partial instantiation with a maximal probability, which is a much more difficult task computationally than
MPE. We observe this distinction between MPE and MAP in this paper.

1

gives rise to a new approach to tightening upper bounds, based on new heuristics for recovering
equivalence constraints; (b) expands the reach of dual decomposition by allowing its application to
other inference tasks beyond MPE; and (c) positions dual decomposition to capitalize on the vast
literature on exact inference in addition to its classical capitalization on the optimization literature.

Empirically, we show that the recovery of equivalence constraints in our RCR formulation of dual
decomposition can incrementally and effectively tighten the upper bounds of dual decomposition,
leading to optimal solutions in some cases while recovering only a few equivalence constraints, and
without increasing much the complexity of inference.

2 Dual Decomposition

We first illustrate the technique of dual decomposition using a concrete example, deferring the reader
to references such as [8] for a more general treatment.

Consider the MRF ψ(A,B,C) = ψ1(A,B)ψ2(B,C)ψ3(A,C), where the goal is to find an in-
stantiation a, b, c of variables A,B,C that maximizes ψ(a, b, c). We refer to this as the MPE
problem. We also refer to maxa,b,c ψ(a, b, c) as the MPE value and to the maximizing instan-
tiation a, b, c as an MPE instantiation. Finally, an MRF induces the probability distribution
Pr(A,B,C) = 1

Zψ(A,B,C), where we refer to Z =
∑
a,b,c ψ(a, b, c) as the partition function.

Dual decomposition is a technique for approximating the MPE problem, which can be described
concretely as follows. We first clone the occurrence of each variable in each factor, leading to
auxiliary variables A1, B1 and B2, C2 and A3, C3. We now have the fully decomposed MRF:

ψ(A,B,C,A1, B1, B2, C2, A3, C3) = ψ1(A1, B1) ψ2(B2, C2) ψ3(A3, C3)

eq(A,A1) eq(A,A3) eq(B,B1) eq(B,B2) eq(C,C2) eq(C,C3),

where eq(X,Xi) is an equivalence constraint. That is, eq(x, xi) = 1 when x = xi and eq(x, xi) = 0
when x 6= xi. Note that ψ(a, b, c, a1, b1, b2, c2, a3, c3) = ψ(a, b, c) when a = a1 = a3, b = b1 = b2
and c = c2 = c3; otherwise, ψ(a, b, c, a1, b1, b2, c2, a3, c3) = 0. Hence,

max
a,b,c

ψ(a, b, c) = max
a,b,c,a1,b1,b2,c2,a3,c3

ψ(a, b, c, a1, b1, b2, c2, a3, c3).

The original and fully decomposed MRFs are then equivalent as far as computing the MPE value.

We now relax the equivalence constraints (i.e., drop them), while replacing each constraint
eq(X,Xi) by θj(X)/θj(Xi) (which is equal to one when x = xi), leading to:

ψ(A,B,C,A1, B1, B2, C2, A3, C3) =

ψ1(A1, B1) ψ2(B2, C2) ψ3(A3, C3)
θ1(A)θ3(A)

θ1(A1)θ3(A3)

θ1(B)θ2(B)

θ1(B1)θ2(B2)

θ2(C)θ3(C)

θ2(C2)θ3(C3)
.

Note that ψ(a, b, c, a1, b1, b2, c2, a3, c3) = ψ(a, b, c) when a = a1 = a3, b = b1 = b2 and c = c2 =
c3; otherwise, ψ(a, b, c, a1, b1, b2, c2, a3, c3) is incomparable to ψ(a, b, c). Hence,

max
a,b,c

ψ(a, b, c) ≤ max
a,b,c,a1,b1,b2,c2,a3,c3

ψ(a, b, c, a1, b1, b2, c2, a3, c3)

=
[
max
a

θ1(a)θ3(a)
] [

max
b
θ1(b)θ2(b)

] [
max
c
θ2(c)θ3(c)

]
[
max
a1,b1

ψ1(a1, b1)

θ1(a1)θ1(b1)

] [
max
b2,c2

ψ2(b2, c2)

θ2(b2)θ2(c2)

] [
max
a3,c3

ψ3(a3, c3)

θ3(a3)θ3(c3)

]
This is called the dual objective and is guaranteed to provide an upper bound on the MPE value,
maxa,b,c ψ(a, b, c), regardless of the specific values chosen for multipliers θj(x) > 0. However, one
can improve the upper bound by searching for multipliers θi(x) that minimize the dual objective.

Minimization problems such as this one can be tackled using techniques from the optimization
literature. For example, subgradient methods are applicable to objective functions that are not dif-
ferentiable, such as the one above. They are also guaranteed to minimize the dual objective to
optimality, with appropriate choice of step sizes. For another example, block coordinate descent

2

methods monotonically decrease the dual objective at each step, and can yield faster convergence
rates than subgradient methods. However, they are not necessarily guaranteed to minimize the dual
objective. See [8] for a more thorough introduction to dual decomposition, and algorithms for the
dual optimization problem.

3 Relax, Compensate, and then Recover

RCR is an approximate inference framework, which is based on three steps. The first step relaxes
equivalence constraints from the original model. The second step compensates for the relaxed equiv-
alences by enforcing some weaker notion of equivalence. The third step recovers back some of the
equivalences in an anytime fashion, with the goal of improving the approximation. The main com-
putational work performed by RCR is in the compensation step, which requires exact inference on
the relaxed model (any exact inference algorithm can be used for this purpose). The recovery step
may also entail computational work, although this depends largely on the recovery heuristics (some
heuristics can be computed as a side effect of the compensation step, as we show later).

We will next illustrate the three steps of RCR using the same example discussed above. For a more
general treatment of RCR, however, the reader is referred to [1].

3.1 Relax

The first step of RCR is similar to the one used by dual decomposition: We clone variables and
introduce equivalence constraints, leading to the following model:

ψ(A,B,C,A1, B1, B2, C2, A3, C3) = ψ1(A1, B1) ψ2(B2, C2) ψ3(A3, C3)

eq(A,A1) eq(A,A3) eq(B,B1) eq(B,B2) eq(C,C2) eq(C,C3).

We can then relax an equivalence constraint by simply dropping it from the model. For example,
relaxing all equivalence constraints leads to the following model, which is fully decomposed:

ψ(A,B,C,A1, B1, B2, C2, A3, C3) = ψ1(A1, B1) ψ2(B2, C2) ψ3(A3, C3).

In principle, one can relax as many constraints as one wishes—normally, until the model is discon-
nected enough to be feasible for exact inference. RCR, however, typically relaxes enough equiva-
lence constraints to render the model fully decomposed. It then recovers some of these constraints
incrementally and selectively, until it runs out of time or until the model becomes too connected to
be feasible for exact inference. More on this later.

3.2 Compensate

Compensating for a relaxed equivalence constraint, say, eq(A,A1), is done by adding factors θA1(A)
and θA(A1) in lieu of factor eq(A,A1), leading to the compensated model:

ψ(A,B,C,A1, B1, B2, C2, A3, C3) = ψ1(A1, B1) ψ2(B2, C2) ψ3(A3, C3)

θA1
(A)θA(A1) eq(A,A3) eq(B,B1) eq(B,B2) eq(C,C2) eq(C,C3).

The added factors, θA1
(A) and θA(A1), are sometimes called compensation factors. Note that

we shall omit the subscripts Xi and X when it is clear that factors θ(X) and θ(Xi) refer to the
compensation factors for equivalence constraint eq(X,Xi). Moreover, whenever we refer to a state
x of variableX , we will denote the corresponding state of variableXi by xi, unless otherwise stated.

A compensation scheme is a set of conditions on the values of compensating factors. Each compen-
sation scheme leads to a class of approximations. In phrasing such conditions, we will write mpe(a)
to denote the MPE marginal, maxb,c ψ(a, b, c). We will also write Z(a) to denote the partition
function marginal,

∑
b,c ψ(a, b, c).

The following is a common condition used by different RCR compensation schemes.

Definition 1 A compensation scheme for relaxed equivalence eq(X,Xi) satisfies pr-equivalence
iff the distribution induced by the compensated model satisfies Pr(x) = Pr(xi) for all values x and
their corresponding values xi. Moreover, it satisfies mpe-equivalence iff mpe(x) = mpe(xi) for
all values x and their corresponding values xi.

3

A common and powerful technique for deriving further conditions on the compensation scheme
is based on considering a single relaxed equivalence, under some idealized situation, and finding
out what that idealization implies. Suppose, for example, that relaxing the equivalence constraint
eq(X,Xi) splits the model into two disconnected components, one containing variable X and an-
other containing variable Xi. This idealized situation implies the following condition, which is the
only condition that leads to exact node marginals.

Definition 2 A compensation scheme for relaxed equivalence eq(X,Xi) satisfies model-split iff the
distribution induced by the compensated model satisfies pr-equivalence and

Pr(x) =
θ(x)θ(xi)∑
x θ(x)θ(xi)

.

On fully decomposed models, this compensation scheme leads to IBP approximations [3, 9], and
further the Bethe free energy approximation of the partition function [10, 4].

3.3 Finding compensations

The main computational work performed by RCR is in finding compensations that satisfy some
stated conditions. This is usually done by deriving a characterization of the compensation, which
yields fixed-point iterative equations. For example, compensations that satisfy model-split have been
characterized as follows [3].

Theorem 1 A compensation scheme for relaxed equivalence constraint eq(X,Xi) satisfies model-
split iff the partition function Z of the compensated model satisfies

θ(x) = α
Z(xi)

θ(xi)
θ(xi) = α

Z(x)

θ(x)
(1)

for all states x, and their corresponding states xi. Here, α is an arbitrary normalizing constant.

This theorem identifies update equations which form the basis of an iterative fixed-point algorithm
that searches for model-split compensations.2 In fact, the message-passing updates of IBP are pre-
cisely the fixed-point iterative updates implied by Equation 1 [3].

3.4 Recover

RCR typically relaxes enough equivalence constraints to yield a fully decomposed model. It then
recovers equivalence constraints incrementally and selectively, until it runs out of time or the model
becomes too connected to be feasible for exact inference. The recovery process is based on a heuris-
tic, called a recovery heuristic, that tries to identify the constraints whose relaxation has been most
damaging to the quality of an approximation.

A number of recovery heuristics have been proposed previously. One of these heuristics is based
on mutual information [3] and is designed for the use with the compensation scheme that satisfies
model-split. Another heuristic was used by RCR at the UAI’10 approximate inference evaluation [5,
1], which was critical to the performance (and success) of RCR in that evaluation.

Combining recovery, with compensations that satisfy model-split, yields approximations that corre-
spond to iterative joingraph propagation (IJGP) approximations [13, 14, 3].3

4 A New Compensation Scheme: Dual Decomposition

We will now consider a new compensation scheme for RCR, which gives rise to dual decomposition
approximations of Section 2 when the inference task of RCR is that of computing MPE.

We start with the following family of compensation schemes.
2The required quantities correspond to partial derivatives, which can be computed efficiently in traditional

frameworks for inference [11, 12].
3Similar characterizations and generalizations of IBP have been shown in [15, 16, 17].

4

Definition 3 A compensation scheme for relaxed equivalence eq(X,Xi) satisfies upper-bound iff

θ(x)θ(xi) = 1, for all values x and their corresponding values xi. (2)

The above condition leads to the following interesting guarantee.

Theorem 2 A compensation scheme that satisfies upper-bound leads to a compensated model whose
partition function is an upper bound on the exact partition function, and whose MPE value is an
upper bound on the exact MPE value.

Combining the upper-bound condition with pr/mpe-equivalence leads to a compensation scheme
that characterizes and generalizes dual decomposition approximations, as we show next.

Definition 4 A compensation scheme satisfies pr-dd iff it satisfies upper-bound and pr-equivalence.
Moreover, it satisfies mpe-dd iff it satisfies upper-bound and mpe-equivalence.

The following theorem provides a characterization of the pr-dd and mpe-dd compensation schemes,
which can be used to search for compensations in fully decomposed models.

Theorem 3 For a single equivalence constraint eq(X,Xi), a compensation scheme satisfies pr-dd
iff for all values x, and their corresponding values xi, the compensated model satisfies

θ(x) =

(
Z(xi)/θ(xi)

Z(x)/θ(x)

) 1
2

θ(xi) =

(
Z(x)/θ(x)

Z(xi)/θ(xi)

) 1
2

(3)

The scheme satisfies mpe-dd iff it satisfies the above condition with mpe(.) substituted for Z(.).

There is one subtlety about the above theorem, in comparison to Theorem 1. The equation given
in this theorem can be used as an update equation only when variables X and Xi are independent
in the compensated model (otherwise, the left-hand side will depend on the right-hand side). When
the compensated model is fully decomposed, this condition is met (after taking into account the
division of the compensating factors from the partition function marginals). More generally, when
relaxing the equivalence constraint eq(X,Xi) splits the model into two disconnected components,
one containing X and the other containing Xi, the condition is also met.

In fully decomposed models, one can use the above update equation to search for compensations that
satisfy pr-dd or mpe-dd, in the same way that Equation 1 can be used to search for compensations
that satisfy model-split (see Section 3.3). We actually have a stronger result.

Theorem 4 When the compensated model is fully decomposed, the fixed-point iterative updates of
Equation 3 correspond precisely to the block coordinate descent updates of the sum-product and
max-sum diffusion algorithms, respectively.

This theorem has the following main implication: When computing MPE using RCR with an mpe-dd
compensation scheme, one obtains approximations that correspond precisely to those computed by
the dual decomposition technique of Section 2 (assuming a fully decomposed model). In particular,
the MPE computed using RCR corresponds precisely to one computed at a fixed-point of a block
coordinate descent algorithm such as max-sum diffusion [6, 7, 8].

We finally point out that the fixed-point iterative algorithm suggested by Equation 3 also inherits
properties that make block coordinate descent algorithms so popular, such as monotonic improve-
ments of the approximation (i.e., MPE value or partition function), when equivalence constraints are
updated one at a time [18].

5 New Recovery Heuristics for Dual Decomposition

Our main result thus far is that the dual decomposition technique for computing MPE corresponds
to an instance of RCR in which (a) enough equivalence constraints are relaxed to yield a fully
decomposed model and (b) the relaxed equivalences are compensated using the mpe-dd condition.

5

This, however, corresponds to the degenerate case of RCR. One can obtain much better approxima-
tions by recovering some of the relaxed equivalence constraints, which can be done incrementally
and selectively. In the general RCR framework, this recovery process usually continues until one
runs out of time or until the model is too connected to be accessible to exact inference (which is
needed to search for compensations). As we show in the next section, however, this process can
actually terminate much earlier, as we may be able to detect when the computed MPE is exact.

In this section, however, we will focus our attention on two tasks. First, we design heuristics for re-
covering equivalence constraints in the context of pr-dd and mpe-dd compensation scheme. Second,
we identify a more general update equation than the one of Theorem 3, which, as mentioned earlier,
is only applicable in restricted settings. Such an update equation is necessary if we were to search
for compensations in a model that is not fully decomposed.

Theorem 5 For a single equivalence constraint eq(X,Xi), with binary variables X and Xi, a
compensation scheme satisfies pr-dd iff the compensated model satisfies

θ(x)

θ(x̄)
=

(
Z(x̄, xi)/θ(x̄)θ(xi)

Z(x, x̄i)/θ(x)θ(x̄i)

) 1
2 θ(xi)

θ(x̄i)
=

(
Z(x, x̄i)/θ(x)θ(x̄i)

Z(x̄, xi)/θ(x̄)θ(xi)

) 1
2

(4)

The scheme satisfies mpe-dd iff it satisfies the above condition with mpe(.) substituted for Z(.).

There are two differences between Equation 4 and the earlier Equation 3. First, the new equation is
applicable even when variablesX andXi are not independent in the compensated model. Hence, we
can use this equation to implement a fixed-point iterative algorithm that searches for compensations
in any model.4 Second, the new equation is restricted to binary variables as we have yet to derive
a version of this for multi-valued variables. Similar to Equation 3, however, the new equation
monotonically improves the approximation, when equivalence constraints are updated one at a time.

We now turn our attention to recovery heuristics. Our first observation is as follows: One can
efficiently compute the exact effect of recovering a single equivalence constraint on the quality of
an approximation (i.e., partition function or MPE value). In particular, the improvement due to
recovering a single equivalence constraint can be computed as a side effect of the fixed-point update
by Equation 4.5 Thus, our first recovery heuristic imposes no additional overhead as we can compute
the exact impact of recovering each equivalence constraint during the compensation phase.6

This first heuristic, however, may not distinguish each equivalence constraint sufficiently (many
constraints may have the same impact upon recovery). Thus, we propose a secondary recovery
heuristic which is specific to mpe-dd and motivated as follows. Given a current model, suppose that
the recovered MPE instantiation is x and has value m. In general, m is only an upper bound on the
exact MPE value as instantiation x may violate some relaxed equivalence constraints, eq(X,Xi)—
that is, instantiation x may set X and Xi to different values. However, if instantiation x does
not violate any of the relaxed equivalence constraints, then m must be the exact MPE value. Our
secondary recovery heuristic will therefore recover those equivalence constraints that are currently
violated by the instantiation x. By recovering such equivalence constraints, we hope to reduce the
number of violated equivalence constraints in our approximate MPE instantiation, and thus hope to
recover an exact MPE instantiation; cf. reducing the duality gap as in [19].

Consider, in contrast, the “recovery” heuristic suggested by [19], which introduced local consistency
constraints to tighten a linear programming (LP) relaxation that corresponds to the dual objective
of dual decomposition. This heuristic sought to tighten an outer bound on the marginal polytope,
which would normally require exponentially many linear constraints in an LP that would exactly
solve an MPE problem. The “recovery” heuristic suggested by [19], introduces local consistency
constraints over triplet clusters, which was particularly effective at solving challenging classes of
MPE problems, such as protein design problems [20]. However, introducing triplet constraints by

4In our implementation, we simply set θ(x̄) = θ(x̄i) = 1.
5The partition function after recovering a single constraint eq(X,Xi) is Z(x,xi)

θ(x)θ(xi)
+ Z(x̄,x̄i)
θ(x̄)θ(x̄i)

[4]. Moreover,

the MPE value after recovering the constraint is max{mpe(x,xi)
θ(x)θ(xi)

, mpe(x̄,x̄i)
θ(x̄)θ(x̄i)

}.
6Note, however that subsequent fixed-point updates for other equivalence constraints will in principle in-

validate the measured impacts of previous constraints. On the other hand, computing this impact requires
computations that would allow us to perform an update anyways.

6

themselves may not be sufficient to completely tighten the dual bound, and otherwise, there are
exponentially many local consistency constraints available to choose from. In contrast, the RCR
recovery process yields an incremental and full spectrum of approximations, leading up to exact
inference when all equivalence constraints have been recovered. Thus, we view RCR recovery as
a complementary approach to the techniques of [19], when triplet constraints are not sufficient to
extract the exact MPE solution.

6 An Empirical Perspective

We evaluate our new recovery heuristics based on their ability to extract an exact MPE solution for a
given probabilistic graphical model. In our first set of experiments, our goal is to illustrate that RCR
can obtain an exact MPE solution by recovering equivalence constraints, without impacting much the
complexity of inference. For our second set of experiments, we compared RCR with MPLP in their
ability to find exact MPE solutions based on their respective approaches to tightening a relaxation,
which is by adding triplet clusters in the case of MPLP [19].7 Our goal here is to illustrate that
recovering equivalence constraints can also be a viable option for models where introducing triplet
clusters alone is not sufficient to tighten the dual objective of dual decomposition.

For RCR, starting with a fully decomposed model, we iteratively recover 5 equivalence constraints
at a time, as described in the previous section. For MPLP, we used the default settings, which
introduced 5 triplet clusters at a time. RCR was set, as MPLP was, to run for at most 1000 iterations,
before recovering equivalence constraints and introducing triplet clusters.

As the RCR approach requires only a black-box inference engine to execute its compensation phase
(which requires only marginals, or alternatively, partial derivatives), we can take advantage of state-
of-the-art systems for exact inference. This includes advanced approaches for inference based on
arithmetic circuits (ACs), which can effectively exploit local structure [21, 22]. We use such an in-
ference engine for our experiments, although the benchmarks that we considered do not necessarily
have much local structure. Using arithmetic circuits, we can also more efficiently compute quantities
such as mpe(x, xi)/θ(x)θ(xi) via lazy evaluation in an arithmetic circuit [23].

We first performed experiments on 50 randomly parameterized grid models, which we generated
using MPLP with default parameters, but assuming binary variables. The resulting 10 × 10 grids
corresponded to pairwise MRFs with mixed attractive and repulsive couplings. The following table
summarizes the number of equivalence constraints (out of 360 relaxed) that needed to be recovered
for RCR to obtain an optimal MPE solution, and the corresponding complexity of inference (on
average). Note that the complexity of inference using arithmetic circuits is linear in the size of the
AC, i.e., the number of nodes and edges in the resulting circuit.

edges recovered 91–120 121–150 151–180 181–210 211–240 241–270 271–300 301–330
% instances 4% 16% 12% 18% 24% 12% 6% 8%

% increase in AC size 88.11% 93.58% 89.31% 103.17% 100.43% 113.78% 195.41% 308.39%

Observe that RCR was able to recover up to 240 equivalence constraints, and solve 74% of all MPE
problems, without increasing much—even decreasing in many cases—the complexity of inference.
Note that we start with a fully decomposed approximation, and it is easily possible to recover many
equivalence constraints without impacting much the treewidth of a model (it is possible to recover
200 and only obtain a spanning tree). Moreover, AC size can decrease since there are fewer compen-
sating factors to maintain. MPLP is also effective on this benchmark, where it can introduce square
clusters into its relaxation [19], although such a technique is restricted to grids.

We next performed experiments on Bayesian networks induced from haplotype data (over 201 binary
variables), which are networks with bounded treewidth [24]. These networks do not necessarily
have as regular a structure that can suggest a natural way of introducing clusters, such as in grids.
Moreover, note that triplet clusters alone may not be sufficient to tighten the dual objective, i.e., to
close the duality gap. In these benchmarks, there were 69 models, of which 13 models were cases
where MPLP failed to find the optimal MPE solution, given 1000 attempts to tighten its relaxation

7A public version of MPLP is available at http://cs.nyu.edu/˜dsontag/. In our second set of
experiments, we used an updated implementation of MPLP that was provided to us by the authors of [19].

7

Figure 1: Recovering triplet clusters and equivalence constraints in MPLP (left) and RCR (right).
Solid lines indicate the value of the dual objective (upper bound), dashed lines indicate the value of
the current best assignment (lower bound), and the dotted line denotes the optimal MPE solution.

(i.e., to introduce local consistency constraints). In contrast, RCR was able to obtain the optimal
MPE solution in all cases, after recovering a small number of equivalence constraints.

Figure 1 illustrates an example run of both MPLP and RCR, in a model where MPLP failed to find
an optimal MPE solution. For the case of MPLP, one observes that MPLP starts to tighten the gap
between its upper and lower bounds, but fails to tighten it further after some number of iterations.
In fact, for this particular model, MPLP fails to find triplet clusters to introduce into its relaxation.
On the other hand, RCR obtains the optimal solution after recovering only 70 of 451 equivalence
constraints. When we look at the arithmetic circuits used to do inference in our simplified model, the
size goes down from 38555 to 36729 nodes and edges after recovering 70 equivalence constraints.

In the following table, we summarized the number of recovered equivalence constraints needed to
obtain an optimal solution, and the complexity of inference, for the two cases:

of models avg. % recovered avg. % increase in AC size
MPLP did not solve 13 26.93% 124.97%

RCR and MPLP solved 56 3.56% 99.65%

In the models that were left unsolved by MPLP, RCR was able to find exact MPE solutions by
recovering only a quarter of the relaxed equivalence constraints, on average. This came with only a
modest increase in the complexity of inference, i.e., AC size. In the models solved by both MPLP
and RCR, very few equivalence constraints needed to be recovered on average, and in fact led to a
very slight decrease in the complexity of inference.

We finally remark that the second set of experiments involved models that are not necessarily well
suited for recovering triplet clusters with MPLP. Moreover, our comparisons with RCR were limited
since we were restricted to models over binary variables (as recovery requires the use of a compen-
sation algorithm like the one implied by Theorem 5, which is specific to binary variables). We plan
more thorough empirical comparisons in future work.

7 Conclusion

In this paper, we formulated the technique of dual decomposition in the terms of Relax, Compen-
sate and then Recover (RCR). By formulating dual decomposition in the more general terms of
RCR, we have broadened the scope of the technique by (a) proposing new recovery heuristics for
tightening the dual objective of dual decomposition, (b) extending it to other inference tasks, such
as bounding the partition function (although this was not evaluated here), and (c) formulating it in
terms that allows it to easily take advantage of the vast literature on exact inference, for the pur-
poses of more effective approximate inference. Empirically, we showed how these new recovery
heuristics can sometimes be used to obtain exact solutions to MPE problems, without increasing

8

much the complexity of inference—in particular, on problems which existing systems based on dual
decomposition are not as well suited for.

Acknowledgments

This work has been partially supported by NSF grant #IIS-1118122.

References
[1] Arthur Choi and Adnan Darwiche. Relax, compensate and then recover. In Takashi Onada, Daisuke

Bekki, and Eric McCready, editors, New Frontiers in Artificial Intelligence, volume 6797 of Lecture
Notes in Computer Science, pages 167–180. Springer Berlin / Heidelberg, 2011.

[2] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, Inc., San Mateo, California, 1988.

[3] Arthur Choi and Adnan Darwiche. An edge deletion semantics for belief propagation and its practical
impact on approximation quality. In Proceedings of the 21st AAAI Conference on Artificial Intelligence
(AAAI), pages 1107–1114, 2006.

[4] Arthur Choi and Adnan Darwiche. Approximating the partition function by deleting and then correcting
for model edges. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI),
pages 79–87, 2008.

[5] Gal Elidan and Amir Globerson. Summary of the 2010 UAI approximate inference challenge. http:
//www.cs.huji.ac.il/project/UAI10/summary.php, 2010.

[6] Jason K. Johnson, Dmitry M. Malioutov, and Alan S. Willsky. Lagrangian relaxation for MAP estimation
in graphical models. In Proceedings of the 45th Allerton Conference on Communication, Control and
Computing, pages 672–681, 2007.

[7] Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. MRF optimization via dual decomposition:
Message-passing revisited. In ICCV, pages 1–8, 2007.

[8] David Sontag, Amir Globerson, and Tommi Jaakkola. Introduction to dual decomposition for inference.
In Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright, editors, Optimization for Machine Learning.
MIT Press, 2011.

[9] Arthur Choi and Adnan Darwiche. Relax then compensate: On max-product belief propagation and
more. In Proceedings of the Twenty-Third Annual Conference on Neural Information Processing Systems
(NIPS), pages 351–359, 2009.

[10] Jonathan Yedidia, William Freeman, and Yair Weiss. Constructing free-energy approximations and gen-
eralized belief propagation algorithms. IEEE Transactions on Information Theory, 51(7):2282–2312,
2005.

[11] Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM,
50(3):280–305, 2003.

[12] James Park and Adnan Darwiche. A differential semantics for jointree algorithms. Artificial Intelligence,
156:197–216, 2004.

[13] Srinivas M. Aji and Robert J. McEliece. The generalized distributive law and free energy minimization. In
Proceedings of the 39th Allerton Conference on Communication, Control and Computing, pages 672–681,
2001.

[14] Rina Dechter, Kalev Kask, and Robert Mateescu. Iterative join-graph propagation. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence, pages 128–136, 2002.

[15] Thomas P. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, MIT, 2001.

[16] Martin J. Wainwright, Tommi Jaakkola, and Alan S. Willsky. Tree-based reparameterization frame-
work for analysis of sum-product and related algorithms. IEEE Transactions on Information Theory,
49(5):1120–1146, 2003.

[17] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding belief propagation and its
generalizations. In Gerhard Lakemeyer and Bernhard Nebel, editors, Exploring Artificial Intelligence in
the New Millennium, chapter 8, pages 239–269. Morgan Kaufmann, 2003.

[18] Amir Globerson and Tommi Jaakkola. Fixing max-product: Convergent message passing algorithms for
MAP LP-relaxations. In NIPS, pages 553–560, 2008.

[19] David Sontag, Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss. Tightening LP relax-
ations for MAP using message passing. In UAI, pages 503–510, 2008.

9

[20] Chen Yanover, Talya Meltzer, and Yair Weiss. Linear programming relaxations and belief propagation —
an empirical study. Journal of Machine Learning Research, 7:1887–1907, 2006.

[21] Mark Chavira and Adnan Darwiche. Encoding CNFs to empower component analysis. In Proceedings of
the 9th International Conference on Theory and Applications of Satisfiability Testing (SAT), pages 61–74.
Springer Berlin / Heidelberg, Lecture Notes in Computer Science, Volume 4121, 2006.

[22] Mark Chavira and Adnan Darwiche. Compiling Bayesian networks using variable elimination. In Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pages 2443–2449,
2007.

[23] Arthur Choi, Trevor Standley, and Adnan Darwiche. Approximating weighted max-sat problems by
compensating for relaxations. In Proceedings of the 15th International Conference on Principles and
Practice of Constraint Programming (CP), pages 211–225, 2009.

[24] Gal Elidan and Stephen Gould. Learning bounded treewidth Bayesian networks. JMLR, 9:2699–2731,
12 2008.

A Proofs

We first review and refine some notation and some definitions, for the purposes of our proofs. Here,
variables are denoted by upper case letters (X) and their instantiations by lower case letters (x).
Moreover, sets of variables are denoted by bold upper case letters (X) and their instantiations by
bold lower case letters (x).

An MRF ψ(X), over a set of variables X, is a product of factors ψi, which induces a probability
distribution Pr(X):

ψ(X) =
∏
i

ψi(Xi) Pr(X) =
1

Z
ψ(X).

Here, each factor ψi(Xi) is a function mapping an instantiation xi of variables Xi, to a non-negative
real number. Moreover, Z =

∑
x ψ(x) is a normalizing constant called the partition function.

We are interested in approximations to the partition function, and the most probable explanation
(MPE):

mpe = max
x

ψ(x)

We refer to mpe as the MPE value, and a maximizing x as an MPE instantiation. We are also
interested in MPE marginals mpe(x) and partition function marginals Z(x):

mpe(x) = max
x|=x

ψ(x) Z(x) =
∑
x|=x

ψ(x)

where mpe(x) can be interpreted as the MPE value of our model, assuming variable X takes on the
value x; similarly for partition function marginals.

We may augment an MRF so that it contains factors eq(X,Y) that represent equivalence constraints
X ≡ Y between pairs of variables X and Y in X. For the purposes of this paper, we will assume
that equivalence constraints arise by cloning a variable X that appears in a factor ψi(Xi) (although
our results hold for equivalence constraints in general). We will denote this clone byXi, and assume
an equivalence constraint eq(X,Xi). We continue to denote the set of original variables by X, but
we now denote the set of clone variables by Xc. Our MRF with equivalence constraints is thus:

ψ(X,Xc) =
∏
i

ψi(X
c
i) ·

∏
X≡Xi

eq(X,Xi)

Note that the distribution and the MPE problem (over the original variables X), as well as the
partition function, are all invariant to the introduction of equivalence constraints, as described above.
Moreover, whenever we refer to a state x of variable X , we will denote the corresponding state of
the clone Xi by xi, unless otherwise stated.

We can relax an equivalence constraint eq(X,Xi) by removing its factor from the MRF, and then
compensate for the relaxation by introducing two unit factors θ(X) and θ(Xi). Doing so, for all
equivalence constraints, we obtain a simpler MRF and distribution

ψ′(X,Xc) =
∏
i

ψi(X
c
i) ·

∏
X≡Xi

θ(X)θ(Xi) Pr ′(X) =
1

Z ′
ψ′(X)

10

where Z ′ is the corresponding partition function. Note that each constraint eq(X,Xi) is associated
with unique factors θ(X) and θ(Xi), which we may sometimes distinguish by θXi

(X) and θX(Xi).

Theorem 1 A compensation scheme for relaxed equivalence constraint eq(X,Xi) satisfies model-
split iff the partition function Z ′ of the compensated model satisfies

θ(x) = α
Z ′(xi)

θ(xi)
θ(xi) = α

Z ′(x)

θ(x)
(1)

for all states x, and their corresponding states xi. Here, α is an arbitrary normalizing constant.

Proof See [3]. �

Theorem 2 A compensation scheme that satisfies upper-bound leads to a compensated model whose
partition function is an upper bound on the exact partition function, and whose MPE value is an
upper bound on the exact MPE value.

Proof Consider an equivalence constraint eq(X,Xi). If variable X is set to the value x, and its
clone Xi is set to the corresponding value xi, then eq(x, xi) = 1 = θ(x)θ(xi) for a compensation
satisfying upper-bound. When x 6= xi, we have eq(x, xi) = 0 ≤ θ(x)θ(xi). Moreover, ψ(x) =
ψ′(x,xc) if instantiation x,xc satisfies all equivalence constraints, and ψ(x) = 0 ≤ ψ′(x,xc) when
instantiation x,xc does not. Thus, 0 ≤ ψ(x) ≤ ψ′(x,xc) for all instantiations x and xc.

The MPE of a compensated model is thus an upper bound on the MPE of the original:

max
x

ψ(x) = max
x,xc:X≡Xi

ψ′(x,xc) ≤ max
x,xc

ψ′(x,xc).

Here the second maximization is constrained to assignments x,xc that satisfy all equivalence con-
straints eq(X,Xi). Similarly, for the partition function:

Z =
∑
x

ψ(x) =
∑

x,xc:X≡Xi

ψ′(x,xc) ≤
∑
x,xc

ψ′(x,xc) = Z ′.

�

Theorem 3 For a single equivalence constraint eq(X,Xi), a compensation scheme satisfies pr-dd
iff for all values x, and their corresponding values xi, the compensated model satisfies

θ(x) =

(
Z ′(xi)/θ(xi)

Z ′(x)/θ(x)

) 1
2

θ(xi) =

(
Z ′(x)/θ(x)

Z ′(xi)/θ(xi)

) 1
2

(3)

The scheme satisfies mpe-dd iff it satisfies the above condition with mpe′(.) substituted for Z ′(.).

Proof From the definition of a pr-equivalence, we first have:

Pr ′(x) =
1

Z ′
∂Z ′

∂θ(x)
θ(x) =

1

Z ′
∂Z ′

∂θ(xi)
θ(xi) = Pr ′(xi)

for all values x, and xi respectively. For a compensation satisfying upper-bound, we can substitute
θ(xi) = 1

θ(x) and solve for θ(x), giving us fixed-point conditions:

θ(x) =

(
∂Z ′/∂θ(xi)

∂Z ′/∂θ(x)

) 1
2

We further remark that ∂Z′

∂θ(x) is independent of the unit factor θ(x) since the partition function Z ′ is

linear in θ(x). Moreover, we can compute ∂Z′

∂θ(x) by Z′(x)
θ(x) , when θ(x) is positive. Otherwise, partial

derivatives can be computed efficiently in traditional frameworks for inference, as in [11, 12].

The derivation is analogous for MPE, starting from the definition of mpe-equivalence. �

Theorem 4 When the compensated model is fully decomposed, the fixed-point iterative updates of
Equation 3 correspond precisely to the block coordinate descent updates of the sum-product and
max-sum diffusion algorithms, respectively.

11

A

C D
ψ1(A,C,D)

B
ψ2(A,B,D)

A1

C1 D1

ψ1(A1, C1, D1)

A2

D2

B2
ψ2(A2, B2, D2)

A

C D

B

Figure 2: On the left, is an MRF with two factors, ψ1(A,C,D) and ψ2(A,B,D). On the right, is the
MRF found by cloning all variables, and then relaxing the 6 resulting equivalence constraints (indi-
cated by dashed lines). Besides the two original factors, now over cloned variables, ψ1(A1, C1, D1)
and ψ2(A2, B2, D2), we now have twelve compensating factors, two each for the six equivalence
constraint relaxed: one factor θ(X) at each of the six cloned variables X , and one factor θ(Xi)
each for variables B and C (involved in one equivalence constraint), and two factors θ(Xi) each for
variables A and D (involved in two equivalence constraints).

Proof of Theorem 4 Consider an MRF found by taking each factor ψi(Xi) and each variable X ∈
Xi, and then:

1. replace variable X with a unique clone variable Xi, and

2. introduce an equivalence constraint eq(X,Xi).

When we relax all equivalence constraints, the resulting model is fully decomposed, where all of
the factors ψi(Xc

i), now over clone variables Xc
i , are disconnected. We add compensating factors

θXi
(X) and θX(Xi), where X denotes the original variable and Xi for each equivalence constraint

eq(X,Xi) relaxed. The resulting MRF, over original variables X and clone variables Xc is:

ψ′(X,Xc) =
[∏

i

ψi(X
c
i)
]
·
[∏
X≡Xi

θXi
(X)θX(Xi)

]
=
∏
i

[
ψi(X

c
i)

∏
Xi∈Xc

i

θX(Xi)
]
·
[∏
X

∏
i:X∈Xi

θXi
(X)

]
.

Note that each factor ψi(Xc
i) is now associated with a unit factor θX(Xi) for each equivalence

constraint eq(X,Xi) that the factor was involved in: one for each Xi ∈ Xc
i . Each variable X is

associated with a unit factor θXi
(X) for each equivalence constraint eq(X,Xi) that variable X was

involved in: one for each factor ψi(Xi), where X ∈ Xi. Figure 2 highlights a decomposition for a
simple MRF.

Now, consider an equivalence constraint eq(X,Xi) in our compensated MRFM′. Since the MRF
is disconnected, the factor θXi

(X) interacts only with the compensating factors over variable X .
Similarly, the factor θX(Xi) interacts only with the factor ψi(Xc

i), and the other compensating
factors over the other clone variables in Xc

i . Thus, our partial derivatives have the following form:

∂Z ′

∂θXi
(x)
∝

∏
j:X∈Xj

j 6=i

θXj
(x)

∂Z ′

∂θX(xi)
∝
∑

xc
i |=xi

ψ(xci) ·
∏

Yi∈Xc
i :

Y 6=X

θY (yi)

Note again that we can compute the partial derivatives ∂Z′

∂θXi
(x) by Z′(x)

θXi
(x) , when θXi

(x) is positive.

For the MPE problem, we are interested in computing mpe′(x)
θXi

(x) , which has a form analogous to the

above, except with maximizations instead of summations. Moreover, mpe′(x)
θXi

(x) is independent of the

12

parameter θXi
(x) (after taking into account the division). The resulting fixed-point updates for the

log parameters, are now:

log θXi(x) = −1

2

mpe′(x)

θXi(x)
+

1

2

mpe′(xi)

θX(xi)

= −1

2

∑
j:X∈Xj

j 6=i

log θXj (x) +
1

2
max
xc
i |=xi

logψi(x
c
i) +

∑
Yi∈Xc

i :
Y 6=X

log θY (yi)

+ logα

= −1

2

∑
j:X∈Xj

j 6=i

log θXj
(x) +

1

2
max
xc
i |=xi

logψi(x
c
i)−

∑
Yi∈Xc

i :
Y 6=X

log θYi
(y)

+ logα

where we substitute log θY (yi) with − log θYi
(y), from our upper-bound condition. Here, α can

be treated as a normalizing constant, which we can ignore, since it is canceled out in the joint
distribution of the compensated MRF. We thus arrive at the block coordinate descent update of the
max-sum diffusion algorithm, as in [8, Equation 1.17]. �

Theorem 5 For a single equivalence constraint eq(X,Xi), with binary variables X and Xi, a
compensation scheme satisfies pr-dd iff the compensated model satisfies

θ(x)

θ(x̄)
=

(
Z ′(x̄, xi)/θ(x̄)θ(xi)

Z ′(x, x̄i)/θ(x)θ(x̄i)

) 1
2 θ(xi)

θ(x̄i)
=

(
Z ′(x, x̄i)/θ(x)θ(x̄i)

Z ′(x̄, xi)/θ(x̄)θ(xi)

) 1
2

(4)

The scheme satisfies mpe-dd iff it satisfies the above condition with mpe′(.) substituted for Z ′(.).

Proof First, note that:
Z ′(x, xi)

θ(x)θ(xi)
=

∂2Z ′

∂θ(x)∂θ(xi)
(5)

which is a quantity that is independent of both of the unit factors θ(x) and θ(xi), since the partition
function Z ′ is linear in θ(x), and linear in θ(xi).

For binary variables X and Xi we have

Pr ′(x) = Pr ′(x, xi) + Pr ′(x, x̄i) =
1

Z ′
∂2Z ′

∂θ(x)∂θ(xi)
θ(x)θ(xi) +

1

Z ′
∂2Z ′

∂θ(x)∂θ(x̄i)
θ(x)θ(x̄i)

Pr ′(xi) = Pr ′(x, xi) + Pr ′(x̄, xi) =
1

Z ′
∂2Z ′

∂θ(x)∂θ(xi)
θ(x)θ(xi) +

1

Z ′
∂2Z ′

∂θ(x̄)∂θ(xi)
θ(x̄)θ(xi)

After substituting θ(xi) = 1
θ(x) (from our upper-bounds condition), equating the above marginals,

we get the desired result after some rearranging. �

13

