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Abstract

We propose the Probabilistic Sentential Decision Dia-
gram (PSDD): A complete and canonical representation
of probability distributions defined over the models of a
given propositional theory. Each parameter of a PSDD
can be viewed as the (conditional) probability of mak-
ing a decision in a corresponding Sentential Decision
Diagram (SDD). The SDD itself is a recently proposed
complete and canonical representation of propositional
theories. We explore a number of interesting properties
of PSDDs, including the independencies that underlie
them. We show that the PSDD is a tractable represen-
tation. We further show how the parameters of a PSDD
can be efficiently estimated, in closed form, from com-
plete data. We empirically evaluate the quality of PS-
DDs learned from data, when we have knowledge, a
priori, of the domain logical constraints.

Introduction
The interplay between logic and probability has been of
great interest throughout the history of AI. One of the earli-
est proposals in this direction is Nilsson’s (1986) probabilis-
tic logic, which aimed at augmenting first-order logic with
probabilities. This has prompted similar approaches, includ-
ing, for example, Halpern (1990). The focus of these ap-
proaches, however, was mainly semantical, yielding no ef-
fective schemes for realizing them computationally. More
recently, the area of lifted probabilistic inference has tack-
led this interplay, while employing a different compro-
mise (Poole 2003). In these efforts, the focus has been
mostly on restricted forms of first-order logic (e.g., function-
free and finite domain), but with the added advantage of ef-
ficient inference (e.g., algorithms whose complexity is poly-
nomial in the domain size).

On the propositional side, the thrust of the interplay has
been largely computational. An influential development in
this direction has been the realization that enforcing certain
properties on propositional representations, such as decom-
posability and determinism, provides one with the power to
answer probabilistic queries efficiently. This development
was actually based on two technical observations. First, that
decomposable and deterministic representations allow one

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to perform weighted model counting efficiently. Second, that
probabilistic reasoning can be reduced to weighted model
counting. This development, which has its first roots in Dar-
wiche (2002), has been underlying an increasing number
of probabilistic reasoning systems in the last decade. This
is especially true for representations that employ both logi-
cal and probabilistic elements (e.g., Chavira, Darwiche, and
Jaeger (2006) and Fierens et al. (2011)). Moreover, the tech-
nique has been extended recently to certain first-order repre-
sentations as well (Van den Broeck et al. 2011).

This paper is concerned with an orthogonal contribution
to this interplay between propositional logic and probabil-
ity theory. The problem we tackle here is that of developing
a representation of probability distributions in the presence
of massive, logical constraints. That is, given a propositional
logic theory which represents domain constraints, our goal is
to develop a representation that induces a unique probability
distribution over the models of the given theory. Moreover,
the proposed representation should satisfy requirements that
are sometimes viewed as necessary for the practical employ-
ment of such representations. These include a clear seman-
tics of the representation parameters; an ability to reason
with the representation efficiently; and an ability to learn its
parameters from data, also efficiently.

Our proposal is called a Probabilistic Sentential Decision
Diagram (PSDD). It is based on the recently proposed Sen-
tential Decision Diagram (SDD) for representing proposi-
tional theories (Darwiche 2011; Xue, Choi, and Darwiche
2012; Choi and Darwiche 2013). While the SDD is com-
prised of logical decision nodes, the PSDD is comprised
of probabilistic decision nodes, which are induced by sup-
plying a distribution over the branches of a logical decision
node. Similar to SDDs, the PSDD is a canonical representa-
tion, but under somewhat more interesting conditions. More-
over, computing the probability of a term can be done in time
linear in the PSDD size. In fact, the probability of each and
every literal can be computed in only two passes over the
PSDD. It is particularly notable that the local parameters of
a PSDD have clear semantics with respect to the global dis-
tribution induced by the PSDD. We will also show that these
parameters can be learned efficiently from complete data.

This paper is structured as follows. We start by a con-
crete discussion on some of the applications that have driven
the development of PSDDs and follow by an intuitive expo-



L K P A Students
0 0 1 0 6
0 0 1 1 54
0 1 1 1 10
1 0 0 0 5
1 0 1 0 1
1 0 1 1 0
1 1 0 0 13
1 1 1 0 8
1 1 1 1 3

Table 1: Student enrollment data.

sure of PSDDs and their salient features. We next provide a
formal treatment of the syntax, semantics and properties of
PSDDs. This allows us to present the main inference algo-
rithm for PSDDs and the one for learning PSDD parameters
from complete data. The paper concludes with some exper-
imental results showing the promise of PSDDs in learning
probability distributions under logical constraints. Proofs of
theorems are delegated to the full version of the paper due
to space limitations.

Motivation
PSDDs were inspired by the need to learn probability dis-
tributions that are subject to domain constraints. Take for
example a computer science department that organizes four
courses: Logic (L), Knowledge Representation (K), Proba-
bility (P ), and Artificial Intelligence (A). Students are asked
to enroll for these courses under the following restrictions:

– A student must take at least one of Probability or Logic.

– Probability is a prerequisite for AI.

– The prerequisite for KR is either AI or Logic.

The department may have data on student enrollments, as in
Table 1, and may wish to learn a probabilistic model for rea-
soning about student preferences. For example, the depart-
ment may need to know whether students are more likely to
satisfy the prerequisite of KR using AI or using Logic.

A mainstream approach for addressing this problem is to
learn a probabilistic graphical model, such as a Bayesian
network. In this case, a network structure is constructed
manually or learned from data. The structure is then turned
into a Bayesian network by learning its parameters from the
data. Other graphical models can also be used. This includes,
for example, Markov networks or their variations.

What is common among all these approaches is that
they lack a principled and effective method for accommo-
dating the domain constraints into the learning process—
that is, ensuring, for example, that a student with a profile
A∧K∧L∧¬P , or a profile ¬A∧K∧¬L∧P , has zero prob-
ability in the learned model. In principle, the zero parame-
ters of a graphical model can capture logical constraints, al-
though a fixed model structure will not in general accommo-
date arbitrary logical constraints. We could introduce addi-
tional structure into the model to capture such constraints,
using, e.g., the method of virtual evidence (Pearl 1988;
Mateescu and Dechter 2008). However, incorporating con-

straints in this manner will in general lead to a highly-
connected network, making inference intractable. Even if in-
ference remained tractable, such an approach is not ideal as
we now have to learn a distribution that is conditioned on
the constraints. This would require new learning algorithms
(e.g., gradient methods) for performing parameter estima-
tion as traditional methods may no longer be applicable. For
example, in Bayesian networks, the closed-form parameter
estimation algorithm under complete data will no longer be
valid in this case.

The domain constraints of our example can be expressed
using the following CNF.

P ∨ L
A⇒ P

K ⇒ A ∨ L
(1)

Even though there are 16 combinations of courses, the CNF
says that only 9 of them are valid choices. An approach that
observes this information must learn a probability distribu-
tion that assigns a zero probability to every combination that
is not allowed by these constraints.

None of the standard learning approaches we are famil-
iar with has been posed to address this problem. The com-
plication here is not strictly with the learning approaches,
but with the probabilistic models that are amenable to be-
ing learned under these circumstances. In particular, these
models are not meant to induce probability distributions that
respect a given set of logical constraints.

The simple problem we posed in this section is exemplary
of many real-world applications. We mention in particular
configuration problems that arise when purchasing products,
such as cars and computers. These applications give users
the option to configure products, but subject to certain con-
straints. Data is abundant for these applications and there is a
clear economic interest in learning probabilistic models un-
der the given constraints. We also mention reasoning about
physical systems, which includes verification and diagnosis
applications. Here, propositional logic is typically used to
encode some system functionality, while leaving out some
system behaviors which may have a non-deterministic na-
ture (e.g., component failures and probabilistic transitions).
There is also an interest here to learn probabilistic models of
these systems, subject to the given constraints.

Our goal in this paper is to introduce the PSDD represen-
tation for addressing this particular need. We will start by an
intuitive (and somewhat informal) introduction to PSDDs,
followed by a more formal treatment of their syntax, seman-
tics and the associated reasoning and learning algorithms.

PSDDs
We will refer to domain constraints as the base of a prob-
ability distribution. Our proposed approach starts by repre-
senting this base as a Sentential Decision Diagram (SDD) as
in Figure 1 (Darwiche 2011; Xue, Choi, and Darwiche 2012;
Choi and Darwiche 2013). An SDD is determined by a vtree,
which is a full binary tree with leaves corresponding to the
domain variables (Pipatsrisawat and Darwiche 2008). The
choice of a particular SDD can then be thought of as a choice
of a particular vtree. We will later discuss the impact of this
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Figure 1: A vtree and SDD for the student enrollment problem. Numbers in circles correspond to vtree nodes.

choice on the represented distribution. For now, however, we
will develop some further understanding of SDDs as they are
the backbones of our probability distributions.

SDDs. An SDD is either a decision node or a terminal
node. A terminal node is a literal, the constant > (true)
or the constant ⊥ (false). A decision node is a disjunction
of the form (p1 ∧ s1) ∨ . . . ∨ (pn ∧ sn), where each pair
(pi, si) is called an element. A decision node is depicted
by a circle and its elements are depicted by paired boxes.
Here, p1, . . . , pn are called primes and s1, . . . , sn are called
subs. Primes and subs are themselves SDDs. Moreover, the
primes of a decision node are always consistent, mutually
exclusive and exhaustive. The SDD in Figure 1 has seven
decision nodes. The decision node to the far left has two ele-
ments (¬L,K) and (L,⊥). It represents (¬L∧K)∨(L∧⊥),
which is equivalent to ¬L∧K. There are two primes for this
node ¬L and L. The two corresponding subs are K and ⊥.

Structure. An SDD can be viewed as a structure that in-
duces infinitely many probability distributions (all having
the same base). By parameterizing an SDD, one obtains a
PSDD that induces a particular probability distribution.

Parameters. Figure 2 depicts a PSDD which is obtained
by parameterizing the SDD in Figure 1. Both decision and
terminal SDD nodes are parameterized, but we focus here
on decision nodes. Let n be a decision node having elements
(p1, s1), . . . , (pn, sn). To parameterize node n is to provide
a distribution θ1, . . . , θn. Intuitively, θi is the probability of
prime pi given that the decision of node n has been implied.
We will formalize and prove this semantics later. We will
also provide an efficient procedure for learning the parame-
ters of a PSDD from complete data. The PSDD parameters
in Figure 2 were learned using this procedure from the data
in Table 2. The table also depicts the probability distribution
induced by the learned PSDD.

Independence. The PSDD structure is analogous to a
Bayesian network structure in the following sense. The latter
can be parameterized in infinitely many ways, with each pa-
rameterization inducing a particular probability distribution.
Moreover, all the induced distributions satisfy certain inde-
pendences that can be inferred from the underlying Bayesian
network structure. The same is true for PSDDs. Each param-
eterization of a PSDD structure yields a unique probability
distribution. Moreover, all the induced distributions satisfy
independences that can be inferred from the PSDD structure.

L K P A Students Learned PSDD Distribution
0 0 1 0 6 0.6 · 0.1 6.0%
0 0 1 1 54 0.6 · 0.9 54.0%
0 1 1 1 10 0.1 10.0%
1 0 0 0 5 0.3 · 0.2 · 0.6 3.6%
1 0 1 0 1 0.3 · 0.2 · 0.4 · 0.75 1.8%
1 0 1 1 0 0.3 · 0.2 · 0.4 · 0.25 0.6%
1 1 0 0 13 0.3 · 0.8 · 0.6 14.4%
1 1 1 0 8 0.3 · 0.8 · 0.4 · 0.75 7.2%
1 1 1 1 3 0.3 · 0.8 · 0.4 · 0.25 2.4%

Table 2: Student enrollment data and learned distribution.

We will show, however, that PSDD independence is more re-
fined than Bayesian network independence as it allows one
to express more qualified independence statements.

The Syntax and Semantics of PSDDs
PSDDs are based on normalized SDDs in which every node
n is associated with (normalized for) a vtree node v accord-
ing to the following rules (Darwiche 2011).

– If n is a terminal node, then v is a leaf node which con-
tains the variable of n (if any).

– If n is a decision node, then its primes (subs) are normal-
ized for the left (right) child of v.

– If n is the root SDD node, then v is the root vtree node.

The SDD in Figure 1 is normalized. Each decision node in
this SDD is labeled with the vtree node it is normalized for.
We are now ready to define the syntax of a PSDD.

Definition 1 (PSDD Syntax) A PSDD is a normalized SDD
with the following parameters.

– For each decision node (p1, s1), . . . , (pk, sk) and prime
pi, a positive parameter θi is supplied such that θ1+ . . .+
θk = 1 and θi = 0 iff si = ⊥.

– For each terminal node >, a positive parameter θ is sup-
plied such that 0 < θ < 1.

A terminal node > with parameter θ will be denoted by
X :θ, where X is the variable of leaf vtree node that > is
normalized for. Other terminal nodes (i.e., ⊥, X and ¬X)
have fixed, implicit parameters (discussed later) and will be
denoted as is. A decision PSDD node will be denoted by
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Figure 2: A PSDD for the student enrollment problem, which results from parameterizing the SDD in Figure 1. The parameters
were learned from the dataset in Table 1 (also shown in Table 2).

(p1, s1, θ1), . . . , (pk, sk, θk). Graphically, we will just anno-
tate the edge into element (pi, si) with the parameter θi. Fig-
ure 2 provides examples of this notation.

We next define the distribution of a PSDD, inductively.
That is, we first define the distribution induced by a terminal
node. We then define the distribution of a decision node in
terms of the distributions induced by its primes and subs.
Definition 2 (PSDD Distribution) Let n be a PSDD node
that is normalized for vtree node v. Node n defines a distri-
bution Prn over the variables of vtree v as follows.
– If n is a terminal node, and v has variable X , then

n Prn(X) Prn(¬X)
X :θ θ 1− θ
⊥ 0 0
X 1 0
¬X 0 1

– If n is a decision node (p1, s1, θ1), . . . , (pk, sk, θk) and v
has left variables X and right variables Y, then

Prn(xy)
def
= Prpi(x) ·Prsi(y) · θi for i where x |= pi.

Applying this definition to the PSDD of Figure 2 leads to the
distribution in Table 2 for its root node. The following table
depicts the distribution induced by a non-root node in this
PSDD, which appears in the middle of Figure 2.

x y Prpi(x) Prsi(y) θi Prn(xy)
P A 1 0.25 0.4 0.1
P ¬A 1 0.75 0.4 0.3
¬P A 1 0 0.6 0.0
¬P ¬A 1 1 0.6 0.6

Table 3: Distribution of node n = (¬P,¬A)(P,>).

The SDD node associated with a PSDD node n is called
the base of n and is denoted by [n]. When there is no ambi-
guity, we will often not distinguish between a PSDD node n
and its base [n].

A PSDD assigns a strictly positive probability to a vari-
able instantiation iff the instantiation satisfies its base. This

can be seen, for example, in Table 3. This is also the first key
property of PSDDs.

Theorem 1 (Base) Consider a PSDD node n that is nor-
malized for vtree node v. If Z are the variables of vtree v,
then Prn(z) > 0 iff z |= [n].

We will now discuss the second key property of PSDDs,
which reveals the local semantics of PSDD parameters.

Theorem 2 (Parameter Semantics) Let n be a decision
node (p1, s1, θ1), . . . , (pk, sk, θk). We have θi = Prn([pi]).

Consider the PSDD in Figure 2 and its decision node n
in Table 3. Prime ¬P of this node has parameter 0.6. Ac-
cording to Theorem 2, we must then have Prn(¬P ) = 0.6,
which can be verified in Table 3. Similarly, Prn(P ) = 0.4.

The third key property of PSDDs is the relationship be-
tween the local distributions induced by its various nodes
(node distributions) and the global distribution induced by
its root node (PSDD distribution)—for example, the rela-
tionship between the distribution of node n in Table 3 and
the PSDD distribution given in Table 2.

Node distributions are linked to the PSDD distribution by
the notion of context.

Definition 3 (Context) Let (p1, s1), . . . , (pk, sk) be the el-
ements appearing on some path from the SDD root to node
n.1 Then p1 ∧ . . . ∧ pk is called a sub-context for node n
and is feasible iff si 6= ⊥. The context is a disjunction of all
sub-contexts and is feasible iff some sub-context is feasible.

Consider Figure 1. The three decision nodes normalized for
vtree node v = 5 have the contexts ¬L∧K, L and ¬L∧¬K.
Moreover, the terminal nodes normalized for vtree v = 6
have the contexts:

– A: ¬L ∧K ∧ P
– ¬A: L ∧ ¬P
– ⊥: (¬L ∧K ∧ ¬P ) ∨ (¬L ∧ ¬K ∧ ¬P ) = (¬L ∧ ¬P )
– >: (L ∧ P ) ∨ (¬L ∧ ¬K ∧ P ) = (L ∨ ¬K) ∧ P.
Contexts satisfy interesting properties.

1That is, n = pk or n = sk.
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Theorem 3 (Context) A node is implied by its context and
the underlying SDD. Nodes normalized for the same vtree
node have mutually exclusive and exhaustive contexts. The
sub-contexts of a node are mutually exclusive. A context/sub-
context is feasible iff it has a strictly positive probability.

Contexts give a global interpretation to node distributions.
Theorem 4 (Node Distribution) Consider a PSDD r and
let n be one of its nodes. If γn is a feasible sub-context or
feasible context of node n, then Prn(.) = Prr(. | γn).

Contexts also give a global interpretation to parameters.
Corollary 1 (Parameter Semantics) Consider a PSDD r
and node n with feasible sub-context or feasible context γn.
– If n is a terminal node X :θ, then θ = Prr(X | γn).
– If n is a decision node (p1, s1, θ1), . . . , (pk, sk, θk), then
θi = Prr([pi] | γn) for i = 1, . . . , k.

This corollary says that the parameters of a node are condi-
tional probabilities of the PSDD distribution.

We show in the Appendix that PSDDs are complete as
they are capable of representing any probability distribution.
We also show that PSDDs are canonical under a condition
known as compression. More precisely, we show that there is
a unique compressed PSDD for each distribution and vtree.
This is particularly important for learning PSDDs (structure
and parameters) as it reduces the problem of searching for a
PSDD into the problem of searching for a vtree.

PSDD Independence
Consider the Bayesian network structure in Figure 3, which
corresponds to our earlier example. This structure encodes a
number of probabilistic independences that hold in any dis-
tribution it induces (i.e., regardless of its parameters). These
independences are
– A and L are independent given P .
– K and P are independent given AL.
These independences are conditioned on variables. That is,
“given AL” reads “given any state of variables A and L.”
The second independence can therefore be expanded into
2 × 2 × 4 statements of the form “α is independent of β
given γ,” where α, β and γ are propositional sentences (e.g.,
¬K is independent of P given A ∧ ¬L).

The structure of a PSDD also encodes independences that
hold in every induced distribution. These independences fall
into two major categories, the first coming from Theorem 4.

Corollary 2 (Independence I) Consider a PSDD r and a
node n with context γn and feasible sub-context βn.
– If n is a terminal node X :θ, then

Prr(X | γn, βn) = Prr(X | γn) = Prr(X | βn) = θ.

– If n is a decision node (p1, s1, θ1), . . . , (pk, sk, θk), then

Prr([pi] | γn, βn) = Prr([pi] | γn) = Prr([pi] | βn) = θi

for i = 1, . . . , k.

That is, the probability of a prime is independent of a sub-
context once the context is known. This is also true for the
probability of a terminal sub. Moreover, which specific sub-
context we know is irrelevant. All are equivalent as far as
defining the semantics of parameters is concerned.

The second category of independences is as follows.
Theorem 5 (Independence II) Let γv be a feasible context
for a PSDD node normalized for vtree node v. Variables in-
side v are independent of those outside v given context γv .

To read the independences characterized by this theorem,
one iterates over each vtree node v, identifying its corre-
sponding, feasible contexts γv . Consider the PSDD in Fig-
ure 2. There are three decision nodes which are normalized
for vtree node v = 5, with contexts ¬L∧K,L and ¬L∧¬K.
Using the second context, we get

variables PA and LK are independent given context L.

This reads as “If we know that someone took Logic, then
whether they took KR has no bearing on whether they took
Probability or AI.”

PSDD independences are conditioned on propositional
sentences (contexts) instead of variables. This kind of in-
dependence is known to be more expressive and is usually
called context-specific independence (Boutilier et al. 1996).
This kind of independence is beyond the scope of proba-
bilistic graphical models, which can only condition indepen-
dence statements on variables. Consider the example state-
ment we discussed above. If we were to condition on the
variable L instead of the propositional sentence L, we would
also get “If we know that someone did not take Logic, then
whether they took KR has no bearing on whether they took
Probability or AI.” This is actually contradicted by the log-
ical constraints for this problem (K ⇒ A ∨ L). If someone
did not take Logic, but took KR, they must have taken AI.

Reasoning with PSDDs
We now present the main algorithms for reasoning with PS-
DDs. In particular, given a PSDD r and an instantiation e
of some variables (evidence), we provide an algorithm for
computing the probability of this evidence Prr(e). We also
present an algorithm for computing the conditional proba-
bility Prr(X | e) for every variable X . Both algorithms run
in time which is linear in the PSDD size.

We start with the first algorithm. For variable instantiation
e and vtree node v, we will use ev to denote the subset of
instantiation e that pertains to the variables of vtree v, and
ev̄ to denote the subset of e that pertains to variables outside
v. The first algorithm is based on the following result.



Algorithm 1: Probability of Evidence
Input: PSDD r and evidence e

1 evd(n)← 0 for every node n
// visit children before parents

2 foreach node n in the PSDD do
3 if n is a terminal node then
4 v ← leaf vtree node that n is normalized for
5 evd(n)← Prn(ev)

6 else
7 foreach element (pi, si, θi) of node n do
8 evd(n)← evd(n) + evd(pi) · evd(si) · θi

Theorem 6 Consider a decision node n = (p1, s1, θ1), . . . ,
(pk, sk, θk) that is normalized for vtree node v, with left
child l and right child r. For evidence e, we have

Prn(ev) =
k∑
i=1

Prpi(el) · Prsi(er) · θi

When n is a terminal node, v is a leaf vtree node and ev
is either a literal or the empty instantiation. In this case, we
can just look up the value of Prn(ev) from the distribution
induced by the terminal node n (from Definition 2).

Theorem 6 leads to Algorithm 1, which traverses the
PSDD bottom-up, computing Prn(ev) for each node n and
storing the result in evd(n). The probability of evidence is
then evd(r), where r is the PSDD root.

We now turn to computing the probability Prr(X, e) for
each variable X . One can use Algorithm 1 to perform this
computation, but the algorithm would need to be called once
for each variable X . However, with the following theorem,
we can compute all of these node marginals using a single,
second pass on the PSDD, assuming that Algorithm 1 did
the first pass.

Theorem 7 Consider a PSDD r, variable X , and its leaf
vtree node v. Let n1, . . . , nk be all the terminal nodes nor-
malized for v and let γn1

, . . . , γnk
be their corresponding

contexts. For evidence e, we have

Prr(X, ev̄) =
k∑
i=1

Prni
(X) · Prr(γni

, ev̄).

If e |= ¬X , then Prr(X, e) = 0. Otherwise, X, ev̄ = X, e
and Prr(X, e) = Prr(X, ev̄).

The term Prni
(X) in Theorem 7 is immediately available.

Algorithm 2 computes Prr(γn, ev̄) for every PSDD node
n that has context γn and is normalized for vtree node v.
The algorithm traverses the PSDD top-down, computing this
probability for each visited node n, storing it in ctx(n). If n
is a terminal node, the algorithm also computes Prr(X, ev̄)
and Prr(¬X, ev̄), storing them in mrg(X) and mrg(¬X).

The simplicity of Algorithm 2 is due to the following. The
probability of a sub-context can be computed by multiplying
the parameters appearing on its corresponding path. Since
sub-contexts are mutually exclusive, their probabilities can

Algorithm 2: Probability of Contexts
Input: PSDD r

1 ctx(n)← 0 for nodes n 6= r and ctx(r)← 1
2 mrg(X)← 0 and mrg(¬X)← 0 for every variable X
// visit parents before children

3 foreach node n in the PSDD do
4 if n is a terminal node then
5 X ← variable of node n
6 mrg(X) ← mrg(X) + ctx(n) · Prn(X)
7 mrg(¬X)← mrg(¬X) + ctx(n) · Prn(¬X)

8 else
9 foreach element (pi, si, θi) of node n do

10 ctx(pi)← ctx(pi) + θi · evd(si) · ctx(n)
11 ctx(si)← ctx(si) + θi · evd(pi) · ctx(n)

be added to obtain the context probability. Algorithm 2 does
precisely this except that it accounts for evidence as well
using quantities computed by Algorithm 1.

Learning with PSDDs
We now present an algorithm for learning the parameters of
a PSDD from a complete dataset. We start first with some
basic definitions. An instantiation of all variables is called
an example. There are 2n distinct examples over n proposi-
tional variables. A complete dataset is a multi-set of exam-
ples.2 That is, an example may appear multiple times in a
dataset. Given a PSDD structure (a normalized SDD), and a
complete dataset, our goal is to learn the value of each PSDD
parameter. More precisely, we wish to learn maximum likeli-
hood parameters: ones that maximize the probability of ex-
amples in the dataset.

We will use Prθ to denote the distribution induced by the
PSDD structure and parameters θ. The likelihood of these
parameters given dataset D is defined as

L(θ|D) =

N∏
i=1

Prθ(di),

where di ranges over all N examples in dataset D. Our goal
is then to find the maximum likelihood parameters

θml = argmax
θ

L(θ|D).

We will use D#(α) to denote the number of examples in
dataset D that satisfy propositional sentence α. For a deci-
sion node n = (p1, s1, θ1), ..., (pk, sk, θk) with context γn,
we propose the following estimate for parameter θi:

θmli =
D#(pi, γn)

D#(γn)
. (2)

For terminal node n = X :θ with context γn, we propose
the following estimate for parameter θ:

θml =
D#(X, γn)

D#(γn)
. (3)

2In an incomplete dataset, an example corresponds to an instan-
tiation of some variables (not necessarily all).



We can now show the following.

Theorem 8 The parameter estimates of Equations 2 and 3
are the only estimates that maximize the likelihood function.

Our parameter estimates admit a closed-form, in terms of
the counts D#(α) in the data. One can compute these esti-
mates using a single pass through the examples of a dataset.
Moreover, each distinct example can be processed in time
linear in the PSDD size.3 These are very desirable proper-
ties for a parameter learning algorithm. These properties are
shared with Bayesian network representations, but are miss-
ing from many others, including Markov networks.

When learning probabilistic graphical models, one makes
a key distinction between learning structures versus learn-
ing parameters (the former being harder in general). While
learning PSDD structures is beyond the scope of this pa-
per, the experimental results we present next do use a ba-
sic method for learning structures. In particular, since we
compile logical constraints into an SDD (i.e., a PSDD struc-
ture), the compilation technique we use is effectively “learn-
ing” a structure. We used the publicly available SDD pack-
age for this purpose (http://reasoning.cs.ucla.edu/sdd/). The
SDD package tries to dynamically minimize the size of the
compiled SDD and, as a result, tries to minimize the number
of PSDD parameters.

Preliminary Experimental Results
In this Section, we empirically evaluate our parameter es-
timation algorithm for PSDDs. First, we illustrate how our
algorithm can effectively recover the parameters of a PSDD
from data, assuming that the dataset was indeed generated
by the distribution of a PSDD. Second, we highlight how
knowing the logical constraints underlying a given dataset
can impact the accuracy of learned models.

In our first set of experiments, using synthetic data, we
show how we can recover the true parameters that gener-
ated a dataset, given that the logical constraints are known.
As we will be simulating datasets from a known PSDD, we
shall use the KL-divergence to compare the original PSDD
distribution Pr(Z), and the PSDD distribution Pr′(Z) that
we learned from the data:

KL(Pr,Pr′) =
∑
z

Pr(z) log
Pr(z)

Pr′(z)
.

Note that the KL-divergence is non-negative, and zero iff the
two distributions are equivalent.4

3A dataset may not include every example that is consistent
with the domain constraints. If this is the case, a parameter θ for
prime pmay be estimated to zero, even though its sub smay not be
⊥; see Theorem 1. To address this, one can assume a pseudo-count
for each distinct example, which can be thought of as providing a
prior distribution on parameters. In our experiments, we assumed a
pseudo-count of 1/mc for each distinct example, where mc is the
model count of the SDD. This corresponds to a very weak prior
since, in aggregate, these pseudo-counts contribute a total count
that is equivalent to one real example in the dataset.

4The KL–divergence between two PSDDs can be computed ef-
ficiently if they share the same structure.
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Figure 4: We observe how our parameter estimation algo-
rithm can recover the original PSDD as we increase the
size of the training dataset (x-axis), measured by the KL-
divergence (y-axis, where lower is better).

Consider Figure 4, where each point in the plot represents
an average of 100 randomly generated PSDDs. We gener-
ated 10 random PSDD structures by compiling random 3-
CNFs into SDDs (the used clause to variable ratio is 3). For
each SDD, we randomly generated 10 different parameteri-
zations, giving us 10 × 10 = 100 PSDDs total. The SDDs
were compiled using dynamic minimization, which reduces
the size of the SDD, and hence, the number of parameters
in the corresponding PSDD. We evaluated PSDDs over 16
variables and 32 variables (one curve each).

As we go right on the x-axis, we increase the size of the
dataset that we are learning our PSDD from. We clearly see
that as more data becomes available, the parameters that we
learn more closely match the true parameters of the original
PSDD (measured using the KL-divergence, on the y-axis).
Indeed, both curves are steadily tending to zero. The PSDDs
over 16 variables converge faster than those over 32 vari-
ables. The PSDDs over 16 variables have fewer parameters,
roughly, a tenth as many.

Our final experiment tries to put PSDD learning in the
context of learning probabilistic graphical models. It is hard
to make a direct comparison here since existing approaches
do not factor domain constraints into the learning process.
Hence, there are no available systems that tackle the learn-
ing problem we posed in this paper, nor are there reported
experimental results that are directly relevant. Still, we con-
ceived an experiment that is revealing in this regard, which
we explain next.

A standard experiment for evaluating a learning approach
goes as follows. The dataset is divided into a training por-
tion and testing one. The learning algorithm is then given the
training dataset and asked to find a probabilistic model. The
quality of the model is then measured by computing the like-
lihood of learned parameters, but using the testing dataset.
The literature contains many experiments of this form (e.g.,
Table 4). The question we posed is this: What if the dataset
embedded the domain constraints, in that any example that



Table 4: Log Likelihoods of Testing Datasets. A question
mark indicates the unavailability of likelihood for the corre-
sponding approach/dataset.

benchmark #var ACMN ACBN LTM CLT PSDD
NLTCS 16 -6.01 -6.02 -6.49 -6.76 -6.31
MSNBC 17 -6.04 -6.04 -6.52 -6.54 -6.20
KDDCup 64 -2.15 -2.16 -2.18 -2.29 -2.11
Plants 69 -12.89 -12.85 -16.39 -16.52 -10.99
Audio 100 -40.32 -41.13 -41.90 -44.37 -19.34
Jester 100 -53.35 -54.43 -55.17 -58.23 -18.49
Netflix 100 -57.26 -57.75 -58.53 -60.25 -19.41
Accidents 111 ? ? ? -33.19 -19.09
Retail 135 ? ? ? -10.94 -10.68
Pumsb Star 163 ? ? ? -30.79 -18.25
DNA 180 ? ? ? -87.68 -14.75
MSWeb 294 -9.77 -9.81 -10.21 -10.19 -9.25
Book 500 -35.62 -36.02 -34.22 -37.83 -17.38
EachMovie 500 ? ? ? -64.83 -14.89
WebKB 839 -161.30 -159.85 -156.84 -163.43 -15.89
Kosarak 883 ? ? ? -19.87 -9.03
Reuters-52 889 -89.54 -89.27 -91.23 -94.41 -17.58
20 NG 910 -159.56 -159.65 -156.77 -164.13 -18.91
BBC 1058 ? ? ? -261.80 -14.22
Ad 1556 ? ? ? -16.41 -10.31

does not appear in the dataset (training or testing) is an im-
possible example? Under this assumption, the domain con-
straints correspond to a sentence which is obtained by dis-
joining all examples in the dataset. This is indeed what we
did in our last experiment. We compiled the mentioned dis-
junction (which is a DNF) into an SDD, learned its param-
eters using the training dataset, and measured the quality of
learned PSDD using the testing dataset.

We compared the obtained results on the corpus in Ta-
ble 4; see, e.g., (Davis and Domingos 2010) for more statis-
tics on these datasets. These real-world datasets are com-
monly used to evaluate algorithms for learning probabilis-
tic graphical models as we just discussed.5 Here, ACMN are
Arithmetic Circuits for Bayesian networks, ACBN are Arith-
metic Circuits for Markov networks, LTM are Latent Tree
Models, and CLT are Chow-Liu trees. Each algorithm learns
its corresponding model using the training dataset, and eval-
uates it using the testing dataset. The likelihoods of learned
models are given in Table 4; these likelihoods can also be
found in (Lowd and Rooshenas 2013). For the two datasets
over a small number of variables, our PSDDs obtain com-
petitive likelihoods (smaller magnitude is better). In datasets
over a larger number of variables, the PSDDs obtain better,
and often significantly better, likelihoods than other learned
models.

While this experiment is contrary to what is usual, it is
both revealing and suggestive. First, it highlights the poten-
tial impact of accommodating logical constraints into the
learning process. Second, it begs the question: What if the
data was indeed indicative of the domain constraints? For

5The models that were learned in Table 4 correspond to re-
stricted Bayesian or Markov networks (they have a corresponding
arithmetic circuit (AC) or have a tree structure). These restrictions
are meant to allow one to compute likelihoods efficiently.

example, when the dataset is large enough, and the domain
is known to be constrained enough, it is not unreasonable to
assume that the dataset is indicative of domain constraints.
Moreover, theoretically, this assumption does hold in the
limit. As far as we know, there is no existing approach that
can exploit this assumption as done by this work. In fact, this
observation and the need to address it is what prompted us
to develop PSDDs in the first place.

Related Work
The PSDD can be viewed from two angles: As a knowledge
representation and reasoning formalism, and as a learning
formalism. We next discuss related work across both angles.

As a KR formalism, the PSDD is related to work on ex-
tending Binary Decision Diagrams (BDDs) to represent real-
valued functions. The relationship between SDDs (which
underly PSDDs) and BDDs is known (Darwiche 2011;
Xue, Choi, and Darwiche 2012; Choi and Darwiche 2013).
In sum though, BDDs branch on literals, instead of sen-
tences, which leads to limitations that are inherited by their
extensions (Xue, Choi, and Darwiche 2012). Algebraic De-
cision Diagrams (ADDs) (R.I. Bahar et al. 1993) in particu-
lar are often used to represent joint probability distributions.
However, they are not factorized representations and, as
such, they need to explicitly represent every distinct proba-
bility in a distribution. Affine ADDs (Sanner and McAllester
2005) and Edge-valued Binary Decision Diagrams (Lai and
Sastry 1992) do offer a factorized representation, but their
parameters are not interpretable as in PSDDs (i.e., as proba-
bilities of the global distribution).

There is also a body of work on facilitating the repre-
sentation of logical constraints in the context of probabilis-
tic representations. This includes Richardson and Domin-
gos (2006), who facilitate the representation of logical
constraints in Markov networks. Additionally, Mateescu
and Dechter (2008) separate an unconstrained probabilis-
tic model (e.g., Bayesian network) from the logical con-
straints and define the target distribution as the former con-
ditioned on the latter. Hence, individual parameters in their
framework have no local semantics in the target distribu-
tion. Several more first-order probabilistic languages can di-
rectly express logical dependencies (De Raedt et al. 2008;
Getoor and Taskar 2007). Within these representations, there
has been considerable interest in probabilistic reasoning in
the presence of logical constraints. See for example Poon
and Domingos (2006) and Gogate and Dechter (2007).

Perhaps the most strongly related formalism is the prob-
abilistic decision graph (Bozga and Maler 1999; Jaeger
2004). These circuits are governed by a variable forest in-
stead of a vtree. Their parameters represent contextual con-
ditional probabilities. However, for a fixed variable forest,
probabilistic decision graphs are not a complete representa-
tion. There are distributions that cannot be represented be-
cause the variable forest already encodes certain conditional
independencies. Hence, these representations are canonical
only in a weaker sense although they have been learned from
data (Jaeger, Nielsen, and Silander 2006). As a logical rep-
resentation, they are situated in between BDDs and SDDs:



They provide stronger decompositions than BDDs but still
branch over single variables instead of sentences.

Viewing PSDDs as a learning formalism brings up two
potential connections to existing work. First, as a formal-
ism that aims at learning generative probabilistic models
with well defined bases (i.e., logical constraints), the PSDD
is somewhat unique as this learning problem has not been
posed this explicitly before. The only possible exception
is (Chang et al. 2008), which learns a discriminative prob-
abilistic model given logical constraints (they propose a
generalization of linear models called Constrained Condi-
tional Models).6 Second, as a formalism that aims at learn-
ing tractable representations of distributions, the PSDD falls
into the recent body of work on deep learning. The closest
connection here is to the sum-product network (Poon and
Domingos 2011), which is a new (but also tractable) class
of deep architectures. These networks represent probability
distributions as a (deep) hierarchy of mixtures (essentially,
an arithmetic circuit with latent variables). However, they
do not take logical constraints as an input. Moreover, even
though they provide a less constrained representation of dis-
tributions, compared to the PSDD, the implication is that
learning becomes harder (e.g., there is no closed form for
parameter learning under complete data).

Conclusion
We presented the PSDD as a representation of probability
distributions that respect a given propositional theory. The
PSDD is a complete and canonical representation, with pa-
rameters that are interpretable as conditional probabilities.
The PSDD encodes context-specific independences, which
can be derived from its structure. The PSDD is a tractable
representation, allowing one to compute the probability of
any term in time linear in its size. The PSDD has unique
maximum likelihood parameters under complete data, which
can be learned efficiently using a closed form. Preliminary
experimental results suggest that the PSDD can be quite ef-
fective in learning distributions under domain constraints.
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Appendix
Completeness and Canonicity of PSDDs

We will now address two connected questions with regards
to the representational power of PSDDs. The first ques-
tion asks whether every distribution can be represented by
a PSDD. The second question asks whether the PSDD rep-
resentation is canonical (given a vtree). The answers to both

6Generative learning is concerned with learning a distribution
that is optimized for generating the data, yet is not connected to
any particular reasoning task. Discriminative learning is concerned
with learning a distribution that is optimized for a classification
task (i.e., a probabilistic classifier).

questions rely on the notion of probabilistic XY-partitions,
which are based on the XY-partitions underlying SDDs.

We review the latter notion first. Consider a propositional
sentence α over disjoint variables X and Y. One can always
express this sentence as

α = (p1 ∧ s1) ∨ . . . ∨ (pk ∧ sk) (4)

where p1, . . . , pk mention only variables X and s1, . . . , sk
mention only variables Y. One can also always ensure that
each pi is consistent, that pi∧pj is inconsistent for i 6= j, and
that p1 ∨ . . . ∨ pk is valid. Under these conditions, the form
in (4) is called an XY-partition of α (Darwiche 2011). One
obtains an SDD for some sentence α by recursively decom-
posing it into XY-partitions (Darwiche 2011). A parallel
notion exists for distributions.

Definition 4 Let Pr(XY) be a distribution with base α. A
probabilistic XY-partition of this distribution has the form

(Prp1(X),Prs1(Y), θ1), . . . , (Prpk(X),Prsk(Y), θk)

such that
– (p1 ∧ s1)∨ . . .∨ (pk ∧ sk) is an XY-partition of base α.
– Each Prpi is a (prime) distribution with base pi.
– Each Prsi is a (sub) distribution with base si.
– θi ≥ 0, θi = 0 iff si = ⊥, and θ1 + · · ·+ θk = 1.
– Pr(xy) = Prpi(x) ·Prsi(y) ·θi where pi satisfies x |= pi.

The above definition shows how one can decompose a dis-
tribution Pr(XY) into a number of smaller distributions
Pr(X) and Pr(Y). More importantly though, the bases of
these smaller distributions correspond to a decomposition of
the base for distribution Pr(XY).

One can always decompose a distribution this way.
Theorem 9 Let Pr be a probability distribution and suppose
that its variables are partitioned into X and Y. There must
exist a probabilistic XY-partition of distribution Pr.

Corollary 3 Every probability distribution can be repre-
sented by a PSDD.

Let v be a vtree over the distribution variables. The root
of this vtree partitions the variables into X (variables in left
subtree of v) and Y (variables in right subtree of v). By
Theorem 9, we can construct a probabilistic XY-partition
of the distribution, which defines the root PSDD node. By
repeating the process recursively, we can construct PSDDs
for the prime and sub distributions of each constructed XY-
partition, until we reach distributions over single variables.

A distribution may have multiple (or even many) proba-
bilistic XY-partitions for the same sets of variables X and
Y. However, exactly one of these is compressed.

Theorem 10 A probabilistic XY-partition is compressed
iff its sub distributions are distinct. A distribution has a
unique compressed XY-partition for each X and Y.7

7Consider a prime distribution Prpi where sub si = ⊥. Since
θi = 0 in this case, the non-zero probabilities of the prime dis-
tribution Prpi are irrelevant to the distribution represented by the
probabilistic XY-partition. The uniqueness claimed in this theo-
rem is modulo such prime distributions.



A decision PSDD node is compressed iff its subs (not their
bases) are distinct. A PSDD is compressed iff all its decision
nodes are compressed. We now have our canonicity result.
Corollary 4 Every distribution is induced by a unique,
compressed PSDD (given a vtree).

We close this section by stressing the following point. The
notion of compression in PSDDs generalizes a correspond-
ing notion of compression for SDDs (Darwiche 2011). In
particular, an SDD is said to be compressed if every decision
node has distinct subs. The main observation here is that the
SDD of a compressed PSDD may itself be uncompressed.
That is, a compressed PSDD may have two distinct sub dis-
tributions with equal bases.8 In fact, the PSDD representa-
tion is complete only if one allows the underlying SDDs to
be uncompressed.
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Appendix: Proofs
Theorem 1 (Base) Consider a PSDD node n that is nor-
malized for vtree node v. If Z are the variables of vtree v,
then Prn(z) > 0 iff z |= [n].

Proof We proceed by induction on the structure of the vtree.
As our base case, our theorem holds for leaf vtree nodes, by
Definition 2. Suppose now that we have a vtree node v with
variables X in the left vtree and variables Y in the right
vtree. We consider two cases for z = xy:
• if xy |= [n]: the unique prime pi of n, where x |= [pi],

has a sub si where y |= [si] (and hence si 6= ⊥). By
induction, Prpi(x) > 0 and Prsi(y) > 0. Since θi > 0
when si 6= ⊥, we have Prn(xy) > 0, by Definition 2.

• if xy 6|= [n]: the unique prime pi of n, where x |= [pi],
has a sub si where y 6|= [si]. By induction, Prsi(y) = 0,
hence Prn(xy) = 0, by Definition 2.

Theorem 2 (Parameter Semantics) Let n be a decision
node (p1, s1, θ1), . . . , (pk, sk, θk). We have θi = Prn([pi]).

Proof Let n be normalized for vtree v, with variables X in
the left vtree and variables Y in the right vtree. Then:

Prn([pi]) =
∑

xy|=[pi]

Prn(xy)

=
∑

x|=[pi]

∑
y

Prpi(x) · Prsi(y) · θi

=
( ∑

x|=[pi]

Prpi(x)
)
·
(∑

y

Prsi(y)
)
· θi

= Prpi([pi]) · Prsi(>) · θi = θi

where Prpi([pi]) = 1 (which follows from Theorem 1).

Before we proceed to Theorem 3, we first consider the fol-
lowing Lemma, which relates an SDD to the decisions made
in a sub-context.

Lemma 1 For a root SDD node r and a node n, let
(p1, s1), . . . , (pk, sk) be the elements appearing on some
path from r to n. Let β = p1 ∧ · · · ∧ pk denote the cor-
responding sub-context. Then:

[r] ∧ β = [p1] ∧ [s1] ∧ · · · ∧ [pk] ∧ [sk].

Proof Note first that given an SDD node n and one of its
primes pi, we have

[n] ∧ [pi] = [pi] ∧ [si] = [n] ∧ [pi] ∧ [si]. (5)

To prove our lemma, we use induction. In our base case,
when k = 1, node p1 is a prime of the root r, so we have
[r] ∧ [p1] = [p1] ∧ [s1], by Equation 5. Assume now that we
have a sub-context βk+1 with k + 1 primes. We then have

[r] ∧ βk+1 = [r] ∧ βk ∧ [pk+1]

= [p1] ∧ [s1] ∧ · · · ∧ [pk] ∧ [sk] ∧ [pk+1],

by induction. On the path from root r to node n, node pk+1

appears as a prime in exactly one of pk or sk. Without loss of
generality, assume it was a prime of sk. Then by Equation 5,
we have [sk]∧ [pk+1] = [sk]∧ [pk+1]∧ [sk+1]. We substitute
into the previous equation, and obtain the desired result.

Theorem 3 (Context) A node is implied by its context and
the underlying SDD. Nodes normalized for the same vtree
node have mutually exclusive and exhaustive contexts. The
sub-contexts of a node are mutually exclusive. A context/sub-
context is feasible iff it has a strictly positive probability.
Proof Consider a root SDD r and a node n with a sub-
context β = p1 ∧ · · · ∧ pk. By Lemma 1, we have

[r] ∧ β = [p1] ∧ [s1] ∧ [p2] ∧ [s2] ∧ · · · ∧ [pk] ∧ [sk].

On the last step of the path from root r to node n, we either
have n = pk or n = sk. Hence, [r] ∧ β |= [n], for any
sub-context β of node n. Now, if γ is the context of node
n, where γ =

∨
β β, then since [r] ∧ β |= [n] for all sub-

contexts β, we have [r]∧ γ |= [n], i.e., the node n is implied
by its context and the SDD r.

Next, we show that all nodes normalized for a vtree node
v, have contexts that are mutually exclusive and exhaustive.
The root vtree node, our base case, has only one node, and
one context, >, which is mutually exclusive and exhaustive.
Consider then a vtree node v with SDD nodes n, and the par-
ent vtree node u with SDD nodes m. First, any sub-context
of a node n in vtree v was constructed by conjoining a prime
to some sub-context of a nodem in vtree u. Since primes are
mutually exclusive, and the contexts of nodes m are mutu-
ally exclusive (by induction), the sub-contexts of two differ-
ent nodes n must be mutually exclusive. Second, any sub-
context of a node m in vtree u can be extended to a sub-
context of a node n in vtree v, by conjoining some prime p
of m. Hence, since all primes are exhaustive, we can disjoin
all sub-contexts of nodes n to obtain a disjunction over all
contexts of nodes m (which are exhaustive, by induction).
Since all sub-contexts of nodes in vtree v can be partitioned
according to the contexts, the contexts of nodes in vtree v
are mutually exclusive and exhaustive.

Next, we show that the sub-contexts of an individual node
n are mutually exclusive. If node n has a unique sub-context
(like the root node r), the above statement holds trivially. If a
node n has two different sub-contexts, then denote them by
β1 = [p1]∧· · ·∧ [pk] and β2 = [q1]∧· · ·∧ [qk]. Sub-contexts
β1 and β2 correspond to two distinct paths from the root r
to node n, which must diverge at some point, by branching
on two distinct primes pi and qi. Since primes are mutually
exclusive, the sub-contexts β1 and β2 must also be mutually
exclusive.

Finally, say we have an SDD r, with a node n and sub-
context β = [p1] ∧ · · · ∧ [pk]. By Lemma 1, we have:

[r] ∧ β = [p1] ∧ [s1] ∧ · · · ∧ [pk] ∧ [sk].

Sub-context β is feasible iff [r] ∧ β is consistent (in both
cases, no sub can be false). Moreover, [r] ∧ β is consis-
tent iff Prr(β) > 0, by Theorem 1. If the context of n is
γ =

∨
β β, then since all sub-contexts are mutually exclu-

sive, Prr(γ) =
∑
β Prr(β). Hence, context γ is feasible iff

some sub-context β is feasible, iff Prr(γ) ≥ Prr(β) > 0.
Before we proceed to Theorem 4, we first relate a node dis-
tribution with its prime and sub distributions.
Proposition 1 Given a decision node n with some element
(p, s, θ), where [s] 6= ⊥, we have:



– Prp(.) = Prn(. | [p]),
– Prs(.) = Prn(. | [p]).
Proof Let the sets X and Y denote the variables of our
primes and subs, respectively. First, if x 6|= [p], then
Prp(x) = Prn(x | [p]), since Prp(x) = 0 by Theorem 1,
and Prn(x | [p]) = 0 since we condition on [p]. Otherwise,
if x |= [p]:

Prn(x | [p]) =
Prn(x)

Prn([p])
=

1

θ
· Prn(x) by Theorem 2

=
1

θ

∑
y

Prn(xy)

=
1

θ

∑
y

Prp(x) · Prs(y) · θ by Definition 2

= Prp(x)
∑
y

Prs(y) = Prp(x)

Next, we have

Prn(y | [p]) =
Prn(y, [p])

Prn([p])

=
1

θ
· Prn(y, [p]) by Theorem 2

=
1

θ

∑
x|=[p]

Prn(xy)

=
1

θ

∑
x|=[p]

Prp(x) · Prs(y) · θ by Definition 2

= Prs(y)
∑
x|=[p]

Prp(x) = Prs(y)

where Prpi([pi]) = 1 (which follows from Theorem 1).

Theorem 4 (Node Distribution) Consider a PSDD r and
let n be one of its nodes. If γn is a feasible sub-context or
feasible context of node n, then Prn(.) = Prr(. | γn).
Proof We first consider the case of a feasible sub-context
βn. Let the set Z denote the variables of r. For the purposes
of induction, consider the base case where the node n is the
root r of the PSDD. The only sub-context of r is βr is true,
which we shall just denote here by >. As Prr(>) = 1, we
have Prr(z) = Prr(z,>)/Prr(>) = Prr(z | >).

Consider a non-root node n. A feasible sub-context βn of
node n has the form [p] ∧ βm, where p is the prime of an
element (p, s) of some parent node m with sub-context βm.
If βn is feasible, then the sub s is non-false, and the sub-
context βm is feasible. Moreover, the node n is either the
prime p or sub s of element (p, s). Let the sets X and Y
denote the variables of our primes and subs. By induction,
we have:

Prm(xy) = Prr(xy | βm)

for all instantiations xy. Hence,

Prm([p]) =
∑

xy|=[p]

Prm(xy) =
∑

xy|=[p]

Prr(xy | βm)

= Prr([p] | βm). (6)

If xy |= [p], we have xy = xy ∧ [p] and so
Prm(xy ∧ [p]) = Prr(xy ∧ [p] | βm) (7)

Combining Equations 6 & 7, we get:
Prm(xy | [p]) = Prr(xy | [p] ∧ βm) = Prr(xy | βn).

Finally, by Proposition 1, we have both
Prp(x) = Prm(x | [p]) = Prr(x | βn)
Prs(y) = Prm(y | [p]) = Prr(y | βn)

and hence Prn(.) = Prr(. | βn) (either n = p or n = s).
We now consider the case of a feasible context γn =∨
βn
βn of a node n, composed of sub-contexts βn. In the

base case where n is the root of the PSDD, the context is just
the single sub-context >, where Prr(z) = Prr(z | >) as we
shown already. For a non-root node n, where xy |= βn,:
Prr(x ∧ βn) = Prr(x | βn)Prr(βn) = Prp(x)Prr(βn)

Prr(y ∧ βn) = Prr(y | βn)Prr(βn) = Prs(y)Prr(βn)

First, since all sub-contexts βn are mutually exclusive, all
events x ∧ βn are mutually exclusive, all events y ∧ βn are
mutually exclusive, and hence:∑

βn

Prr(x ∧ βn) = Prr(x ∧
∨
βn

βn) = Prr(x ∧ γn)∑
βn

Prr(y ∧ βn) = Prr(y ∧
∨
βn

βn) = Prr(y ∧ γn)

Moreover, we have
∑
βn

Prr(βn) = Prr(γn), and thus:∑
βn

Prp(x)Prr(βn) = Prp(x)Prr(γn)∑
βn

Prs(y)Prr(βn) = Prs(y)Prr(γn).

Putting the last two sets of equations together, we obtain:
Prr(x ∧ γn) = Prp(x)Prr(γn)

Prr(y ∧ γn) = Prs(y)Prr(γn)

and Prn(.) = Prr(. | γn) (either n = p or n = s).
Before proceeding to Theorem 5, we first consider the fol-
lowing Lemma.
Proposition 2 (Independence III) Let node n be a deci-
sion node with prime variables X and sub variables Y. For
each element (p, s) of n where s is non-false, the variables
X are independent of variables Y given prime p.
Proof If x 6|= [p], then Prn(xy | [p]) = Prn(x | [p])Prn(y |
[p]) = 0. Otherwise, if x 6|= [p], then

Prn(xy | [p]) =
1

Prn([p])
Prn(xy, [p])

=
1

Prn([p])
Prn(xy) as x |= [p]

=
1

θ
Prn(xy) by Theorem 2

=
1

θ
Prp(x) · Prs(y) · θ by Definition 2

= Prp(x) · Prs(y)
= Prn(x | [p]) · Prn(y | [p]) by Proposition 1

as desired.



Theorem 5 (Independence II) Let γv be a feasible context
for a PSDD node normalized for vtree node v. Variables in-
side v are independent of those outside v given context γv .

Proof We first consider independence given sub-contexts,
via induction. First, the base case is for a root vtree node
v, which is trivial, since there are no variables outside the
root. Consider then a non-root node v with a parent u and a
sibling w. Let V denote the variables in vtree v, let W de-
note the variables in the sibling vtree w, and let Z denote the
variables outside of parent vtree node u. Let βv be the sub-
context for the PSDD node normalized for vtree node v. The
sub-context βv = βu ∧ [p] is an extension of a sub-context
βu by a prime p, both belonging to some node normalized
for parent vtree node u. When βv ∧wz is consistent:

Prr(v | βv,wz) = Prr(v | βu ∧ [p],wz)

=
Prr(vw, [p] | βu, z)
Prr(w, [p] | βu, z)

=
Prr(vw, [p] | βu)
Prr(w, [p] | βu)

by induction

=
Pru(vw, [p])

Pru(w, [p])
by Theorem 4

= Pru(v | [p],w) = Pru(v | [p]) by Prop. 2

=
Pru(v, [p])

Pru([p])
=

Prr(v, [p] | βu)
Prr([p] | βu)

by Theorem 4

= Prr(v | βu ∧ [p]) = Prr(v | βv)

as desired.
Suppose now that γv =

∨
βv
βv is the context of a node

n normalized for our (non-root) vtree node v, composed of
sub-contexts βv . All sub-contexts βv for a node are mutually
exclusive, by Theorem 3, hence the probability of a context
γv is simply the sum of the probabilities of the individual
sub-contexts βv . Similarly, all α∧βv are mutually exclusive,
for any fixed event α. By Theorem 4, we have that

Prr(v | βv) = Prn(v)

for all sub-contexts βv . Hence:

Prr(v | γv,wz) =
Prr(v, γv,wz)

Prr(γv,wz)
=

∑
βv

Prr(v, βv,wz)

Prr(γv,wz)

=

∑
βv

Prr(v | βv,wz)Prr(βv,wz)

Prr(γv,wz)

=

∑
βv

Prr(v | βv)Prr(βv,wz)

Prr(γv,wz)

=

∑
βv

Prn(v)Prr(βv,wz)

Prr(γv,wz)
=

Prn(v)
∑
βv

Prr(βv,wz)

Prr(γv,wz)

=
Prn(v)Prr(γv,wz)

Prr(γv,wz)
= Prn(v) = Prr(v | γv)

with the last step following by Theorem 4.

Theorem 6 Consider a decision node n = (p1, s1, θ1), . . . ,
(pk, sk, θk) that is normalized for vtree node v, with left

child l and right child r. For evidence e, we have

Prn(ev) =
k∑
i=1

Prpi(el) · Prsi(er) · θi

Proof Let X denote the variables of the left vtree l, and Y
denote the variables of right vtree r. We then have:

Prn(ev) =
∑
x|=el

∑
y|=er

Prn(xy)

=

k∑
i=1

∑
x|=[pi]∧el

∑
y|=er

Prpi(x) · Prsi(y) · θi

=

k∑
i=1

( ∑
x|=[pi]∧el

Prpi(x)
)
·
( ∑

y|=er

Prsi(y)
)
· θi

=

k∑
i=1

Prpi(el) · Prsi(er) · θi

Theorem 7 Consider a PSDD r, variable X , and its leaf
vtree node v. Let n1, . . . , nk be all the terminal nodes nor-
malized for v and let γn1 , . . . , γnk

be their corresponding
contexts. For evidence e, we have

Prr(X, ev̄) =
k∑
i=1

Prni(X) · Prr(γni , ev̄).

Proof By Theorem 3, the contexts γn1
, . . . , γnk

are mutu-
ally exclusive and exhaustive. Thus:

Prr(X, ev̄) =
k∑
i=1

Prr(X, γni , ev̄)

=

k∑
i=1

Prr(X | γni
, ev̄) · Prr(γni

, ev̄)

=

k∑
i=1

Prr(X | γni
)Prr(γni

, ev̄) by Theorem 5

=

k∑
i=1

Prni
(X) · Prr(γni

, ev̄) by Theorem 4

as desired.

Next we prove the correctness of Algorithm 2.
Theorem 11 Given PSDD r and evidence e, Algorithm 2
computes marginals for each variable X , and the marginals
for each context γn of decision node n that is normalized for
vtree node v:

mrg(X) = Prr(X, ev̄)

ctx(n) = Prr(γn, ev̄)

Proof The correctness of the variable marginals mrg(X)
follows from Theorem 7.

As for the correctness of context marginals, we show this
by induction. For the base case, of root node r, there is one
context >, and there is no evidence outside of the root vtree



node, so the context has probability 1 (see Line 1 of Algo-
rithm 2).

Next, we consider the context marginals ctx(p) for a
prime p normalized for the left vtree node vl of a vtree node
v, with right vtree node vr. Let n1, . . . , nk be all nodes nor-
malized for v which contain an element (p, si, θi) mention-
ing prime p. Moreover, let γp be the context of prime p, let
γni be the context of node ni, and let γsi = γni ∧ [p] be
the disjunction of sub-contexts of the sub si that go through
node ni and prime p. We then have

Prr(γp, ev̄l) =
k∑
i=1

Prr(γni
∧ [p], ev̄l)

=

k∑
i=1

Prr(γni ∧ [p], ev̄, evr )

=

k∑
i=1

Prr(evr | γni
, [p], ev̄)Prr([p] | γni

, ev̄)Prr(γni
, ev̄)

=

k∑
i=1

Prr(evr | γsi , ev̄) · Prr([p] | γni , ev̄) · Prr(γni , ev̄)

=

k∑
i=1

Prr(evr | γsi) · Prr([p] | γni
) · Prr(γni

, ev̄)

=

k∑
i=1

Prsi(evr ) · θi · Prr(γni
, ev̄)

which corresponds to the accumulated sum by Algorithm 2
in Line 10 (where ctx(n) corresponds to Prr(γni

, ev̄), by
induction).

We can find an analogous form for the context marginals
ctx(s) for a sub s normalized for the right vtree node vr of
a vtree node v, with left vtree node vl:

Prr(γs, ev̄r ) =
k∑
i=1

Prpi(evl) · θi · Prr(γni
, ev̄)

which corresponds to the accumulated sum by Algorithm 2
in Line 11 (where ctx(n) corresponds to Prr(γni

, ev̄), by
induction). Here, n1, . . . , nk are all nodes normalized for
v which contain an element (pi, s, θi) mentioning sub s.
Moreover, γs is the context of sub s, and the γni are the
contexts of nodes ni.

Theorem 8 The parameter estimates of Equations 2 and 3
are the only estimates that maximize the likelihood function.

Proof Maximizing the likelihood function is equivalent to
maximizing the log-likelihood function:

LL(θ | D) = logL(θ | D) =

N∑
i=1

logPrθ(di) (8)

where D = {d1, . . . ,dN} is a complete dataset consisting
of N examples di. The probability Prθ(di) is a product of
PSDD parameters, one parameter per vtree node v. For each
vtree node, there is a unique node n with context γn where

di |= γn (since the contexts of nodes in vtree v are mutually
exclusive and exhaustive, by Theorem 3). If this node n is
a decision node (p1, s1, θ1), ..., (pk, sk, θk), and if di |= pj ,
then our parameter is θj . If n is a terminal node X : θ, then
our parameter is θ if di |= X , and otherwise it is 1 − θ
if di |= ¬X . If n is a terminal node X or ¬X , then our
parameter is just 1. Otherwise, our node n can not be ⊥,
as we would have Prθ(di) = 0 (all examples of the data
should be consistent with logical base of the PSDD, which
is the underlying assumption made when learning a PSDD
from data). Let t denote a terminal nodeX : θ. We then have

LL(θ | D) =

N∑
i=1

logPrθ(di)

=

N∑
i=1

log
∏

di|=γn∧pj

θj
∏

di|=γt

θt

=

N∑
i=1

∑
di|=γn∧pj

log θj +

N∑
i=1

∑
di|=γt

log θt

Across the examples of the data, we can collect the com-
mon terms mentioning the same decision node parameters θj
and terminal node parameters θt. This amounts to counting
how many times each parameter is used to compute Prθ(di)
across all examples di:

LL(θ | D) =
∑
n

∑
j

D#(pj , γn) · log θj

+
∑
t

D#(X, γt) · log θ +D#(¬X, γt) · log (1− θ)

where D#(α) denotes the number of examples in dataset D
that satisfy propositional sentence α.

Optimizing the log-likelihood now amounts to optimiz-
ing a set of independent components, one for each decision
node n and terminal node t. For each decision node n, com-
ponent

∑
jD#(pj , γn) · log θj is maximized uniquely by

θj =
D#(pj ,γn)
D#(γn) . Similarly, for each terminal node t = X :

θ, component D#(X, γt) · log θ+D#(¬X, γt) · log (1−θ)
is maximized uniquely by θ = D#(X,γt)

D#(γt)
(Darwiche 2009,

Lemma 17.1).

Theorem 9 Let Pr be a probability distribution and suppose
that its variables are partitioned into X and Y. There must
exist a probabilistic XY-partition of distribution Pr.

Proof Say that the probability distribution Pr(XY) has a
logical base α. We can construct an (uncompressed) prob-
abilistic XY-partition of distribution Pr, as follows. Let
{x1, . . . ,xk} be the set of all 2|X| complete instantiations
over X. Our probabilistic XY-partition has:

• primes pi, one prime for each instantiation xi, and subs si,
where si is the base of distribution Pr(Y | xi) if xi ∧ α
is consistent, and where si = ⊥ otherwise;

• prime distributions Prpi(X), where Prpi(x) = 1 if x =
xi and 0 otherwise;



• sub distributions Prsi(Y), where Prsi(y) = Pr(y | xi)
when xi ∧ α is consistent, and is undefined otherwise
(si = ⊥ when xi ∧ α is not consistent);

• parameters θi where θi = Pr(xi) if xi ∧ α is consistent,
and where θi = 0 otherwise.

By construction, our primes pi are mutually exclusive and
exhaustive, so the elements (pi, si) constitute an XY-
partition of base α. Further, θ1+ · · ·+θk =

∑
i Pr(xi) = 1.

Finally, the probabilistic partition is equivalent to the origi-
nal distribution:

Prpi(x) · Prsi(y) · θi = 1 · Pr(y | x) · Pr(x) = Pr(xy)

when x |= pi (i.e., x = xi).

Before proceeding to the proof of Theorem 10, we con-
sider the following proposition which will tell us how to
compress a probabilistic XY-partition.

Proposition 3 Say we have a probability distribution Pr
with a probabilistic XY-partition

(Prp1 ,Prs1 , θ1), . . . , (Prpk ,Prsk , θk).

If sub distributions Prsi and Prsj define the same distribu-
tion over variables Y, then the probabilistic XY-partition
we obtain by replacing the two elements (Prpi ,Prsi , θi) and
(Prpj ,Prsj , θj) by the single element (Prpij ,Prsi , θi + θj)
induces the same distribution Pr, when Prpij is:

Prpij (x) =


θi

θi+θj
Prpi(x), if x |= pi;

θj
θi+θj

Prpj (x), if x |= pj ;

0, otherwise.

Proof Let Pr? denote the probability distribution induced
by the new probabilistic partition. First, note that the bases
of Prpi and Prpj are mutually exclusive. Hence, if x |= pi:

Pr?(xy) = Prpij (x) · Prsi(y) · (θi + θj)

=
θi

(θi + θj)
Prpi(x) · Prsi(y) · (θi + θj)

= θi · Prpi(x) · Prsi(y) = Pr(xy).

If instead x |= pj , then

Pr?(xy) = Prpij (x) · Prsi(y) · (θi + θj)

=
θj

(θi + θj)
Prpj (x) · Prsj (y) · (θi + θj)

= θj · Prpj (x) · Prsj (y) = Pr(xy).

Otherwise, x |= pl for some l 6∈ {i, j}. As both probabilistic
partitions contain the same element (Prpl ,Prsl , θl), we have
Pr?(xy) = Pr(xy).

Theorem 10 A probabilistic XY-partition is compressed
iff its sub distributions are distinct. A distribution has a
unique compressed XY-partition for each X and Y.9

9Consider a prime distribution Prpi where sub si = ⊥. Since
θi = 0 in this case, the non-zero probabilities of the prime dis-
tribution Prpi are irrelevant to the distribution represented by the
probabilistic XY-partition. The uniqueness claimed in this theo-
rem is modulo such prime distributions.

Proof Let (Prp1 ,Prs1 , θ1), . . . , (Prpk ,Prsk , θk) be a proba-
bilistic XY-partition for Pr, as defined in the proof of The-
orem 9. This probabilistic partition is in general not com-
pressed, but we can compress it as follows. If the sub dis-
tributions Prsi and Prsj define the same distribution over
variables Y, then according to Proposition 3, we can cre-
ate a new probabilistic partition by replacing the two ele-
ments (Prpi ,Prsi , θi) and (Prpj ,Prsj , θj) by a single ele-
ment (Prpij ,Prsi , θi + θj) where Prpij is a prime distribu-
tion with base pi∨pj . The global distribution Pr is invariant
to this operation, hence we can repeatedly apply this oper-
ation until all sub distributions are distinct. Moreover, the
final probabilistic partition that we obtain is invariant to the
order in which we apply these operations. Hence, this pro-
cess yields the unique and compressed probabilistic XY-
partition for Pr.


