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Abstract

We revisit the problem of revising probabilistic beliefs using uncertain evidence,
and report results on several major issues relating to this problem: How should
one specify uncertain evidence? How should one revise a probability distribution?
How should one interpret informal evidential statements? Should, and do, iterated
belief revisions commute? And what guarantees can be offered on the amount of
belief change induced by a particular revision? Our discussion is focused on two
main methods for probabilistic revision: Jeffrey’s rule of probability kinematics and
Pearl’s method of virtual evidence, where we analyze and unify these methods from
the perspective of the questions posed above.
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1 Introduction

We consider in this paper the problem of revising probabilistic beliefs using
uncertain evidence, where beliefs are represented by a probability distribution.
There are two main methods for revising probabilistic beliefs in this case.
The first method is known as Jeffrey’s rule and is based on the principle
of probability kinematics, which can be viewed as a principle for minimizing
belief change [8]. The second method is called the virtual evidence method and
was proposed by Pearl in the context of belief networks, even though it can
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be easily generalized to arbitrary probability distributions, and is based on
recasting uncertain evidence as hard evidence on some virtual event [11]. We
will analyze both of these methods with respect to the following questions:

(1) How should one specify uncertain evidence?
(2) How should one revise a probability distribution?
(3) How should one interpret informal evidential statements?
(4) Should, and do, iterated belief revisions commute?
(5) What guarantees can be offered on the amount of belief change induced

by a particular revision?

To answer the first question, we note that uncertain evidence must be spec-
ified as a formal constraint on posterior beliefs. This could be an absolute
constraint on posterior beliefs, or a relative constraint on how posterior be-
liefs should relate to prior beliefs. Yet, the constraint induced by a given
evidence will usually not define posterior beliefs uniquely, hence, we need to
adopt a principle that commits us to a unique set of posterior beliefs that
satisfy the given constraint. This principle will then define the belief revision
method. But even if we choose a method for specifying evidence formally, and
a method for revising beliefs, there is still the problem of interpreting informal
evidential statements, which are usually specified in natural language. These
statements may not map directly to our formal specification language for ev-
idence, and it is this process of interpretation that appears to underlie most
of the controversies on revision methods.

Our main findings can be summarized as follows. First, Jeffrey’s rule and
Pearl’s method both revise beliefs using the principle of probability kinematics.
Whereas Jeffrey’s rule explicitly commits to this principle, Pearl’s method is
based on a different revision principle, yet it implicitly implies the principle
of probability kinematics, leading to the same revision method as that of
Jeffrey’s. The difference between Jeffrey’s rule and Pearl’s method is in the
way uncertain evidence is specified. Jeffrey requires uncertain evidence to be
specified in terms of the effect it has on beliefs once accepted, which is a
function of both evidence strength and beliefs held before the evidence is
obtained. Pearl, on the other hand, requires uncertain evidence to be specified
in terms of its strength only. Despite this difference, we will show that one can
easily translate between the two methods of specifying evidence and provide
the equations for carrying out this translation.

The multiplicity of methods for specifying evidence also raises an important
question: how should informal statements about evidence be captured formally
using available methods? For example, what should the following statement
translate to: “Seeing these clouds, I believe there is an 80% chance that it
will rain?” We will discuss the differences in interpreting informal evidential
statements, where we emphasize its subtlety and show how it appears to be
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the culprit in reaching different conclusions by different revision methods.

As to the question of iterated belief revisions, it is well known that Jeffrey’s
rule does not commute, and hence, the order in which different pieces of un-
certain evidence are accepted matters [4]. This has long been perceived as a
problem, until clarified recently by the work of Wagner who observed that the
method of specifying evidence used by Jeffrey’s rule is dependent on what is
believed before the evidence is obtained, and hence, should not be commu-
tative to start with [13]. Wagner proposed a method for specifying evidence,
based on the notion of a Bayes factor, and argued that this method specifies
only the strength of evidence, and is independent of the beliefs held before
attaining the evidence. Wagner argued that when evidence is specified in this
particular way, iterated revisions should commute. He even showed that com-
bining this method for specifying evidence with the principle of probability
kinematics leads to a revision rule that commutes. We will actually show that
Pearl’s method of virtual evidence specifies evidence according to Bayes fac-
tors, exactly as proposed by Wagner, and hence, corresponds exactly to the
proposal he calls for. Therefore, the results we will discuss in this paper unify
the two main methods of probabilistic belief revision proposed by Jeffrey and
Pearl, and show that differences between them amount only to a difference in
the protocol for specifying uncertain evidence.

Our last set of results relate to the problem of providing guarantees on the
amount of belief change induced by a revision. We have recently proposed a
distance measure for bounding belief change, and showed how one can use it
to provide such guarantees [1]. We will demonstrate how this distance measure
can be computed when one distribution is obtained from another using the
principle of probability kinematics. The guarantees provided by this distance
measure can be realized when applying either Jeffrey’s rule or Pearl’s method,
since they both perform revisions based on the principle of probability kine-
matics.

Proofs of all theorems in this paper can be found in the Appendix.

2 Probability Kinematics and Jeffrey’s Rule

Consider the problem of revising a probability distribution Pr given uncer-
tain evidence relating to a set of mutually exclusive and exhaustive events
γ1, . . . , γn. One method of specifying uncertain evidence is through the effect
that it would have on beliefs once accepted. Specifically, according to this
method, we have to specify evidence by providing the following set of proba-
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bilities:

Pr′(γi) = qi, for i = 1, . . . , n,

where Pr′ denotes the new probability distribution that results from accepting
the given evidence. To revise the distribution Pr, we must therefore choose
a unique posterior distribution Pr′ that satisfies the above constraint. The
principle of probability kinematics, which we define next, assumes that the
conditional belief in any event α given any γi remains unchanged.

Definition 1 [8] Suppose that two probability distributions Pr and Pr′ dis-
agree on the probabilities they assign to a set of mutually exclusive and ex-
haustive events γ1, . . . , γn. The distribution Pr′ is said to be obtained from Pr
by probability kinematics on γ1, . . . , γn, iff for every event α in the probability
space:

Pr(α | γi) = Pr′(α | γi), for i = 1, . . . , n. (1)

This concept was proposed by Jeffrey [8] to capture the notion that even
though Pr and Pr′ disagree on the probabilities of events γ1, . . . , γn, they
agree on their relevance to every event α.

We now introduce the belief revision method of Jeffrey’s rule [8], which can be
viewed as being comprised of two components: a suggestion to specify uncer-
tain evidence as a constraint on the posterior probabilities of events γ1, . . . , γn;
and a proposal to choose the posterior distribution using the principle of prob-
ability kinematics.

Definition 2 (Jeffrey’s Rule) Given an original distribution Pr and some
uncertain evidence bearing on a set of mutually exclusive and exhaustive events
γ1, . . . , γn, and assuming that such evidence is specified by the set of posterior
probabilities:

Pr′(γi) = qi, for i = 1, . . . , n, (2)

the new posterior distribution Pr′ proposed by Jeffrey’s rule is as follows:

Pr′(α)
def
=

n∑

i=1

qi
Pr(α, γi)

Pr(γi)
. (3)

Theorem 1 The posterior distribution Pr′ given in Equation 3 is the one
and only distribution that satisfies the constraint in Equation 2 and that is
obtained from Pr by probability kinematics on γ1, . . . , γn.
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We stress here that we are drawing a distinction between the principle of
probability kinematics and the revision method of Jeffrey’s rule, which are
often considered synonymous. As we have mentioned, Jeffrey’s rule arises from
a combination of two proposals:

(1) the principle of probability kinematics;
(2) the specification of uncertain evidence using a posterior distribution.

It is possible for one to combine the principle of probability kinematics with
other methods for specifying evidence, as we will discuss later.

We now show an example of using Jeffrey’s rule.

Example 1 (Due to Jeffrey) Assume that we are given a piece of cloth,
where its color can be one of: green (cg), blue (cb), or violet (cv). We want to
know whether, on the next day, the cloth will be sold (s), or not sold (s). Our
original state of belief is given by the distribution Pr:

Pr(s, cg) = .12, P r(s, cb) = .12, P r(s, cv) = .32,

P r(s, cg) = .18, P r(s, cb) = .18, P r(s, cv) = .08.

Therefore, our original state of belief on the color of the cloth is given by
(Pr(cg), P r(cb), P r(cv)) = (.3, .3, .4). Assume that we now inspect the cloth by
candlelight, and conclude that our new state of belief on the color of the cloth
should be (Pr′(cg), P r′(cb), P r′(cv)) = (.7, .25, .05). If we revise our beliefs by
applying Jeffrey’s rule (Equation 3), we get the new distribution Pr′:

Pr′(s, cg) = .28, P r′(s, cb) = .10, P r′(s, cv) = .04,

P r′(s, cg) = .42, P r′(s, cb) = .15, P r′(s, cv) = .01.

3 Virtual Evidence and Pearl’s Method

The problem of revising a probability distribution using uncertain evidence
can be approached from a different perspective than that of the principle of
probability kinematics. For example, when we have uncertain evidence about
some mutually exclusive and exhaustive events γ1, . . . , γn, we can recast this
evidence as hard evidence on some virtual event η, where the relevance of
γ1, . . . , γn to η is uncertain. According to this approach, the uncertainty re-
garding evidence on γ1, . . . , γn is now interpreted as uncertainty in the rele-
vance of γ1, . . . , γn to the virtual event η, and this uncertainty is specified by
the likelihood of γi given this virtual evidence η, Pr(η | γi), for i = 1, . . . , n.
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This belief revision method, called the virtual evidence method, is defined ex-
plicitly as follows.

Definition 3 (Virtual Evidence Method) Given an original distribution
Pr and some uncertain evidence η bearing on a set of mutually exclusive and
exhaustive events γ1, . . . , γn, and assuming that such evidence is specified by
λ1, . . . , λn such that:

Pr(η | γ1) : . . . : Pr(η | γn) = λ1 : . . . : λn, (4)

the revised distribution proposed by the virtual evidence method is Pr(· | η).
Moreover, this method assumes that for every event α in the probability space,
we have:

Pr(η | γi, α) = Pr(η | γi), for i = 1, . . . , n. (5)

That is, the virtual event η depends only on the events γ1, . . . , γn and is inde-
pendent of every event α given γi, for i = 1, . . . , n

Note that the likelihoods Pr(η | γ1), . . . , P r(η | γn) are not essential for the
virtual evidence method, but the likelihood ratios Pr(η | γ1) : . . . : Pr(η | γn)
are. Note also that the assumption given by Equation 5 is needed to uniquely
define the posterior distribution Pr(· | η) as shown by the following theorem.

Theorem 2 Given the constraint in Equation 4, and the assumption of Equa-
tion 5, we have:

Pr(α | η) =

∑n
i=1 λiPr(α, γi)∑n
j=1 λjPr(γj)

. (6)

Hence, under the assumption of Equation 5, the virtual evidence method is
able to reduce the incorporation of uncertain evidence into that of incorpo-
rating certain evidence using Bayes’ conditioning.

The virtual evidence method is a generalization of Pearl’s method of virtual
evidence, which Pearl proposed in the context of Bayesian belief networks
[11]. The closed form of this method as given by Equation 6 for arbitrary
probability distributions is original as far as we know.

We now show an example of using the virtual evidence method.

Example 2 (Due to Pearl) Assume that we are concerned with whether the
alarm of Mr. Holmes’ house is triggered (values a and a), and whether there
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is burglary at his house (values b and b). Our original state of belief is given
by the distribution Pr:

Pr(a, b) = .000095, P r(a, b) = .009999,

P r(a, b) = .000005, P r(a, b) = .989901.

This means that on any given day, there is a burglary at Mr. Holmes’ house
with probability Pr(b) = 1×10−4. One day, Mr. Holmes receives a call from his
neighbor, Mrs. Gibbons, saying she may have heard the alarm of his house being
triggered. Since Mrs. Gibbons suffers from a hearing problem, Mr. Holmes
concludes that there is an 80% chance that Mrs. Gibbons did hear the alarm
triggered. This can be interpreted as follows: The probability that Mrs. Gibbons
will make the call given that the alarm has triggered is 4 times the probability
that Mrs. Gibbons will make the call given that the alarm did not trigger. This
uncertain evidence can be recast as hard evidence on the virtual event η (the
event of Mrs. Gibbons calling), with likelihood ratios λa : λa = Pr(η | a) :
Pr(η | a) = 4 : 1. We can apply Equation 6 and obtain the new distribution
Pr(· | η):

Pr(a, b | η) ≈ .000369, P r(a, b | η) ≈ .038820,

P r(a, b | η) ≈ .000005, P r(a, b | η) ≈ .960806.

Therefore, the new probability that there is a burglary at Mr. Holmes’ house
after revising our beliefs given this piece of virtual evidence is Pr(b | η) ≈
3.74× 10−4.

4 Comparing the Revision Methods

From the illustrations of the two belief revision methods, Jeffrey’s rule and
Pearl’s method of virtual evidence, we can see that a belief revision method
can be broken into two parts: a formal constraint that is used to specify
the uncertain evidence, and a principle of belief revision that commits to a
unique distribution among many which satisfy the evidential constraint. For
example, Jeffrey’s rule specifies evidence using posterior probabilities, while
Pearl’s method specifies evidence using likelihood ratios; Jeffrey’s rule obeys
the principle of probability kinematics explicitly, while in Pearl’s method,
beliefs are revised by conditioning on a virtual event η. In this section, we
will compare the two revision methods with respect to these two parts, and
consequently show how we can translate between the two methods. Moreover,
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we will also show how we can apply these two methods in the context of belief
networks.

4.1 Pearl’s Method and Probability Kinematics

Our first result shows that the principle of belief revision underlying Pearl’s
method does indeed satisfy the principle of probability kinematics. Therefore,
it actually uses the same belief revision principle as Jeffrey’s rule, and what
they only differ in is how uncertain evidence is specified.

Theorem 3 The probability distribution Pr(· | η) given in Definition 3 is ob-
tained from the original distribution Pr by probability kinematics on the set
of mutually exclusive and exhaustive events γ1, . . . , γn.

Theorem 3 clarifies one misconception that Jeffrey’s rule and Pearl’s method
are two different belief revision methods. In fact, what they differ in is not how
beliefs are revised as they both obey the principle of probability kinematics,
but in the constraint that is used to specify evidence. We will next show
how we can easily translate between the two different evidence specification
methods.

4.2 From Pearl’s Method to Jeffrey’s Rule

First, we show how we can translate from the evidential constraint used by
Pearl’s method into one used by Jeffrey’s rule.

Theorem 4 Suppose that we have an original distribution Pr and some un-
certain evidence η bearing on a set of mutually exclusive and exhaustive events
γ1, . . . , γn, and suppose further that such evidence is specified by likelihood ra-
tios λ1, . . . , λn such that:

Pr(η | γ1) : . . . : Pr(η | γn) = λ1 : . . . : λn.

The new posterior distribution Pr(· | η) proposed by the virtual evidence method
(Definition 3) can be obtained using Jeffrey’s rule (Definition 2) given that the
uncertain evidence is specified by the following set of posterior probabilities:

Pr′(γi) = qi = Pr(γi | η), for i = 1, . . . , n. (7)

We now illustrate the translation from Pearl’s method to Jeffrey’s rule in
Theorem 4 by revisiting Example 2.
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Example 3 In Example 2, the new distribution Pr(· | η) is obtained from
the original distribution Pr by applying revision using Pearl’s method. By
Equation 7, the equivalent distribution Pr′ = Pr(· | η) can be obtained by
applying Jeffrey’s rule, given uncertain evidence specified by the following set
of posterior probabilities:

Pr′(a) = Pr(a | η)

=
λaPr(a)

λaPr(a) + λaPr(a)
(using Equation 6)

=
4× .010094

4× .010094 + 1× .989906
≈ .039189;

Pr′(a) = Pr(a | η)

=
λaPr(a)

λaPr(a) + λaPr(a)
(using Equation 6)

=
1× .989906

4× .010094 + 1× .989906
≈ .960811.

4.3 From Jeffrey’s Rule to Pearl’s Method

We now show how we can translate from the evidential constraint used by
Jeffrey’s rule into one used by Pearl’s method.

Theorem 5 Suppose that we have an original distribution Pr and some un-
certain evidence bearing on a set of mutually exclusive and exhaustive events
γ1, . . . , γn, and suppose further that such evidence is specified by a set of pos-
terior probabilities:

Pr′(γi) = qi, for i = 1, . . . , n.

The new posterior distribution Pr′ proposed by Jeffrey’s rule (Definition 2)
can be obtained using the virtual evidence method (Definition 3) given that the
uncertain evidence is specified by the following likelihood ratios:

λ1 : . . . : λn =
q1

Pr(γ1)
: . . . :

qn

Pr(γn)
. (8)

We now illustrate the translation from Jeffrey’s rule to Pearl’s method in
Theorem 5 by revisiting Example 1.
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Example 4 In Example 1, the new distribution Pr′ is obtained from the orig-
inal distribution Pr by applying revision using Jeffrey’s rule. By Equation 8,
the equivalent distribution Pr(· | η) = Pr′ can be obtained by applying Pearl’s
method, given virtual evidence η specified by the following likelihood ratios:

λg : λb : λv =
Pr′(cg)

Pr(cg)
:
Pr′(cb)

Pr(cb)
:
Pr′(cv)

Pr(cv)

=
.7

.3
:
.25

.3
:
.05

.4
= 7 : 2.5 : .375.

4.4 Revision in Belief Networks

In this subsection, we describe the procedure of applying belief revision in
belief networks [11]. A belief network (or Bayesian network) is a graphical
probabilistic model, composed of two parts: a directed acyclic graph where
nodes represent variables, and a set of conditional probability tables (CPTs),
one for each variable [11,10]. The CPT of variable X with parents U defines
a set of conditional probabilities of the form Pr(x | u), where x is a value of
variable X, and u is an instantiation of parents U. Given a network structure
and the set of CPTs, a unique probability distribution is defined, and we can
compute any probabilistic queries by performing inference on the network.

4.4.1 Pearl’s Method in Belief Networks

The method of revision by virtual evidence was first introduced by Pearl in the
context of belief networks [11]. Suppose that we have some virtual evidence
η bearing on variable Y in a belief network, which has values y1, . . . , yn. This
virtual evidence is represented in the belief network by adding an auxiliary
variable Z, and a directed edge Y → Z, where one value of Z, say z, corre-
sponds to the virtual event η. This ensures the key assumption described by
Equation 5, that the virtual event z is independent of every event α given
yi, i.e., Pr(z | yi, α) = Pr(z | yi), for i = 1, . . . , n, which follows from the
independence semantics of belief networks [11]. The uncertainty of evidence
is quantified by the likelihood ratios λ1, . . . , λn, and the CPT of variable Z is
assigned such that Pr(z | y1) : . . . : Pr(z | yn) = λ1 : . . . : λn. 1 Finally, we
accommodate the presence of the virtual event z by asserting the observation
Z = z in the belief network. We now show a simple example.

Example 5 We can represent our probability distribution in Example 2 us-

1 There are more than one CPT for Z that satisfies this condition.
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Fig. 1. Applying the virtual evidence method in the belief network of Example 5,
by adding an auxiliary variable Z as a child of variable Alarm.

ing a belief network with two variables: Alarm, which represents whether the
alarm of Mr. Holmes’ house is triggered (values a and a); and Burglary,
which represents whether there is a burglary at his house (values b and b).
To represent the influence between the two variables, there is a directed edge
from Burglary to Alarm. The CPTs of Alarm and Burglary are given by:
Pr(a | b) = .95, meaning the alarm is triggered if there is a burglary with
probability .95; Pr(a | b) = .01, meaning the alarm is triggered if there is no
burglary with probability .01; and Pr(b) = 1 × 10−4, meaning on any given
day, there is a burglary at Mr. Holmes’ house with probability 1 × 10−4. The
probability distribution generated by this belief network is the same as our state
of belief Pr shown in Example 2.

Now suppose we know that Mr. Holmes receives a call from his neighbor, Mrs.
Gibbons, saying she may have heard the alarm of his house being triggered,
and concludes that there is an 80% chance that Mrs. Gibbons did hear the
alarm triggered. This uncertain evidence can be recast as hard evidence on
the virtual event η, with likelihood ratios λa : λa = 4 : 1. To incorporate
this virtual evidence into the belief network, we add the auxiliary variable Z,
and the directed edge Alarm → Z (See Figure 1), where the value z of Z
corresponds to the virtual event η, and the CPT of Z is assigned such that
Pr(z | a) : Pr(z | a) = 4 : 1. For example, we can assign Pr(z | a) = .4 and
Pr(z | a) = .1. After asserting the observation Z = z in the belief network,
we can easily compute any probabilistic queries by performing inference. For
example, the probability that there is a burglary at Mr. Holmes’ house is now
Pr(b | z) ≈ 3.74× 10−4.
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4.4.2 Jeffrey’s Rule in Belief Networks

There is no known proposal for applying Jeffrey’s rule in the context of belief
networks. However, because of our earlier results on the translation between
Jeffrey’s rule and Pearl’s method, we immediately get a proposal for this
purpose, as we can first translate the evidential constraint used by Jeffrey’s
rule into one used by the virtual evidence method using Theorem 5, and then
perform belief revision by the procedure shown above. We now show a simple
example.

Example 6 We can represent our probability distribution in Example 1 using
a belief network with two variables: Color, which represents the color of the
cloth (with values cg, cb and cv); and Sold, which represents whether the cloth
is sold on the next day (with values s and s). To represent the influence between
the two variables, there is a directed edge from Color to Sold. The CPTs of
the variables are given by: (Pr(cg), P r(cb), P r(cv)) = (.3, .3, .4); and Pr(s |
cg) = .4, Pr(s | cb) = .4, and Pr(s | cv) = .8. The probability distribution
generated by this belief network is the same as our state of belief Pr shown in
Example 1.

Now suppose that we inspect the cloth by candlelight, and conclude that our new
state of belief on the color of the cloth should be (Pr′(cg), P r′(cb), P r′(cv)) =
(.7, .25, .05). To incorporate this uncertain evidence into the belief network, we
first have to interpret the inspection of the cloth by candlelight as virtual evi-
dence. In Example 4, we show how we can translate this evidential constraint
into one used by the virtual evidence method. The uncertain evidence can now
be recast as virtual event η, with likelihood ratios λg : λb : λv = 7 : 2.5 : .375.
We can now follow the procedure of incorporating virtual evidence: we first
add an auxiliary variable Z as a child of variable Color, then assign the CPT
of Z with values consistent with the likelihood ratios, and finally assert the
observation of the virtual event.

5 Interpreting Evidential Statements

We now turn our attention to the investigation of the evidence specification
protocols adopted by Jeffrey’s rule and Pearl’s method in relation to the prob-
lem of formally interpreting evidential statements. 2 Consider the following
statement as an example:

“Looking at this evidence, I am willing to bet 2 : 1 that David is not the

2 This section is a summary of Pearl’s discussions on this issue [12], in the context
of the approach we take in this paper by dividing the belief revision process into a
evidence specification method and a revision principle.
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killer.”

This statement can be formally interpreted using either protocol. For example,
if α denotes the event that David is not the killer, this statement can be
interpreted in two ways:

(1) After accepting the evidence, the probability that David is not the killer
becomes twice the probability that David is the killer: Pr′(α) = 2/3 and
Pr′(α) = 1/3;

(2) The probability that I will see this evidence η given that David is not
the killer is twice the probability that I will see it given that David is the
killer: Pr(η | α) : Pr(η | α) = 2 : 1.

The first interpretation translates directly into a formal piece of evidence,
Jeffrey’s style, and can be characterized as an “All things considered” inter-
pretation since it is a statement about the agent’s final beliefs, which are a
function of both his prior beliefs and the evidence [12]. On the other hand, the
second interpretation translates directly into a formal piece of evidence, Pearl’s
style, and can be characterized as a “Nothing else considered” interpretation
since it is a statement about the evidence only [12].

The two interpretations can lead to contradictory conclusions about the ev-
idence. For example, if we use the “Nothing else considered” approach to
interpret our statement, we will conclude that the evidence is against David
being the killer. However, if we use the “All things considered” interpretation,
it is not clear whether the evidence is for or against David being the killer,
unless we know the original probability that David is the killer. If, for exam-
ple, David is one of four suspects who are equally likely to be the killer, our
original state of belief is Pr(α) = 3/4. Therefore, this evidence has actually
increased the probability that David is the killer! Because of this, Pearl argued
for the “Nothing else considered” interpretation, as it provides a summary of
the evidence alone, and discussed how people tend to use betting odds to
quantify their beliefs even when they are based on the evidence only [12].

Example 2 provides another opportunity to illustrate the subtlety involved
in interpreting evidential statements. The evidential statement in this case is
“Mr. Holmes concludes that there is an 80% chance that Mrs. Gibbons did
hear the alarm triggered.” Interpreting this statement using the “All things
considered” approach gives us the conclusion that Pr′(a) : Pr′(a) = 4 : 1,
where a denotes the event that the alarm has been triggered. This interpre-
tation assumes that the 4 : 1 ratio applies to the posterior beliefs in a and a,
after Mr. Holmes has accommodated the evidence provided by Mrs. Gibson.
However, in Example 2, this statement was given a “Nothing else considered”
interpretation, as by Pearl [11, Page 44–47], where the 4 : 1 ratio is taken
as a quantification of the evidence strength, i.e., the statement is interpreted
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as Pr(η | a) : Pr(η | a) = 4 : 1, where η is the evidence. In fact, the two
interpretations will lead to two different probability distributions, and hence,
give us different results for probabilistic queries. For example, if we use the
“All things considered” approach in interpreting this evidential statement, the
probability of having a burglary is Pr′(b) = 7.53× 10−3, which is much larger
than the probability we get using the “Nothing else considered” approach in
Example 2, which is Pr(b | η) = 3.74× 10−4.

From the discussions above, the formal interpretation of evidential statements
appears to be a non–trivial task, which can be sensitive to context and com-
munication protocols. Regardless of how this is accomplished though, we need
to stress that the process of mapping an informal evidential statement into a
revised probability distribution involves three distinct elements:

(1) One must adopt a formal method for specifying evidence;
(2) One must interpret the informal evidential statement as a formal piece

of evidence, according to the evidence specification method;
(3) One must apply a revision, by mapping the original probability distribu-

tion and formal piece of evidence into a new distribution, according to a
belief revision principle.

As we have shown previously, Jeffrey’s rule and Pearl’s method both employ
the same belief revision principle, i.e., the principle of probability kinematics.
Moreover, although they adopt different formal methods of specifying evi-
dence, one can translate between the two methods.

6 Virtual Evidence and Bayes Factors

In this section, we aim to clarify the virtual evidence method by relating it to
some classical concepts in probability theory. Before doing so, we first define
the notion of odds.

Definition 4 Given events α and β, the odds of α given β is defined as: 3

O(α | β)
def
=

Pr(α | β)

Pr(α | β)
. (9)

In quantifying the strength of some evidence η on a hypotheses γ, we often
compute the ratio of the odds of γ before and after accepting the evidence,
O(γ | η)/O(γ). This ratio is called the odds factor in favor of γ by η [6], and

3 Here, the odds are defined only if Pr(β) 6= 0.
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its logarithm is called the weight of evidence η in favor of γ [6]. We now show
a classical result of how this odds factor can be computed.

Theorem 6 [5,6] The odds factor O(γ | η)/O(γ) is equal to the likelihood
ratio Pr(η | γ)/Pr(η | γ), i.e.:

O(γ | η)

O(γ)
=

Pr(η | γ)

Pr(η | γ)
. (10)

Therefore, from Equation 10, if we are given virtual evidence η on events γ
and γ, the likelihood ratio Pr(η | γ)/Pr(η | γ) serves as a measure of the
strength of the virtual evidence η on the hypotheses γ.

If we are given the general case where we have uncertain evidence on a set of
mutually exclusive and exhaustive events γ1, . . . , γn, where n > 2, we need to
expand our notion of odds factor in the following sense.

Definition 5 The odds of αi against αj given β is defined as the probability
ratio:

O(αi : αj | β)
def
=

Pr(αi | β)

Pr(αj | β)
. (11)

We can now in turn define the odds factor in favor of γi against γj by η with
the ratio O(γi : γj | η)/O(γi : γj). This ratio of new–to–old odds is called
the Bayes factor [5,6,9]. The formal definition of the Bayes factor is given as
follows.

Definition 6 Given two distributions Pr and Pr′, the Bayes factor for events
γi and γj is defined as:

FPr′,P r(γi : γj)
def
=

O′(γi : γj)

O(γi : γj)
=

Pr′(γi)/Pr′(γj)

Pr(γi)/Pr(γj)
. (12)

In fact, one can revise beliefs using the notion of Bayes factors. We first spec-
ify uncertain evidence on a set of mutually exclusive and exhaustive events
γ1, . . . , γn by providing the Bayes factor for every pair of events γi and γj,
then commit to the principle of probability kinematics for belief revision. One
interesting property of this method of specification is that Bayes factors do not
constrain the prior distribution Pr, i.e., any uncertain evidence specified by
Bayes factors is compatible with every distribution Pr. 4 Hence, they are suit-
able for a “Nothing else considered” interpretation of evidential statements.

4 This is not true if we use ratios of probabilities instead of ratios of odds. For
example, if Pr′(α) = 2Pr(α), we must have Pr(α) ≤ .5 because Pr′(α) ≤ 1 [13].

15



In fact, we can show that this revision method using Bayes factors corresponds
to the virtual evidence method. This has a number of implications. First, it
provides an alternative and more classical semantics for the virtual evidence
method. Second, it again confirms that the virtual evidence method obeys
the principle of probability kinematics. Finally, it shows that revisions by
the virtual evidence method are commutative, as we will illustrate later. The
following theorem shows how we can easily find the Bayes factors when we
specify uncertain evidence using virtual evidence.

Theorem 7 Let Pr(· | η) and Pr be the two distributions given in Defini-
tion 3. We then have:

FPr(·|η),P r(γi : γj) =
λi

λj

, for i, j = 1, . . . , n. (13)

Therefore, we can obtain the same distribution as Pr(· | η) if we specify the
uncertain evidence with the Bayes factor λi/λj for every pair of events γi

and γj, as shown in Equation 13, and then revise our beliefs according to
the principle of probability kinematics. The advantage of using the virtual
evidence method for specifying uncertain evidence is that we only need to
specify the n likelihood ratios λ1, . . . , λn in order to define the n2 Bayes factors
that are necessary for belief revision.

6.1 Reasoning about Evidence

As we have said before, the virtual evidence method can be interpreted as
a “Nothing else considered” revision method, and does not depend on one’s
prior beliefs. In fact, this specification of evidence can be reasoned about and
interpreted even when we do not have any prior beliefs. We will illustrate this
by the following example due to Halpern and Pucella [7].

Assume that Alice has two coins, a fair one and a double–headed one. If she
non–probabilistically chooses one of them and tosses it repeatedly, what is
the probability of landing heads in a single toss? Without knowing which coin
she chooses (and how she chooses it), the only conclusion that can be drawn
is that the probability is either 1/2 (if the fair coin is chosen), or 1 (if the
double–headed coin is chosen).

Now assume that we know the results of the first 100 tosses, and all of them
landed heads. What is the probability that the next coin toss lands heads?
We can again conclude that it is still either 1/2 or 1 depending on which
coin is used, as either coin cannot be ruled out from our observation. This is
hardly useful because no matter how many of these consecutive tosses that
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landed heads we witness, the probability that the next toss will land heads
remains unchanged, when in fact the probability of the coin being double–
headed should increase.

However, this piece of evidential information can be easily expressed and used
if we interpret it as virtual evidence. If we denote the event γ as the coin being
double–headed, the event γ as the coin being fair, and the virtual event η as
the coin landing heads in a single toss, we can quantify the evidence strength
by computing the likelihood ratio:

Pr(η | γ)

Pr(η | γ)
=

1

1/2
= 2.

Therefore, this piece of evidence is in favor of the coin being double–headed,
no matter what our prior beliefs are. If we witness 100 tosses landing heads,
the likelihood ratio of this observation is 2100, which means it is very strongly
in favor of the coin being double–headed. Obviously, it is still not possible to
determine the posterior probability of the coin being double–headed without
knowing its prior probability. For example, we will still believe the coin tossed
is unlikely to be double–headed if its prior probability is 10−100.

The advantage of specifying evidential information using virtual evidence is
that the evidence can be shared among different agents with different prior
beliefs (even those without prior beliefs), and it will be interpreted the same
way by the different agents because the specification depends only on the
evidence but not the prior beliefs. The likelihood ratios specified in the vir-
tual evidence method capture completely whether the uncertain evidence is in
favor or against a hypotheses, and also its strength. Recently, Halpern and Pu-
cella proposed a logic for reasoning about evidence [7], which essentially views
evidence as a confirmation function from the prior beliefs before making the
observation, to the posterior beliefs after making the observation. The mea-
sure of evidence they use is the likelihood ratio, because it is the only function
that does not assume that we have any prior beliefs on the hypotheses.

6.2 Commutativity of Iterated Revisions

We now discuss the problem of the commutativity of iterated revisions, i.e.,
whether the order in which we accept uncertain evidence matters. 5

5 There is a key distinction between iterated revisions using certain evidence versus
uncertain evidence. In the former case, pieces of evidence may be logically incon-
sistent, which adds another dimension of complexity to the problem [3], leading to
different properties and treatments.
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It is well known that iterated revisions by Jeffrey’s rule are not commutative
[4]. As a simple example, assume that we are given a piece of uncertain evi-
dence which suggests that the probability of event α is .7, followed by another
piece of uncertain evidence which suggests that the probability of α is .8. Af-
ter accepting both pieces of evidence in this particular order using Jeffrey’s
rule, we believe that the probability of α is .8. However, if the reversed order
of revision is employed, we believe that the probability of α is .7. In general,
even if we are given pieces of uncertain evidence on different events, iterated
revisions by Jeffrey’s rule are not commutative.

This was viewed as a problematic aspect of Jeffrey’s rule for a long time, until
clarified recently by Wagner [13]. First, Wagner observed and stressed that
the evidence specification method adopted by Jeffrey is suitable for the “All
things considered” interpretation of evidential statements. Moreover, he ar-
gued convincingly that when evidential statements carry this interpretation,
they must not be commutative to start with. So the lack of commutativity is
not a problem of the revision method, but a property of the evidence specifi-
cation method.

On the other hand, revisions by the virtual evidence method is commutative,
and this is supported by Wagner, which suggested specifying evidence based
on Bayes factors leads to commutativity [13]. Interestingly enough, he showed
that when evidence is specified by Bayes factors and the revision method obeys
the principle of probability kinematics, belief revision becomes commutative. 6

These two properties are satisfied by the virtual evidence method, as shown
in earlier sections.

7 Bounding Belief Change Induced by Probability Kinematics

One important question relating to belief revision is that of measuring the
extent to which a revision disturbs existing beliefs. We have recently proposed
a distance measure defined between two probability distributions which can
be used to bound the amount of belief change induced by a revision [1]. We
review this measure next and then use it to provide guarantees on any revision

6 Wagner shows not only that the representation of uncertain evidence using Bayes
factors is sufficient for commutativity, but in a large number of cases, necessary.
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which is based on the principle of probability kinematics. 7

Definition 7 [1] Let Pr and Pr′ be two probability distributions over the same
set of worlds ω. We define a measure D(Pr, Pr′) as follows:

D(Pr, Pr′)
def
= ln max

ω

Pr′(ω)

Pr(ω)
− ln min

ω

Pr′(ω)

Pr(ω)
, (14)

where 0/0 is defined as 1. This measure can also be expressed using Bayes
factors:

D(Pr, Pr′) = ln max
ωi,ωj

FPr′,P r(ωi : ωj). (15)

This measure satisfies the three properties of distance: positiveness, symme-
try, and the triangle inequality. It is useful to compute this distance measure
between two probability distributions as it allows us to bound the difference
in the beliefs captured by them.

Theorem 8 [1,2] Let Pr and Pr′ be two probability distributions over the
same set of worlds. Let α and β be two events. We have the following bound:

e−D(Pr,Pr′) ≤ O′(α | β)

O(α | β)
≤ eD(Pr,Pr′), (16)

where O(α | β) is the odds of α given β under Pr, and O′(α | β) is the odds
of α given β under Pr′. The bound is tight in the sense that for every pair of
distributions Pr and Pr′, there are events α and β such that:

O′(α | β)

O(α | β)
= eD(Pr,Pr′);

O′(α | β)

O(α | β)
= e−D(Pr,Pr′).

According to Theorem 8, if we are given a belief revision method, and are
able to compute the distance measure between the original and revised distri-
butions, we can get a tight bound on the new probability of any conditional
event after the belief revision, given its original probability, using Equation 16.
Compared with other popular measures such as KL-divergence and Euclidean

7 The results in this section are reformulations and generalizations of previous re-
sults [1,2], and are inspired by a new understanding of Jeffrey’s rule and Pearl’s
method as two belief revision methods based on the principle of probability kine-
matics, and the understanding of Pearl’s method in terms of Bayes factors. Proofs
of theorems in this section are included in the Appendix for the purpose of com-
pleteness.
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distance, this distance measure is the only one that can bound belief change
in the precise way of providing a tight bound on the new probability of any
conditional event [1,2].

We now compute the distance measure for belief revision methods based on
the principle of probability kinematics.

Theorem 9 [1,2] If Pr′ is obtained from Pr by probability kinematics on
γ1, . . . , γn, the distance measure between Pr and Pr′ is given by:

D(Pr, Pr′) = ln
n

max
i=1

Pr′(γi)

Pr(γi)
− ln

n
min
i=1

Pr′(γi)

Pr(γi)
. (17)

Using Equation 17, we can easily compute the distance measure for revisions
based on Jeffrey’s rule and Pearl’s method.

Corollary 1 If Pr′ is obtained from Pr by applying Jeffrey’s rule, given un-
certain evidence specified by the set of posterior probabilities Pr′(γi) = qi, for
i = 1, . . . , n, the distance measure between Pr and Pr′ is given by:

D(Pr, Pr′) = ln
n

max
i=1

qi

Pr(γi)
− ln

n
min
i=1

qi

Pr(γi)
. (18)

Corollary 2 If Pr(· | η) is obtained from Pr by applying Pearl’s method,
given virtual evidence η specified by likelihood ratios λ1, . . . , λn, the distance
measure between Pr and Pr(· | η) is given by:

D(Pr, Pr(· | η)) = ln
n

max
i=1

λi − ln
n

min
i=1

λi. (19)

The significance of Corollaries 1 and 2 is that we can compute the distance
measure easily in both cases. For Jeffrey’s rule, we can compute the dis-
tance measure by knowing only the prior and posterior probabilities of events
γ1, . . . , γn. For Pearl’s method, we can compute the distance measure by know-
ing only the likelihood ratios λ1, . . . , λn. For both revision methods, the dis-
tance measure can be computed in constant time from the uncertain evidence,
and we can guarantee a bound on the belief change due to the fact that they
both obey the principle of probability kinematics, without explicitly knowing
the original and posterior distributions.

We close this section by showing that the principle of probability kinematics
is optimal in a very precise sense: it commits to a probability distribution that
minimizes the distance measure.

Theorem 10 [1,2] The distribution Pr′ obtained from Pr by probability kine-
matics on γ1, . . . , γn is optimal in the following sense. Among all possible dis-
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tributions that agree with Pr′ on the probabilities of events γ1, . . . , γn, Pr′ is
the closest to Pr according to the distance measure given by Definition 7.

8 Conclusion

In this paper, we analyzed two main methods for revising probability distri-
butions given uncertain evidence: Jeffrey’s rule and Pearl’s method of virtual
evidence. We were able to analyze the process of belief revision according to
three different aspects: the formal specification of evidence, the belief revision
principle, and the interpretation of informal evidential statements. We showed
that both Jeffrey’s rule and Pearl’s method obey the belief revision principle
of probability kinematics, with the difference in the manner in which they
specify uncertain evidence: a set of posterior probabilities are used in Jeffrey’s
rule, while likelihood ratios are used in Pearl’s method. We also showed how
we can easily translate between the two specification of uncertain evidence,
and with this result, we can implement both methods in the context of belief
networks by adding virtual evidence nodes. For the much debated problem
of interpreting informal evidential statements, we emphasized that the two
methods commit to two different interpretations of evidence, and thus can
lead to different conclusions about the evidential statement.

Moreover, we showed that the virtual evidence method can be reformulated in
terms of Bayes factors, which implies a number of results, including the ability
to reason and share evidential information among agents with different prior
beliefs, and the commutativity of iterated revisions. Finally, we showed that
revisions based on the principle of probability kinematics are optimal in a very
precise way, and pointed to a distance measure for bounding belief change due
to these revisions. Our bounds included Jeffrey’s rule and Pearl’s method as
special cases.
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A Proofs

Proof of Theorem 1 Given the distribution Pr′ in Equation 3, since events
γ1, . . . , γn are mutually exclusive, we have:

Pr′(γi) = qi
Pr(γi)

Pr(γi)
= qi, for i = 1, . . . , n.

satisfying Equation 2, and:

Pr′(α, γi) = qi
Pr(α, γi)

Pr(γi)
, for i = 1, . . . , n.

Therefore, Pr′ is obtained from Pr by probability kinematics on γ1, . . . , γn,
i.e., it satisfies Equation 1, since:

Pr′(α | γi) =
Pr′(α, γi)

Pr′(γi)

=
qi

Pr(α,γi)
Pr(γi)

qi

=
Pr(α, γi)

Pr(γi)

= Pr(α | γi), for i = 1, . . . , n.

On the other hand, if there is a distribution Pr′ that satisfies both Equations 1
and 2, the probability of event α under Pr′ must be:

Pr′(α) =
n∑

i=1

Pr′(α | γi)Pr′(γi)

=
n∑

i=1

Pr(α | γi)qi

=
n∑

i=1

qi
Pr(α, γi)

Pr(γi)
.

Proof of Theorem 2 We want to prove that the distribution given by Equa-
tion 6 is the unique distribution Pr(· | η) identified by the virtual evidence
method in Definition 3. First of all, if there is a distribution Pr(· | η) that
satisfies both Equations 4 and 5, the probability of event α under distribution
Pr(· | η) must be:
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Pr(α | η) =
Pr(α, η)

Pr(η)

=

∑n
i=1 Pr(α, η, γi)

Pr(η)

=

∑n
i=1 Pr(η | γi, α)Pr(α, γi)∑n

j=1 Pr(η | γj)Pr(γj)

=

∑n
i=1 Pr(η | γi)Pr(α, γi)∑n
j=1 Pr(η | γj)Pr(γj)

=

∑n
i=1 (λi/k)Pr(α, γi)∑n
j=1 (λj/k)Pr(γj)

=

∑n
i=1 λiPr(α, γi)∑n
j=1 λjPr(γj)

.

On the other hand, given a distribution which satisfies Equation 6, since events
γ1, . . . , γn are mutually exclusive, we have:

Pr(η | γ1) : . . . : Pr(η | γn) =
Pr(η, γ1)

Pr(γ1)
: . . . :

Pr(η, γn)

Pr(γn)

=
Pr(γ1 | η)Pr(η)

Pr(γ1)
: . . . :

Pr(γn | η)Pr(η)

Pr(γn)

=

λ1Pr(γ1)∑n

j=1
λjPr(γj)

Pr(η)

Pr(γ1)
: . . . :

λnPr(γn)∑n

j=1
λjPr(γj)

Pr(η)

Pr(γn)

= λ1 : . . . : λn,

satisfying Equation 4. Therefore, λi = kPr(η | γi), where k is a constant, and
Equation 5 is also satisfied since:

Pr(η | γi, α) =
Pr(η, γi, α)

Pr(γi, α)

=
Pr(γi, α | η)Pr(η)

Pr(γi, α)

=

λiPr(γi,α)∑n

j=1
λjPr(γj)

Pr(η)

Pr(γi, α)

=
λiPr(η)∑n

j=1 λjPr(γj)

=
kPr(η | γi)Pr(η)∑n

j=1 kPr(η | γj)Pr(γj)

=
Pr(η | γi)Pr(η)∑n

j=1 Pr(η | γj)Pr(γj)
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=
Pr(η | γi)Pr(η)

Pr(η)

= Pr(η | γi), for i = 1, . . . , n.

Proof of Theorem 3 Given the distribution Pr(· | η) in Equation 6, since
events γ1, . . . , γn are mutually exclusive, we have:

Pr(γi | η) =
λiPr(γi)∑n

j=1 λjPr(γj)
, for i = 1, . . . , n.

and:

Pr(α, γi | η) =
λiPr(α, γi)∑n
j=1 λjPr(γj)

, for i = 1, . . . , n.

Therefore, Pr(· | η) is obtained from Pr by probability kinematics on γ1, . . . , γn,
i.e., it satisfies Equation 1, since:

Pr(α | γi, η) =
Pr(α, γi | η)

Pr(γi | η)

=

λiPr(α,γi)∑n

j=1
λjPr(γj)

λiPr(γi)∑n

j=1
λjPr(γj)

=
Pr(α, γi)

Pr(γi)

= Pr(α | γi), for i = 1, . . . , n.

Proof of Theorem 4 From Equations 6 and 7, we have:

Pr′(γi) = qi =
λiPr(γi)∑n

j=1 λjPr(γj)
,

for i = 1, . . . , n. We can substitute the set of posterior probabilities into Jef-
frey’s rule (Equation 3), and get:

Pr′(α) =
n∑

i=1

qi
Pr(α, γi)

Pr(γi)

=
n∑

i=1

λiPr(γi)∑n
j=1 λjPr(γj)

Pr(α, γi)

Pr(γi)
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=

∑n
i=1 λiPr(α, γi)∑n
j=1 λjPr(γj)

.

This is exactly the distribution obtained by the virtual evidence method
(Equation 6), with likelihood ratios λ1, . . . , λn.

Proof of Theorem 5 From Equation 8, we have λi = kqi/Pr(γi), where
k is a constant, for i = 1, . . . , n, and we can substitute the likelihood ratios
λ1, . . . , λn into Pearl’s method (Equation 6), and get:

Pr(α | η) =

∑n
i=1 λiPr(α, γi)∑n
j=1 λjPr(γj)

.

=

∑n
i=1 (kqi/Pr(γi))Pr(α, γi)∑n
j=1 (kqj/Pr(γj))Pr(γj)

.

=

∑n
i=1 (qi/Pr(γi))Pr(α, γi)∑n

j=1 qj

=
n∑

i=1

qi
Pr(α, γi)

Pr(γi)
,

since
∑n

j=1 qj =
∑n

j=1 Pr′(γj) = 1. This is exactly the distribution obtained by
Jeffrey’s rule (Equation 3), with the set of posterior probabilities Pr′(γi) = qi,
for i = 1, . . . , n.

Proof of Theorem 6 We have:

O(γ | η)

O(γ)
=

Pr(γ | η)/Pr(γ | η)

Pr(γ)/Pr(γ)

=
Pr(η, γ)/Pr(η, γ)

Pr(γ)/Pr(γ)

=
Pr(η, γ)/Pr(γ)

Pr(η, γ)/Pr(γ)

=
Pr(η | γ)

Pr(η | γ)
.

Proof of Theorem 7 We have:

FPr′,P r(γi : γj) =
Pr′(γi)/Pr′(γj)

Pr(γi)/Pr(γj)
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=

(
λiPr(γi)∑n

k=1
λkPr(γk)

)
/

(
λjPr(γj)∑n

k=1
λkPr(γk)

)

Pr(γi)/Pr(γj)

=
λi

λj

, for i, j = 1, . . . , n.

Proof of Theorem 8 If Pr and Pr′ do not have the same support, 8 we
have D(Pr, Pr′) = ∞, and thus:

−∞ = e−D(Pr,Pr′) ≤ O′(α | β)

O(α | β)
≤ eD(Pr,Pr′) = ∞.

If they have the same support, let rω = Pr′(ω)/Pr(ω) for every world ω. The
odds ratio O′(α | β)/O(α | β) can be expressed as:

O′(α | β)

O(α | β)
=

Pr′(α | β)/Pr′(α | β)

Pr(α | β)/Pr(α | β)

=
Pr′(α, β)/Pr′(α, β)

Pr(α, β)/Pr(α, β)

=
(
∑

ω|=α,β Pr′(ω))/(
∑

ω|=α,β Pr′(ω))

(
∑

ω|=α,β Pr(ω))/(
∑

ω|=α,β Pr(ω))

=
(
∑

ω|=α,β rωPr(ω))/(
∑

ω|=α,β rωPr(ω))

(
∑

ω|=α,β Pr(ω))/(
∑

ω|=α,β Pr(ω))
.

We now introduce maxω rω and minω rω to get the upper bound on the odds
ratio:

O′(α | β)

O(α | β)
≤ (

∑
ω|=α,β (maxω rω)Pr(ω))/(

∑
ω|=α,β (minω rω)Pr(ω))

(
∑

ω|=α,β Pr(ω))/(
∑

ω|=α,β Pr′(ω))

=
maxω rω

minω rω

=
maxω Pr′(ω)/Pr(ω)

minω Pr′(ω)/Pr(ω)
.

Similarly, we can also get the lower bound on the odds ratio:

O′(α | β)

O(α | β)
≥ (

∑
ω|=α,β (minω rω)Pr(ω))/(

∑
ω|=α,β (maxω rω)Pr(ω))

(
∑

ω|=α,β Pr(ω))/(
∑

ω|=α,β Pr′(ω))

8 Two probability distributions Pr and Pr′ have the same support, if for every
world ω, Pr(ω) = 0 iff Pr′(ω) = 0.
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=
minω rω

maxω rω

=
minω Pr′(ω)/Pr(ω)

maxω Pr′(ω)/Pr(ω)
.

We note that both results can be expressed using our distance measure:

eD(Pr,Pr′) =
maxω Pr′(ω)/Pr(ω)

minω Pr′(ω)/Pr(ω)
;

e−D(Pr,Pr′) =
minω Pr′(ω)/Pr(ω)

maxω Pr′(ω)/Pr(ω)
.

Therefore, we have the following inequality: 9

e−D(Pr,Pr′) ≤ O′(α | β)

O(α | β)
≤ eD(Pr,Pr′).

The bound is tight in the sense that for every pair of distributions Pr and
Pr′, there are events α = ωi and β = ωi ∨ ωj, where ωi = arg maxω rω and
ωj = arg minω rω, such that:

O′(α | β) =

∑
ω|=α,β rωPr(ω)

∑
ω|=α,β rωPr(ω)

=
rωi

Pr(ωi)

rωj
Pr(ωj)

.

Since O(α | β) = Pr(ωi)/Pr(ωj) and eD(Pr,Pr′) = (maxω rω)/(minω rω) =
rωi

/rωj
, we have:

O′(α | β)

O(α | β)
= eD(Pr,Pr′).

Similarly, we can get:

O′(α | β)

O(α | β)
= e−D(Pr,Pr′).

Proof of Theorem 9 If the two sets of probabilities Pr(γ1), . . . , P r(γn)
and Pr′(γ1), . . . , P r′(γn) do not have the same support, there must exist some

9 If both O′(α | β) and O(α | β) takes on either 0 or ∞, the theorem still holds if
we define both 0/0 and ∞/∞ as 1.
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world ω where Pr(ω) = 0 and Pr′(ω) 6= 0 or Pr(ω) 6= 0 and Pr′(ω) = 0, and
hence, the distributions Pr and Pr′ also do not have the same support, giving
us D(Pr, Pr′) = ∞ = ln maxn

i=1 (Pr′(γi)/Pr(γi))−ln minn
i=1 (Pr′(γi)/Pr(γi)).

Otherwise, given a world ω where ω |= γi, from Equation 1, we have:

Pr′(ω)

Pr(ω)
=

Pr′(ω | γi)Pr′(γi)

Pr(ω | γi)Pr(γi)

=
Pr′(γi)

Pr(γi)
.

Therefore, the distance measure can be computed by:

D(Pr, Pr′) = ln max
ω

Pr′(ω)

Pr(ω)
− ln min

ω

Pr′(ω)

Pr(ω)

= ln
n

max
i=1

Pr′(γi)

Pr(γi)
− ln

n
min
i=1

Pr′(γi)

Pr(γi)
.

Proof of Theorem 10 Let Pr′′ be any distribution that satisfies the con-
straint, Pr′′(γi) = Pr′(γi), for i = 1, . . . , n. We would like to prove that
D(Pr, Pr′′) ≥ D(Pr, Pr′), where Pr′ is obtained from Pr by probability
kinematics on γ1, . . . , γn. If Pr and Pr′′ do not have the same support, we
have D(Pr, Pr′′) = ∞ ≥ D(Pr, Pr′). If they have the same support, let j =
arg maxn

i=1 (Pr′(γi)/Pr(γi)) and k = arg minn
i=1 (Pr′(γi)/Pr(γi)). If rmax =

maxω (Pr′′(ω)/Pr(ω)), we can write the following inequality:

rmaxPr(γj) =
∑

ω|=γj

rmaxPr(ω)

≥ ∑

ω|=γj

Pr′′(ω)

Pr(ω)
Pr(ω)

=
∑

ω|=γj

Pr′′(ω)

= Pr′′(γj)

= Pr′(γj).

This gives us rmax ≥ Pr′(γj)/Pr(γj). Similarly, if rmin = minω (Pr′′(ω)/Pr(ω)),
we can write the following inequality:

rminPr(γk) =
∑

ω|=γk

rminPr(ω)

29



≤ ∑

ω|=γk

Pr′′(ω)

Pr(ω)
Pr(ω)

=
∑

ω|=γk

Pr′′(ω)

= Pr′′(γk)

= Pr′(γk).

This gives us rmin ≤ Pr′(γk)/Pr(γk). Therefore, the distance measure between
Pr and Pr′′ is:

D(Pr, Pr′′) = ln max
ω

Pr′′(ω)

Pr(ω)
− ln min

ω

Pr′′(ω)

Pr(ω)

= ln rmax − ln rmin

≥ ln
Pr′(γj)

Pr(γj)
− ln

Pr′(γk)

Pr(γk)

= ln
n

max
i=1

Pr′(γi)

Pr(γi)
− ln

n
min
i=1

Pr′(γi)

Pr(γi)

= D(Pr, Pr′).

Therefore, the distribution Pr′ gives us the smallest distance among all possi-
ble distributions that agree with Pr′ on the probabilities of events γ1, . . . , γn.
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