
CV-width: A New Complexity Parameter for CNFs
Umut Oztok and Adnan Darwiche 1

Abstract. We present new complexity results on the compilation of
CNFs into DNNFs and OBDDs. In particular, we introduce a new
notion of width, called CV-width, which is specific to CNFs and
that dominates the treewidth of the CNF incidence graph. We then
show that CNFs can be compiled into structured DNNFs in time and
space that are exponential only in CV-width. Not only does CV-width
dominate the incidence graph treewidth, but the former width can be
bounded when the latter is unbounded. We also introduce a restricted
version of CV-width, called linear CV-width, and show that it dom-
inates both pathwidth and cutwidth, which have been used to bound
the complexity of OBDDs. We show that CNFs can be compiled
into OBDDs in time and space that are exponential only in linear
CV-width. We also show that linear CV-width can be bounded when
pathwidth and cutwidth are unbounded. The new notion of width sig-
nificantly improves existing upper bounds on both structured DNNFs
and OBDDs, and is motived by a new decomposition technique that
combines variable splitting with clause splitting.

1 Introduction
Decomposability is a fundamental property that underlies many well-
known tractable languages in propositional logic. It is a property
of conjunctions, requiring that conjuncts share no variables, and
is sufficient to ensure the tractability of certain queries, such as
clausal entailment and the existential quantification of multiple vari-
ables [4]. Decomposability is the characteristic property of decom-
posable negation normal form (DNNF) [2], which includes many
other languages such as structured DNNF [8], sentential decision dia-
grams (SDD) [3], and ordered binary decision diagrams (OBDD) [1].

Compiling CNFs into decomposable languages has been at the
center of attention in the area of knowledge compilation. A key in-
terest here is in providing upper bounds on the complexity of com-
pilation algorithms, based on structural parameters of the input CNF
(e.g., [2, 5, 10, 3, 11]). These bounds are based on the treewidth of
various graph abstractions of the input CNF (e.g., primal, dual and
incidence graphs) [12], in addition to the cutwidth and pathwidth of
the CNF [5]. For example, the best known upper bound on compiling
DNNFs is based on the treewidth of the CNF incidence graph [11].
Moreover, the best known upper bounds on compiling OBDDs are
based on the CNF pathwidth and cutwidth [5].

We significantly improve on these bounds in this paper. In par-
ticular, we introduce a new notion of width for CNFs, called
clause-variable width (CV-width), which dominates the treewidth
of the incidence graph and can be bounded when the mentioned
treewidth is unbounded. We then show that CNFs can be compiled
into structured DNNFs in time and space that are exponential only in
CV-width. Not only does this improve on the best known bound for

1 Computer Science Department, University of California, Los Angeles,
email: {umut,darwiche@cs.ucla.edu}

compiling DNNFs [11], but it also extends the bound to structured
DNNF [10]. The significance here is that structured DNNF supports
a polytime conjoin operation [8], while (unstructured) DNNF does
not support this (unless P=NP) [4]. We also improve on the best
known bounds for compiling OBDDs by introducing the notion of
linear CV-width, which is a restricted version of CV-width. We show
that linear CV-width dominates both the pathwidth and cutwidth of
a CNF, and can be bounded when these widths are unbounded. We
also show that OBDDs can be compiled in time and space that are
exponential only in linear CV-width.

Our complexity results are constructive as they are based on a spe-
cific algorithm for compiling CNFs into structured DNNFs (and OB-
DDs). This algorithm is driven by a tree over CNF variables, known
as a vtree [8]. Each vtree has its own CV-width. Moreover, the CV-
width of a given CNF is the smallest width attained by any of its
vtrees. The major characteristic of this algorithm is its employment
of both variable and clause splitting. Variable splitting is a well-
known technique in both SAT and knowledge compilation and calls
for eliminating a variable V from a CNF ∆ by considering the CNFs
∆|v and ∆|¬v (i.e., conditioning ∆ on both phases of the variable).
Clause splitting, however, is a less common technique and calls for
eliminating a clause α ∨ β from a CNF ∆ by considering the CNFs
∆∪{α} and ∆∪{β}. Our proposed algorithm combines both tech-
niques. This combination is essential for the complexity of our com-
pilation algorithm and provides the major insight underlying the new
notion of CV-width. Moreover, the combination allows us to bound
the complexity of compilation in situations where this complexity
could not be bounded using either technique alone.

This paper is structured as follows. We start by providing some
technical preliminaries, and formal definitions of variable and clause
splitting (Sections 2–5). This is followed by presenting our compila-
tion algorithm (Section 6). Then, we introduce CV-width and com-
pare it to well-known graph abstractions of CNFs and their corre-
sponding parameters (Sections 7–8). We close with a discussion of
related work and some concluding remarks. Due to space limitations,
some proofs are delegated to the full version of the paper. 2

2 Technical Preliminaries
A conjunction is decomposable if each pair of its conjuncts share no
variables. A negation normal form (NNF) is a DAG whose internal
nodes are labeled with disjunctions and conjunctions, and whose leaf
nodes are labeled with literals or the constants true and false. An
NNF is decomposable (called a DNNF) iff each of its conjunctions
is decomposable; see Figure 1(b). We use V ars(N) to denote the set
of variables mentioned by an NNF node N .

A vtree for a set Z of variables is a rooted, full binary tree whose
leaves are in one-to-one correspondence with variables in Z. Fig-

2 Available at http://reasoning.cs.ucla.edu.

1

X 2

3

Y Z

Q

(a) A vtree

or

and

¬x or

and

y ¬z

and

¬y ¬z

and

x and

q

(b) A DNNF respecting vtree in (a)

Figure 1. A vtree and a respecting DNNF.

ure 1(a) depicts an example vtree. We will use vl and vr to refer to
the left and right children of internal vtree node v. We will also use
V ars(v) to denote the set of variables at or below a vtree node v.

A DNNF respects a vtree iff every and-node N has exactly two
children N l and Nr , and we have V ars(N l) ⊆ V ars(vl) and
V ars(Nr) ⊆ V ars(vr) for some vtree node v. In this case, the
DNNF is said to be structured. The DNNF in Figure 1(b) respects
the vtree in Figure 1(a) and is therefore a structured DNNF. OBDDs
are a subset of structured DNNFs with stronger properties [7].

The literals of variable X are denoted by x and ¬x. A CNF is
a set of clauses, where each clause is a disjunction of literals (e.g.,
{x ∨ ¬y ∨ ¬z, ¬x, y ∨ z}). We will often write ∆(X) to mean
that CNF ∆ mentions only variables in X. Conditioning a CNF ∆
on a literal `, denoted ∆|`, amounts to removing literal ¬` from all
clauses and then dropping all clauses that contain literal `.

Upper case letters (e.g., X) will denote variables and lower case
letters (e.g., x) will denote their instantiations. Bold upper case let-
ters (e.g., X) will denote sets of variables and bold lower case letters
(e.g., x) will denote their instantiations. An instantiation x of vari-
ables X will be interpreted as a term (conjunction of literals), or as a
CNF (set of clauses, where each clause corresponds to a literal of x).

3 Decomposing CNFs
Consider a vtree with root v. Let X be the variables of left child vl

and let Y be the variables of right child vr . To compile a CNF ∆
into a DNNF that respects this vtree, we will first decompose ∆ into
CNFs (called components) that only mention variables X or only
mention variables Y. These components are then decomposed with
respect to the vtrees rooted at vl and vr . The process continues re-
cursively until we reach literals or constants. The following definition
provides the basis for this recursive decomposition process.

Definition 1 ([9]). Consider a CNF ∆(X,Y) where variables X
and Y are disjoint. An (X,Y)-decomposition of ∆ is a set{(

L1(X), R1(Y)
)
, . . . ,

(
Ln(X), Rn(Y)

)}
such that Li and Ri are CNFs and ∆ is equivalent to (L1 ∧ R1) ∨
. . . ∨ (Ln ∧Rn). Each pair (Li, Ri) is called an element, where Li

is called an X-component and Ri is called a Y-component.

Consider the CNF ∆ = {a ∨ ¬b ∨ ¬c, ¬a ∨ b ∨ c} and let
X = {A,B} and Y = {C}. The following is then an (X,Y)-
decomposition of ∆, which has three elements:{(
{a ∨ ¬b,¬a ∨ b}, {}

)
,
(
{a ∨ ¬b}, {c}

)
,
(
{¬a ∨ b}, {¬c}

)}
.

4 Constructing Decompositions
We will now review two systematic methods for constructing
(X,Y)-decompositions. The first method is based on variable split-
ting [2] and the second one is based on clause splitting [10].

4.1 Decomposition by Splitting on Variables
To split on variables V is to consider all possible instantiations v
of these variables. Here, each instantiation v corresponds to a set
of literals, exactly one literal for each variable in V. Hence, if V
contains n variables, then splitting on variables V leads to 2n cases.

Consider now a CNF ∆ over disjoint variables X and Y. Suppose
further that the CNF is partitioned into ∆(X), ∆(Y) and ∆(X,Y),
where ∆(X) contains all clauses of ∆ that only mention variables
X and ∆(Y) contains all clauses of ∆ that mention only variables
Y. Let V be all variables in X that are mentioned in ∆(X,Y). The
following is then an (X,Y)-decomposition of CNF ∆ [2]:{(

v∪∆(X)|v, ∆(Y)∪∆(X,Y)|v
) ∣∣∣ v an instantiation of V

}
.

This implies that
∆ =

∨
v

(
v
)
∧
(

∆|v
)

since ∆|v = ∆(X)|v ∪∆(Y) ∪∆(X,Y)|v. The X-components
and the Y-components of the above decomposition are all CNFs.
Moreover, when the set V contains a single variable V , the above de-
composition corresponds to the Shannon decomposition of ∆, which
is defined as ∆ = (v ∧∆|v) ∨ (¬v ∧∆|¬v).

4.2 Decomposition by Splitting on Clauses
Another method for constructing (X,Y)-decompositions is by split-
ting on clauses. That is, each clause γ is split into two sub-clauses
α and β, where α mentions only variables in X and β mentions
only variables in Y. We then take the Cartesian product of these
sub-clauses. This is formalized next.

Definition 2 (Clausal Decomposition [10]). Consider a CNF ∆ =
{γ1, . . . , γk} over disjoint variables X and Y, where each clause
has variables in X and in Y. Let γi = αi ∨ βi, where αi and βi are
the sub-clauses of γi mentioning variables X and Y, respectively.
The clausal (X,Y)-decomposition of CNF ∆ is defined as

CD(∆,X,Y) =
{(⋃

i∈S

αi,
⋃
j /∈S

βj
) ∣∣∣ S ⊆ {1, . . . , k}}.

This clausal decomposition allows us to write CNF ∆ as follows

∆ =
∨

S⊆{1,...,k}

(∧
i∈S

αi

)
∧

∧
j /∈S

βj

 .

More generally, consider a CNF ∆ over disjoint variables X and
Y, and suppose that the CNF is partitioned into ∆(X), ∆(Y) and
∆(X,Y). Suppose further that

{
(L1, R1), . . . , (Ln, Rn)

}
is the

clausal (X,Y)-decomposition of CNF ∆(X,Y). The following is
then guaranteed to be an (X,Y)-decomposition of CNF ∆:{(

∆(X)∪L1, ∆(Y)∪R1

)
, . . . ,

(
∆(X)∪Ln, ∆(Y)∪Rn

)}
.

The X-components of this decomposition have the form ∆(X) ∪
Li, where Li is an X-component of the clausal decomposition for
∆(X,Y). As we shall see later, the number of these components
will play a major role in defining our new notion of width.

{¬x ∨ z, x ∨ ¬y ∨ q}

X {z ∨ q}

{y ∨ ¬z}

Y Z

Q

Figure 2. Distributing the clauses of {y∨¬z, z∨ q, ¬x∨ z, x∨¬y∨ q}
on a vtree. Internal nodes show assigned clauses.

5 More on Vtrees

Before discussing our compilation algorithm, we will introduce some
definitions about vtrees that will be used later.

A vtree node v is called a Shannon node iff its left child is a leaf.
In this case, the variable labeling the left child is called the Shannon
variable of node v. In Figure 1(a), vtree nodes 1 and 3 are Shannon
nodes, withX and Y as their Shannon variables. A vtree is said to be
right-linear if every internal node is a Shannon node. Figure 4 shows
a right-linear vtree.

Let π be a variable ordering. The right-linear vtree induced by π is
the one whose in-order traversal visits leaves in the same order as π.
Figure 4 shows the right linear vtree induced by orderX,Y1, . . . , Yn.

We will find it useful to distribute the clauses of a CNF ∆ on a
vtree as follows. Each clause of ∆ is assigned to the lowest vtree
node that contains the clause variables. Figure 2 depicts an example
of how clauses are assigned to vtree nodes. We use Clauses(v) to
denote the clauses assigned to vtree node v. We also use CNF (v) to
denote the clauses assigned to all nodes in the vtree rooted at v.

6 Compiling CNFs into Structured DNNF

We will now present an algorithm that compiles a CNF into a DNNF
that respects a given vtree. Our compilation method is given by Al-
gorithm 1, which takes a vtree v and an auxiliary CNF S over the
variables of vtree v (S is initially empty). The CNF ∆ to be com-
piled is passed with the vtree as explained earlier.

The following theorem establishes the soundness of the algorithm.
Its proof is inductive and follows from the soundness of the decom-
position techniques based on variable and clause splitting.

Theorem 1. The call c2s(v, {}) to Algorithm 1 returns a DNNF
that respects vtree v and that is equivalent to CNF (v).

More generally, a recursive call c2s(v, S) will return a DNNF
for CNF (v) ∪ S that respects vtree v. Moreover, depending on the
type of vtree node, the algorithm will either split on a single variable
to compute a Shannon decomposition (Lines 4–13), or will split on
clauses to compute a clausal decomposition (Lines 14–20). The al-
gorithm keeps a cache at every vtree node, which is indexed by the
auxiliary CNF S.

Algorithm 1 returns an OBDD when the input vtree is right-linear.
Since every internal vtree node is a Shannon node, Lines 4–13 will al-
ways be invoked to construct a Shannon decomposition. This essen-
tially creates an OBDD which respects the variable order underlying
the right-linear vtree. The resulting OBDD is not reduced, however,
but this can be addressed by incorporating a unique-node table into
Algorithm 1, which does not change its complexity [7].

Algorithm 1: c2s(v, S)
cache(v,∆) is a hash table that maps v and ∆ into a DNNF.
terminal(∆) returns the literal or constant equivalent to ∆.

Input: v : a vtree node, S : a CNF over V ars(v).
Output: A DNNF for CNF (v) ∪ S that respects vtree v.

1 if cache(v, S) 6= nil then return cache(v, S)
2 C ← Clauses(v)
3 if v is a leaf then return terminal(C ∪ S)
4 if v is a Shannon node then
5 X ← Shannon variable of v
6 if {x} and {¬x} assigned to vl then α← ⊥
7 else if {x} assigned to vl then
8 α← x∧ c2s(vr, (C ∪ S)|x)

9 else if {¬x} assigned to vl then
10 α← ¬x∧ c2s(vr, (C ∪ S)|¬x)

11 else
12 α←

(
x∧ c2s(vr, (C ∪ S)|x)

)
∨

13
(
¬x∧ c2s(vr, (C ∪ S)|¬x)

)
14 else
15 X← variables in the vtree rooted at vl

16 Y ← variables in the vtree rooted at vr

17 Partition S into S1(X), S2(Y), and S3(X,Y)
18 α← ⊥
19 foreach (L,R) ∈ CD(C ∪ S3,X,Y) do
20 α← α ∨

(
c2s(vl, S1 ∪ L)∧ c2s(vr, S2 ∪R)

)
21 cache(v, S)← α
22 return α

7 A New Complexity Parameter for CNFs

In this section, we will introduce CV-width, and show that the time
and space complexity of Algorithm 1 is exponential only in CV-
width. First, we will study a concept that will be quite useful in defin-
ing CV-width.

7.1 Counting Components

Our new notion of width and the corresponding complexity analysis
of our compilation algorithm depend crucially on counting the num-
ber of distinct components of clausal decompositions. The following
direct definition of these components facilitates this process.

Definition 3. Consider a CNF ∆ and variables X. Let γ1, . . . , γn be
the clauses in ∆ which mention variables inside and outside X, and
letαi be the sub-clause of γi with variables in X. The X-components
of ∆ are defined as the following CNFs

CNFs(∆,X) = {∆(X) ∪ Γ | Γ ⊆ {α1, . . . , αn}}

where ∆(X) is the set of clauses of ∆ that only mention variables X.

For example, if ∆ = {x1, x2∨z, x3∨¬z} and X = {X1, X2, X3},
then CNFs(∆,X) = {{x1}, {x1, x2}, {x1, x3}, {x1, x2, x3}}.

Suppose that we split on variables V, leading to CNFs ∆|v: one
CNF for each instantiation v of variables V. Suppose that we further
construct a clausal decomposition for each CNF ∆|v. We will find
it quite useful to count the number of distinct components which are
obtained from this process.

Definition 4. Consider a CNF ∆ and disjoint variables X and V.
The X|V-components of ∆ are defined as the following CNFs

CNFs(∆,X|V) =
⋃
v

CNFs(∆|v,X).

Consider the CNF

∆ = {x1 ∨ v ∨ z, x2 ∨ ¬x3 ∨ v, x2 ∨ ¬v ∨ z, x3 ∨ ¬v ∨ z}.

If X = {X1, X2, X3} and V = {V }, then

∆|v = {x2 ∨ z, x3 ∨ z},
CNFs(∆|v,X) = {{}, {x2}, {x3}, {x2, x3}},

∆|¬v = {x1 ∨ z, x2 ∨ ¬x3},
CNFs(∆|¬v,X) = {{x2 ∨ ¬x3}, {x1, x2 ∨ ¬x3}}.

Hence,

CNFs(∆,X|V) = {{}, {x2}, {x3}, {x2, x3}, {x2 ∨ ¬x3},
{x1, x2 ∨ ¬x3}}.

These are all the distinct X-components obtained by first splitting on
variables V, then constructing clausal decompositions.

We will use #CNFs(∆,X|V) to denote the ceiling of
log(|CNFs(∆,X|V)|), where log 0 is defined as 0. Hence, in the
above example #CNFs(∆,X|V) = 3.

7.2 Clause-Variable Width
We are now ready to introduce the new notion of width, called CV-
width. This new width is based on counting the number of distinct
components that arise when decomposing a CNF using a series of
splits on variables and clauses.

CV-width is defined for a vtree and a corresponding CNF. The CV-
width of a CNF is then defined as the smallest CV-width attained by
any of its vtrees. To define CV-width for a given vtree, we need to
associate a set of clauses and variables with each internal node in the
vtree. These sets are defined next.

Definition 5. Consider a CNF ∆ and a corresponding vtree. Each
internal vtree node v is associated with the following sets:

– Context Variables: Shannon variables of v’s ancestors.
– Cutset Clauses: empty set if v is a Shannon node; otherwise,

clauses with variables inside vl and inside vr .
– Context Clauses: clauses with variables inside and outside v, and

that do not belong to the cutset.

Figure 3 depicts a CNF, a corresponding vtree and the associated
cutset clauses, context clauses, and context variables of vtree nodes.

When Algorithm 1 is decomposing a CNF with respect to a vtree
node v, it would have already split on its context variables. At this
point, the CNF can be decomposed by splitting on its cutset and
context clauses. One will always split on cutset clauses. However,
whether one would need to split on a particular context clause de-
pends on the specific splits adopted at ancestors. This motivates the
following definition of width.

Definition 6 (CV-width). Consider a CNF and a corresponding
vtree. Let v be an internal vtree node with variables X, context vari-
ables V, cutset clauses ∆ and context clauses Γ. The width of node v,
width(v), is |∆|+ #CNFs(Γ,X|V). The CV-width of the vtree is
the largest width of any of its internal nodes minus 1. The CV-width
of a CNF is the smallest CV-width attained by any of its vtrees.

Consider the CNF {y∨¬z, z∨ q, ¬x∨z, x∨¬y∨ q} and the vtree
in Figure 1(a). The CV-width of this vtree is 2; see Figure 3.

∅

X
{z ∨ q,

x ∨ ¬y ∨ q}

∅

Y Z

Q

(a) Cutset Clauses

∅

X {¬x ∨ z}

{¬x ∨ z, z ∨ q,
x ∨ ¬y ∨ q}

Y Z

Q

(b) Context Clauses

∅

X {X}

{X}

Y Z

Q

(c) Context Vars.

Figure 3. Cutset clauses, context clauses, and context variables of the vtree
in Figure 1(a), defined for the CNF {y ∨ ¬z, z ∨ q, ¬x ∨ z, x ∨ ¬y ∨ q}.

7.3 Complexity Analysis
The following theorem reveals the time and space complexity of our
compilation algorithm (the proof is delegated to the Appendix).

Theorem 2. If vtree v is over n variables and has CV-width w, and
ifCNF (v) has sizem, then the call c2s(v, {}) to Algorithm 1 takes
time in O(nm3w) and returns a DNNF whose size is in O(n3w).

We know that Algorithm 1 is guaranteed to return an OBDD when
the input vtree is right-linear. In this case, we need to state the com-
plexity of the algorithm by using a restricted version of CV-width,
which is defined for right-linear vtrees.

Definition 7. The linear CV-width of a CNF is the smallest CV-width
attained by any right-linear vtree of the CNF.

Therefore, if a CNF has n variables and has a linear CV-width w,
it must have an OBDD whose size is in O(n3w). In fact, a simple
argument can show that the size is actually in O(n2w).

8 Relationship to Classical CNF Parameters
We now compare CV-width to some classical parameters that charac-
terize the structural properties of CNFs. We consider three parame-
ters: treewidth, cutwidth and pathwidth. The first parameter is a prop-
erty of some graph abstraction of the CNF, such as primal, dual and
incidence graphs, and has been used to bound the size of DNNF com-
pilations. The last two parameters apply directly to a CNF and have
been used to bound the size of OBDD compilations.

The primal graph of a CNF is obtained by treating CNF vari-
ables as graph nodes, while adding an edge between two variables
iff they appear in the same clause. The dual graph is obtained by
treating CNF clauses as graph nodes, while adding an edge between
two clauses iff they share a common variable. The incidence graph
is obtained by treating CNF variables and clauses as graph nodes,
while adding an edge between a variable and a clause iff the variable
appears in the clause.

We will use twp, twd and twi to denote the treewidth of primal,
dual and incidence graphs, respectively. It is known that twp and
twd are incomparable, in the sense that there are classes of CNFs for
which one can be bounded while the other is unbounded. Moreover,
it has been shown that twi ≤ twp + 1 and twi ≤ twd + 1 [6].
We will next show that CV-width dominates twi, which immediately
implies that it also dominates twp and twd.

Theorem 3. Let ∆ be a CNF whose incidence graph has treewidth
w. We can construct a vtree for this CNF whose CV-width ≤ w.

The following theorem shows that the incidence graph of a CNF
may have an unbounded treewidth, yet its CV-width may be bounded.

Theorem 4. There is a class of CNFs ∆n, with n variables and n
clauses, n ≥ 1, whose incidence graph has treewidth≥ n/2−2, yet
whose CV-width is 0.

Proof (Sketch). ∆n = {C1, . . . , Cn}, where Ci = x1 ∨ . . . ∨ xi.
The incidence graph of ∆n has treewidth ≥ n/2 − 2 (proof in full
paper). Consider the right-linear vtree induced by the variable or-
dering X1, . . . , Xn. Consider a vtree node v whose left child is Xi.
Since v is a Shannon node, its cutset is empty. Let Γ be the con-
text clauses of v. If i = 1, then Γ is empty and the width of v is
0. Otherwise, Γ = {Ci, . . . , Cn}. Let X be the variables inside v,
and let V be the context variables of v. Then, CNFs(Γ,X|V) =
{{}, {xi, xi ∨ xi+1, . . . , xi ∨ . . . ∨ xn}}. The width of v is then 1.
The CV-width of the vtree is then 0. �

We now turn our attention to cutwidth and pathwidth, which
have been used to bound the complexity of OBDDs obtained from
CNFs [5]. These parameters will be compared to linear CV-width.
We want to remark again that Algorithm 1 constructs an OBDD when
the input vtree is right-linear.

Cutwidth and pathwidth are incomparable. We will show next that
linear CV-width dominates both and can be bounded when neither
cutwidth or pathwidth are bounded. We start, however, by the defini-
tions of cutwidth and pathwidth based on [5].

Definition 8. Let π = V1, . . . , Vn be an ordering of the variables in
CNF ∆. The ith cutset of order π is the set of clauses in ∆ that men-
tions a variable Vj , j ≤ i, and a variable Vk, k > i. The cutwidth of
order π is the size of its largest cutset. The cutwidth of CNF ∆ is the
smallest cutwidth attained by any variable ordering π.

Definition 9. Let π = V1, . . . , Vn be an ordering of the variables
in CNF ∆. The ith separator of order π is the set of variables Vj ,
j ≤ i, that appear in the ith cutset of order π. The pathwidth of order
π is the size of its largest separator. The pathwidth of CNF ∆ is the
smallest pathwidth attained by any variable ordering π.

The following theorem implies that linear CV-width dominates
both cutwidth and pathwidth.

Theorem 5. Let π be an ordering of the variables in CNF ∆, where
π has cutwidth cw and pathwidth pw. Let w be the CV-width of the
right-linear vtree induced by order π. Then, w < cw and w < pw.

Proof. Consider the right-linear vtree induced by π. Let v be
an internal vtree node with variables X, context clauses Γ, and
context variables V. It suffices to show that width(v) ≤ cw
and width(v) ≤ pw. Node v must be a Shannon node. Thus,
its cutset is empty and width(v) is #CNFs(Γ,X|V). Assume
that π = V1, . . . , Vn and that vl is labeled with variable Vi+1.
The variables outside v are then {V1, . . . , Vi} and the ones in-
side v are {Vi+1, . . . , Vn}. Thus, Γ is the ith cutset of order π.
Since Γ only mentions variables X and V, CNFs(Γ,X|V) is
the distinct CNFs Γ|v. Hence, |CNFs(Γ,X|V)| ≤ 2|Γ|, lead-
ing to #CNFs(Γ,X|V) ≤ |Γ| and so width(v) ≤ cw.
Moreover, V ars(Γ) ∩ V is the ith separator of order π. Since
|CNFs(Γ,X|V)| ≤ 2|V ars(Γ)∩V|, we have #CNFs(Γ,X|V) ≤
|V ars(Γ) ∩V| and width(v) ≤ pw. So, w < cw and w < pw. �

We now know that linear CV-width dominates both cutwidth and
pathwidth. The following theorem shows that these widths can be
unbounded when linear CV-width is bounded.

∅

X {{}, {y1, . . . , yn}}

Y1
{ {y2 ∨ . . . ∨ yn}, {y2, . . . , yn},
{y2, . . . , yn, y2 ∨ . . . ∨ yn}, {}}

Y2
{ {yn−1 ∨ yn}, {yn−1, yn},
{yn−1, yn, yn−1 ∨ yn}, {}}

Yn−1 Yn

Figure 4. A right-linear vtree induced by order X,Y1, . . . , Yn. Nodes v
show CNFs(Γ,X|V) wrt ∆n = {x ∨ y1, . . . , x ∨ yn, y1 ∨ . . . ∨ yn},
where Γ is context clauses, X is variables, and V is context variables of v.

Theorem 6. There is a class of CNFs ∆n, with n+ 1 variables and
n + 1 clauses, n ≥ 1, whose cutwidth is ≥ n/2 − 1, pathwidth is
≥ n− 2, yet whose linear CV-width is ≤ 1.

Proof (Sketch). ∆n = {x∨y1, . . . , x∨yn, y1∨ . . .∨yn}. Consider
the variable ordering π = X,Y1, . . . , Yn. Figure 4 shows the right-
linear vtree induced by π. According to this figure, the CV-width of
this vtree is 1 and the linear CV-width of CNF ∆n is ≤ 1. Consider
now an arbitrary variable ordering π′ for ∆n. The size of the (n −
1)th separator of this order must be ≥ n − 2. To see this, note that
the last two variables in order π′ cannot both be X . So, due to clause
{y1 ∨ . . .∨ yn}, the (n− 1)th separator must contain at least n− 2
variables. Thus, the pathwidth of ∆n is ≥ n − 2 for any order π′.
One can also show that the ith cutset of order π′ is ≥ n/2 − 1 for
some i that depends on the position of variable X in the order. Thus,
the cutwidth of ∆n is ≥ n/2− 1 for any order π′. �

9 Related Work
Two algorithms for compiling structured DNNFs were given in [10].
One algorithm splits on variables and the other one splits on clauses.
The latter has a time and space complexity that is exponential in the
treewidth of the CNF dual graph, and the former has a time and space
complexity that is exponential in the treewidth of the CNF primal
graph. The compilation algorithm we proposed in this paper splits on
both variables and clauses. One would have expected that this com-
bination will lead to a complexity that is a minimum of the two com-
plexities attained by the mentioned algorithms. Interestingly though,
the combination leads to a more significant improvement. In particu-
lar, our algorithm has a time and space complexity that is exponential
in CV-width, which we showed to strictly dominate the treewidth of
the CNF incidence graph. Moreover, it is already known that this
treewidth dominates the ones for the CNF primal and dual graphs.

An algorithm for compiling OBDDs was also presented in [5].
The complexity of the algorithm is exponential in the cutwidth or the
pathwidth of input CNF. Our algorithm is exponential in the linear
CV-width of the CNF. Since linear CV-width strictly dominates both
cutwidth and pathwidth, our upper bound significantly improves on
the ones given in [5].

Another bound was recently shown for DNNFs compiled from
CNFs [11]. Given a CNF with n variables, size m, and an incidence

graph with treewidth w, this bound shows that the DNNF size is in
O((n + m)3w). Our results improve on this bound in two funda-
mental ways. First, our bound applies to structured DNNF, which is a
subset of DNNF that supports a polytime conjoin operation (not sup-
ported by unstructured DNNF). Second, our bound is based on CV-
width, which strictly dominates the treewidth of the incidence graph.
Hence, our bound significantly improves on the existing bound for
DNNFs, even when unstructured. Finally, our size upper bound is
linear in the number of variables, whereas the existing upper bound
is linear in the number of variables plus the size of the CNF (which
can be much larger than the number of variables).

10 Conclusion
We presented new complexity results on the compilation of CNFs
into DNNFs and OBDDs. In particular, we introduced a new notion
of width, called CV-width, which is specific to CNFs and that domi-
nates the treewidth of the CNF incidence graph. We then showed that
CNFs can be compiled into structured DNNFs in time and space that
are exponential only in CV-width. Not only does CV-width dominate
the incidence graph treewidth, but the former width can be bounded
when the latter is unbounded. We also introduced a restricted version
of CV-width, called linear CV-width, and showed that it dominates
both pathwidth and cutwidth, which have been used to bound the
complexity of OBDDs. We also showed that CNFs can be compiled
into OBDDs in time and space that are exponential only in linear CV-
width. We finally showed that linear CV-width can be bounded when
pathwidth and cutwidth are unbounded. Our results significantly im-
proved the previously known best upper bounds for both DNNFs and
OBDDs, and are motived by a novel decomposition technique that
combines variable and clause splitting.

ACKNOWLEDGEMENTS
This work has been partially supported by ONR grant #N00014-12-
1-0423 and NSF grant #IIS-1118122.

A Additional Proofs
We will now prove the complexity of Algorithm 1. This requires the
following lemma. For CNF Σ, we will use Σ↓X to denote the CNF
which results from replacing every clause in Σ by its sub-clause that
mentions variables in X. For example, if Σ = {a∨¬b∨ c, ¬a∨ c∨
¬d} and X = {A,B}, then Σ↓X = {a ∨ ¬b, ¬a}.

Lemma 1. Let v be an internal vtree node with variables X, cutset
clauses ∆, context clauses Γ and context variables V. The following
hold when Algorithm 1 starts executing a call c2s(v, S):

If v is a Shannon node, then

(a) S ∈ CNFs(Γ,X|V)

If v is not a Shannon node, then

(b) C ⊆ ∆

(c) S1 ∪ S2 ∈ CNFs(Γ,X|V)

(d) S3 ⊆ Σ↓X where Σ = ∆ \ C

We next prove Theorem 2.

Proof (Theorem 2). Let v be an internal vtree node with variables
X, cutset clauses ∆, context clauses Γ, and context variables V. We
will next bound the time spent at node v and the contribution it makes

to the DNNF size during all calls made to node v. By adding these
time and size bounds for all internal vtree nodes, we can bound the
time and space complexity of Algorithm 1.

Assume that v is a Shannon node. By Lemma 1(a), S ∈
CNFs(Γ,X|V). Hence, the number of uncached calls to v is ≤
2|∆|+#CNFs(Γ,X|V) since ∆ = ∅ for a Shannon node. Moreover,
each uncached call to v will construct a decomposition of size at most
2 by doing O(2m) work (Lines 4–13). The total contribution of a
Shannon node to time complexity is thenO(m2width(v)). Moreover,
the total contribution it makes to the DNNF size is O(2width(v)).

Assume now that v is not a Shannon node. The following obser-
vations all follow from Lemma 1. First, by Lemma 1(d), if |S3| = i
and |Σ| = k, then 0 ≤ i ≤ k. Moreover, there are at most

(
k
i

)
dis-

tinct CNFs S3 of size i. Second, by Lemma 1(c), there are at most
2#CNFs(Γ,X|V)

(
k
i

)
uncached calls to node v for which |S3| = i.

Moreover, each of these calls will construct a clausal decomposition
of size 2|C|+i on Line 20. Hence, the decompositions constructed at
Line 20 will have a total size of

k∑
i=0

2#CNFs(Γ,X|V)

(
k

i

)
2|C|+i

= 2#CNFs(Γ,X|V)+|C|
k∑

i=0

(
k

i

)
2i

= 2#CNFs(Γ,X|V)+|C|3k

≤ 3#CNFs(Γ,X|V)+|C|+k

= 3#CNFs(Γ,X|V)+|∆| by Lemma 1(b)

= 3width(v).

Computing a clausal decomposition is linear in the CNF size.
Hence, the total contribution of node v to time complexity is
O(m3width(v)). Moreover, the total contribution it makes to the
DNNF size is O(3width(v)). As there are O(n) vtree nodes, Algo-
rithm 1 has a total time complexity in O(nm3w). Moreover, the
structured DNNF it constructs has size in O(n3w). �

REFERENCES
[1] Randal E. Bryant, ‘Graph-Based Algorithms for Boolean Function Ma-

nipulation’, IEEE Trans. Computers, 35(8), 677–691, (1986).
[2] Adnan Darwiche, ‘Decomposable Negation Normal Form’, J. ACM,

48(4), 608–647, (2001).
[3] Adnan Darwiche, ‘SDD: A New Canonical Representation of Proposi-

tional Knowledge Bases’, in IJCAI, pp. 819–826, (2011).
[4] Adnan Darwiche and Pierre Marquis, ‘A Knowledge Compilation

Map’, J. Artif. Intell. Res. (JAIR), 17, 229–264, (2002).
[5] Jinbo Huang and Adnan Darwiche, ‘Using DPLL for Efficient OBDD

Construction’, in SAT, (2004).
[6] Phokion G. Kolaitis and Moshe Y. Vardi, ‘Conjunctive-Query Contain-

ment and Constraint Satisfaction’, J. Comput. Syst. Sci., 61(2), 302–
332, (2000).

[7] Christoph Meinel and Thorsten Theobald, Algorithms and Data Struc-
tures in VLSI Design: OBDD - Foundations and Applications, Springer,
1998.

[8] Knot Pipatsrisawat and Adnan Darwiche, ‘New Compilation Lan-
guages Based on Structured Decomposability’, in AAAI, (2008).

[9] Knot Pipatsrisawat and Adnan Darwiche, ‘A Lower Bound on the Size
of Decomposable Negation Normal Form’, in AAAI, (2010).

[10] Knot Pipatsrisawat and Adnan Darwiche, ‘Top-Down Algorithms for
Constructing Structured DNNF: Theoretical and Practical Implica-
tions’, in ECAI, pp. 3–8, (2010).

[11] Igor Razgon and Justyna Petke, ‘Cliquewidth and Knowledge Compi-
lation’, in SAT, pp. 335–350, (2013).

[12] Neil Robertson and Paul D. Seymour, ‘Graph minors. III. Planar tree-
width’, J. Comb. Theory, Ser. B, 36(1), 49–64, (1984).

B Proof of Theorem 3
In this section, we will prove Theorem 3. For that, we need the fol-
lowing definitions and results.

Definition 10. LetG be the incidence graph of a CNF. A dtree forG
is a full binary tree, whose leaves have a one-to-one correspondence
with the edges of G.

Note that a dtree node contains both variables and clauses under
the subtree rooted at itself. Being able to refer those variables and
clauses separately will be useful:

V ars(d) =

{
Variable of the node, if d is a leaf node,
V ars(dl) ∪ V ars(dr), otherwise.

CNF (d) =

{
Clause of the node, if d is a leaf node,
CNF (dl) ∪ CNF (dr), otherwise.

We will also need to represent variables and clauses of a dtree node
together. For such cases, we will use the following notation:

Labels(d) = V ars(d) ∪ CNF (d).

We will now provide some definitions to define the width of a dtree.

Definition 11. The cutset of an internal dtree node d is

Cutset(d) = (Labels(dl) ∩ Labels(dr)) \Acutset(d),

where Acutset(d) is the union of cutsets of ancestors of d.

Definition 12. The context of a dtree node d is

Context(d) = Labels(d) ∩Acutset(d).

where Acutset(d) is the union of cutsets of ancestors of d,

Definition 13. The cluster of a dtree node d is

Cluster(d) =

{
Labels(d), if d is a leaf node,
Cutset(d) ∪ Context(d), otherwise.

We can now define the width of a dtree:

Definition 14. The width of a dtree is the size of its maximal cluster
minus one.

Theorem 7. Given a CNF whose incidence graph has treewidth w,
we can construct a dtree of width w.

Proof. Consider a CNF ∆ whose incidence graph has treewidth w.
Then, we can create an auxiliary CNF Γ from ∆ as follows:

• for each variable V in ∆, add a variable in Γ,
• for each clause C in ∆, add a variable in Γ,
• add a binary clause in Γ for each var-variable V and clause-

variable C when V appears in C.

Note that the primal graph of Γ is identical to the incidence graph
of ∆. So, the primal graph of Γ has treewidth w. We also know that
we can create a ”dtree” for Γ, a full binary tree whose leaves are the
clauses of Γ, which has width same as treewidth of the primal graph
of Γ [2]. Finally, such a ”dtree” of Γ is actually a dtree for ∆, and
their widths are the same, which is w. �

Now we know that we can create a dtree for a CNF whose width
is the same as treewidth of CNF incidence graph, we will show a
width-preserving algorithm that can construct a vtree from a dtree.
But first, we need some more definitions.

Definition 15. Consider a CNF, a corresponding vtree and an in-
ternal vtree node v. Let α be a context clause of v. Then, α is called
Type I context clause if all variables of α that are outside v are con-
text variables of v. Otherwise, α is a Type II context clause.

Definition 16. Let ∆ be a CNF and V be a set of variables. The
cardinality of (∆,V) is defined as

Card(∆,V) = arg min
Γ⊆∆

|Γ|+ |V ars(∆ \ Γ) ∩V|.

The notion of cardinality provides us an upper bound on the num-
ber of distinct CNFs that can be obtained from a given set of clauses
after conditioning those clauses on given variables. For instance, as-
sume that ∆ = {x ∨ y, ¬x ∨ ¬y, x ∨ ¬q, ¬x ∨ q, x ∨ z ∨ w}
and V = {Q,W, Y, Z}. Suppose we want to bound the number of
distinct CNFs we can obtain by conditioning ∆ on all complete vari-
able assignments of V. Note here that, to compute Card(∆,V), we
should go over subsets Γ of ∆, and variables V ars(∆ \ Γ) ∩ V.
The table below shows an incomplete list of such pairs of clauses
and variables.

Γ V ars(∆ \ Γ) ∩V
{x ∨ y, ¬x ∨ ¬y, x ∨ ¬q, ¬x ∨ q, x ∨ z ∨ w} ∅

∅ {Q,W, Y, Z}
{x ∨ z ∨ w} {Q,Y }
{x ∨ y} {Q,W, Y, Z}

{x ∨ y, ¬x ∨ ¬y} {Q,W,Z}
{x ∨ y, ¬x ∨ ¬y, x ∨ ¬q} {Q,W,Z}

{x ∨ y, ¬x ∨ ¬y, x ∨ ¬q, ¬x ∨ q} {W,Z}

Back to bounding the distinct CNFs, given a variable assignment
on {Q,W, Y, Z}, observe that any clause in ∆ would be either sub-
sumed or shrunken to a clause over {X}. Then, one (loose) upper
bound is 25, as there are 5 clauses. In fact, this is exactly what the
1st row in the table is meant to tells us. Another way to get an (still
loose) upper bound is to count the number of variable assignments,
as each assignment may create a different CNF. So, the bound is 24,
as there are 4 variables to be conditioned on. In this case, this is what
the 2nd row in the table is meant to tells us. So, we have a better up-
per bound. However, we may get even better bounds by considering
a subset of clauses and a subset of variables, that is other rows in the
table. Consider the 3rd row in the table. It essentially tells us that
assignments over variables {Q,Y } can bound the number of distinct
CNFs obtained from all clauses but x ∨ z ∨ w, by conditioning on
{Q,W, Y, Z}. So, there are at most 22 such distinct CNFs. As we
can get two distinct CNFs from the clause x ∨ z ∨ w by condition-
ing on {Q,W, Y, Z}, which are > and {x}, the upper bound is 222.
Note that the 3rd row contains the minimum Γ in the definition of
Card(∆,V). Thus, we have the following result:

Theorem 8. Let #CNF (∆,V) denote the number of distinct CNFs
∆|v, where v is an instantiation of variables V. If k is the cardinality
of (∆,V), then #CNF (∆,V) ≤ 2k.

We will now show the relationship between #CNFs(Γ,X|V)
and the cardinality.

Lemma 2. Let ∆(X,V) be a CNF over two disjoint sets of vari-
ables X and V. Then, |CNFs(∆,X|V)| is equal to the number of
distinct CNFs ∆|v.

Proof. Since clauses in ∆ are over variables X and V, ∆|v is a CNF
over variables X. This implies that the set of clauses in ∆|v that
mention variables inside and outside X, is empty. Thus, we have the
following equations, which shows that |CNFs(∆,X|V)| is equal
to the number of distinct CNFs ∆|v.

CNFs(∆,X|V) =
⋃
v

CNFs(∆|v,X)

=
⋃
v

{∆|v ∪ Γ | Γ ⊆ {}}

=
⋃
v

{∆|v}.

�

Lemma 3. Let ∆ be a CNF, and X and V be two disjoint sets of
variables. Then, |CNFs(∆,X|V)| ≤ 2|∆|.

Proof. Let Γ be a CNF belonging to CNFs(∆,X|V), and α be
a clause of Γ. Then, α must be over variables X. In fact, α is the
sub-clause of some clause β in ∆, which is obtained by replacing β
by its sub-clause that mentions variables X. To see this, note that α
can be obtained after performing a (possible) variable splitting and
a (possible) clause splitting on ∆. This implies that Γ is a CNF that
can be constructed using clauses of ∆. Since the number of different
CNFs one can construct using clauses of ∆ is not greater than 2|∆|,
the claim of the lemma holds. �

Lemma 4. Let ∆ = ∆1 ∪ ∆2 be a CNF, and X and V
be two disjoint sets of variables. Then, |CNFs(∆,X|V)| ≤
|CNFs(∆1,X|V)| × |CNFs(∆2,X|V)|.

Proof. In the following, for any CNF Σ, we denote the clauses in
Σ that only mention variables X by Σ(X). Further, we assume
{δ1, . . . , δn}v contains the clauses in ∆|v that mention variables
inside and outside X, where v is an instantiation of V. So, we de-
note by {α1, . . . , αn}v the sub-clauses of δi with variables in X. Fi-
nally, {γ1

1 , . . . , γ
1
k}v denotes the maximal subset of {α1, . . . , αn}v

such that each γ1
i appears in ∆1|v, and likewise {γ2

1 , . . . , γ
2
l }v is

the maximal subset of {α1, . . . , αn}v such that each γ2
i appears

in ∆2|v.

CNFs(∆,X|V) =
⋃
v

CNFs(∆|v,X)

=
⋃
v

{∆|v(X) ∪ Γ | Γ ⊆ {α1, . . . , αn}v}

=
⋃
v

{∆1|v(X) ∪∆2|v(X) ∪ Γ |

Γ ⊆ {α1, . . . , αn}v}

=
⋃
v

{∆1|v(X) ∪ Γ1 ∪∆2|v(X) ∪ Γ2 |

Γ1 ⊆ {γ1
1 , . . . , γ

1
k}v,

Γ2 ⊆ {γ2
1 , . . . , γ

2
l }v}

=
⋃
v

{Σ1 ∪ Σ2 | Σ1 ∈ CNFs(∆1|v,X),

Σ2 ∈ CNFs(∆2|v,X)}

Note that Σ1 belongs to CNFs(∆1|v,X) implies that Σ1

also belongs to CNFs(∆1,X|V) (analogously, Σ2 be-
longs to CNFs(∆2,X|V)). Therefore, |CNFs(∆,X|V)| ≤
|CNFs(∆1,X|V)| × |CNFs(∆2,X|V)|. �

Algorithm 2: d2v(d)
Input: d : a dtree node.
Output: A vtree or nil.

1 if d is a leaf then
2 if V ars(d) appears only in CNF (d) then
3 return Leaf vnode labeled with V ars(d)

4 else return nil
5 C ← cutset(d)
6 T ← right-linear vtree obtained from V ars(C)

7 Tl ← d2v(dl)
8 Tr ← d2v(dr)
9 if Tl and Tr are nil then return T

10 else if Tl and Tr are not nil then
11 T ′ ← vtree node whose left child is Tl and right child is Tr

12 return T by making T ′ its right most child
13 else if Tl is nil and Tr is not nil then
14 return T by making Tr its right most child
15 else if Tl is not nil and Tr is nil then
16 return T by making Tl its right most child

Theorem 9. Let v be an internal vtree node, with variables X, con-
text clauses Γ, Type I context clauses Γ1, Type II context clauses
Γ2, and context variables V. Then, #CNFs(Γ,X|V) ≤ |Γ2| +
Card(Γ1,V).

Proof. Clauses in Γ1 are over variables X and V. So, by Lemma 2
and Theorem 8, |CNFs(Γ1,X|V)| ≤ 2Card(Γ1,V). Also, by
Lemma 3, |CNFs(Γ2,X|V)| ≤ 2|Γ2|. Finally, by Lemma 4,
|CNFs(Γ,X|V)| ≤ |CNFs(Γ1,X|V)| × |CNFs(Γ2,X|V)|.
Therefore, |CNFs(Γ,X|V)| ≤ 2Card(Γ1,V)2|Γ2|. By taking logs
of the both sides, we conclude #CNFs(Γ,X|V) ≤ |Γ2| +
Card(Γ1,V). �

We next present a width-preserving algorithm that constructs
vtrees from dtrees. In particular, given a dtree of width w, we cre-
ate a vtree of width at most w.

Given a dtree for a CNF, Algorithm 2 computes a vtree. Observe
that in the algorithm, an internal vtree node can be constructed on
either Line 6 or Line 11. Also, any such node constructed on Line 6
is a Shannon node.

In the following, after presenting some lemmas, we show the result
relating the width of a vtree to the width of a dtree that constructs the
vtree.

Lemma 5. Let v be an internal vtree node, which is constructed by
Algorithm 2 at a call d2v(d), where d is a dtree node. Let X be a
variable inside v. Let C be a clause in which a literal of X appears.
Then, there is a leaf dtree node with label {X,C} in the subtree
rooted at d.

Proof. Since v is constructed at the call d2v(d) and X is inside
v, the leaf vtree node v′ with label X must be constructed at a call
d2v(d′) where d′ is a dtree node in the subtree rooted at d. We show
that there is a leaf dtree node with label {X,C} in the subtree rooted
at d′. As v′ is a leaf, it is constructed either on Line 2 or on Line 6.
Assume v′ is constructed on Line 2. Then, by the if statement, C
is the only clause in which a literal of X appears and also d′ is the
leaf dtree node labeled with {X,C}. Now, assume v′ is constructed
on Line 6. Then, X is in the cutset of d′, which implies X is in
Labels(d′). Moreover, by Definition 10 (Dtree), there is a leaf node
l labeled by {X,C} in the dtree in which d′ appears. Assume l is
outside d′. Since X is in Labels(d′), X must be in the cutset of an

ancestor of d′. But, this implies that X cannot be in the cutset of d′,
which is a contradiction. Thus, l is inside d′. So, there is a leaf dtree
node l with label {X,C} inside d′. Because d′ is inside d, l is also
inside d. �

Lemma 6. Let v be an internal vtree node, which is constructed by
Algorithm 2 at a call d2v(d), where d is a dtree node. Let C be
a clause mentioning variables inside and outside v. If C is not in
Cluster(d), then V ars(C) ∩ V ars(v) is in Cluster(d).

Proof. Assume C is not in Cluster(d). Let X be a variable inside
v such that a literal of X appears in C. Let Y be a variable outside
v such that a literal of Y appears in C. By Lemma 5, there is a leaf
dtree node lx with label {X,C} in the subtree rooted at d. Also, by
Definition 10 (Dtree), there is a leaf dtree node ly with label {Y,C}
in the dtree in which d appears. Since lx is inside d, ly must also
be inside d. Otherwise, C is in Cluster(d), which is a contradic-
tion. Wlog, assume that ly is inside dl. Now assume that Y is not
in Cluster(d). It implies that Y only appears in dl. Recall that v is
constructed at the call d2v(d), and Y is outside v. However, if Y
only appears in dl, then it can be constructed only at a call d2v(d′),
where d′ is a dtree node in the subtree rooted at dl. This means Y
is inside v, which is a contradiction. So, Y is in Cluster(d). Thus,
when C is not in Cluster(d), we have V ars(C) ∩ V ars(v) is in
Cluster(d). �

Lemma 7. Let v be an internal vtree node, which is constructed by
Algorithm 2 at a call d2v(d), where d is a dtree node. Let C be
a clause mentioning variables inside and outside v. If C is not in
Cluster(d), then C is a Type I context clause of v.

Proof. Assume C is not in Cluster(d). We need to show that all
variables of C appearing outside v are context variables of v, and C
is not in the cutset of v. Let Y be a variable of C appearing outside
v. By Lemma 6, V ars(C) ∩ V ars(v) is in Cluster(d). So, Y is in
Cluster(d). It implies Y is in the cutset of a dtree node d′ that is on
the path from the root of dtree to d (including d). So, the leaf vtree
node labeled as Y must be created at the call d2v(d′) on Line 6. As
d′ is either d or an ancestor of d, and Y is outside v, Y is a context
variable of v. Let ∆ be the cutset of v. We now show C is not in
∆. Assume C is in ∆. Then, v cannot be a Shannon node, since ∆
is empty for Shannon nodes, by Definition 5 (Cutset). So, v must be
created on Line 11. Also, by Definition 5 (Cutset), there is a variable
Xl inside vl such that a literal of Xl appears in C, and, similarly,
there is a variable Xr inside vr such that a literal of Xr appears
in C. Since v is constructed on Line 11, vl is constructed in a call
d2v(d′) where d′ is a dtree node in the subtree rooted at dl. Then,
by Lemma 5, there is a leaf dtree node l1 with label {X,C} inside
d′. As d′ is inside dl, l1 is also inside dl. Analogously, there is a leaf
dtree node l2 with label {Y,C} inside dr . Then,C is in Cluster(d),
which is a contradiction. So, C is not in ∆. Hence, we conclude that
C is a Type I context clause of v. �

Lemma 8. Let v be an internal vtree node with cutset ∆, and Type II
context clauses Γ2, which is constructed by Algorithm 2 at a call
d2v(d), where d is a dtree node. Then, (∆ ∪ Γ2) ⊆ Cluster(d).

Proof. LetC be a clause in (∆∪Γ2). IfC is not inCluster(d), then
C is a Type I context clause of v by Lemma 7. However, by Defini-
tion 15 (Type I context clause), C cannot be a Type I context clause
of v. So, C is in Cluster(d). That is, (∆ ∪ Γ2) ⊆ Cluster(d). �

Lemma 9. Let v be an internal vtree node with cutset ∆, Type I
context clauses Γ1, Type II context clauses Γ2, and context variables

V, which is constructed by Algorithm 2 at a call d2v(d), where d is
a dtree node. Then, Card(Γ1,V) ≤ |Cluster(d) \ (∆ ∪ Γ2)|.

Proof. Let S = Cluster(d)\(∆∪Γ2). Let Γ be the maximal subset
of Γ1 such that Γ ⊆ S. We show that Γ∪ (V ars(Γ1 \ Γ)∩V) ⊆ S,
which suffices to show Card(Γ1,V) ≤ |S|. By definition, Γ ⊆ S.
LetC be a clause in Γ1 \Γ. So,C is not in S. Also, as Γ1 and ∆∪Γ2

are disjoint,C is not inCluster(d). Then, by Lemma 6, V ars(C)∩
V ars(v) is in Cluster(d). In fact, as V ars(C)∩V ars(v) and ∆∪
Γ2 are disjoint, V ars(C) ∩ V ars(v) is in S. Also, by Definition 15
(Type I context clause), all variables of C appearing outside v are
context variables of v. Thus, V ars(C) ∩ V is in S, which implies
(V ars(Γ1 \ Γ)∩V) ⊆ S. As we have Γ∪ (V ars(Γ1 \ Γ)∩V) ⊆
S, and Γ and V ars(Γ1 \ Γ)∩V are disjoint, |Γ|+ |V ars(Γ1 \ Γ)∩
V| ≤ |S|. So, by Definition 16, we conclude Card(Γ1,V) ≤ |S|.
�

Theorem 10. Let T be a vtree generated by Algorithm 2 with dtree
T ′ being input. Let w be CV-width of T , and w′ be the width of T ′.
Then, w ≤ w′.

Proof. Let v be an internal node of T with cutset ∆, context clauses
Γ, Type I context clauses Γ1, Type II context clauses Γ2, and context
variables V, which is constructed at a call d2v(d), where d is a dtree
node in T ′. By Lemma 9,Card(Γ1,V) ≤ |Cluster(d)\(∆∪Γ2)|.
By Lemma 8, (∆∪Γ2) ⊆ Cluster(d). By Definition 15, ∆ and Γ2

are disjoint. So, |∆|+ |Γ2|+Card(Γ1,V) ≤ |Cluster(d)|. Then,
By Theorem 9, |∆|+#CNFs(Γ,X|V) ≤ |Cluster(d)|. Thus, we
conclude, by noting Definition 14 and Definition 6, that w ≤ w′. �

Theorem 3. Let ∆ be a CNF whose incidence graph has treewidth
w. We can construct a vtree for this CNF whose CV-width ≤ w.

Proof. By Theorem 7, we can construct a dtree for ∆ with width w.
Then, by Theorem 10, given that dtree as input, Algorithm 2 con-
structs a vtree for ∆ with CV-width ≤ w. �

C Proof of Theorem 4
To prove Theorem 4, we will use the relationship between elimina-
tion order of a graph, which is an ordering of graph’s nodes, and the
treewidth of the graph. Suppose that we are given an elimination or-
der π = V1, . . . , Vn for an undirected graph G of n nodes. We will
eliminate nodes inG, in the order π (i.e., first V1, then V2, and so on).
To eliminate a node is to first connect node’s neighbors pairwise and
then remove the node from the graph. During this process, we will
get a number of graphs. Let Gi be the graph before eliminating node
Vi (so, G1 = G). Consider the number of neighbors of Vi in Gi, for
1 ≤ i ≤ n. Let k be the maximum number of such neighbors. Then,
k − 1 is the width of π. It is known that treewidth of G is the same
as minimum width attained by an elimination order of G.

Theorem 4. There is a class of CNFs ∆n, with n variables and n
clauses, n ≥ 1, whose incidence graph has treewidth≥ n/2−2, yet
whose CV-width is 0.

Proof. ∆n = {C1, . . . , Cn}, where Ci = x1 ∨ . . . ∨ xi. We first
show that the incidence graph G of ∆n has treewidth ≥ n/2 − 2.
Let π = v1, . . . , v2n be an elimination order for G. Let I =
{X1, . . . , Xbn/2c+1}. Let vi be the element of I such that there is
no vj , for j < i, belonging to I . Let S = {Cbn/2c+1, . . . , Cn}.
Initially, in G, each element of I has an edge to each element of S.
Consider now the graph Gi, which is obtained after eliminating first

i − 1 elements of π from G. If none of v1, . . . , vi−1 belongs to S,
then each edge between vi and elements of S exists in Gi. That is,
vi has at least dn/2e edges in Gi. If some of v1, . . . , vi−1 belongs
to S, then vi has an edge to each element, except itself, of I . To see
this, note that each element of I exists while eliminating first i − 1
elements, and all elements of I must become connected after elim-
nating an element from S in one of first i − 1 eliminations. So, vi
has at least bn/2c edges. Thus, treewidth is ≥ bn/2c − 1, which is
≥ n/2 − 2. Next, we show CV-width is 0. Consider the right-linear
vtree induced by the variable ordering X1, . . . , Xn. That is, the left
child of the vtree root v is X1. The left child of vr is X2, and so
on (Figure 4 shows an example right-linear vtree). Consider a vtree
node v whose left child is Xi. Since v is a Shannon node, its cutset
is empty. Let Γ be the context clauses of v. If i = 1, then Γ is empty
and the width of v is 0. Otherwise, Γ = {Ci, . . . , Cn}. Let X be
the variables inside v, and let V be the context variables of v. Then,
CNFs(Γ,X|V) = {{}, {xi, xi ∨ xi+1, . . . , xi ∨ . . . ∨ xn}}. The
width of v is then 1. The CV-width of the vtree is then 0. �

D Proof of Theorem 6

Theorem 6. There is a class of CNFs ∆n, with n+ 1 variables and
n + 1 clauses, n ≥ 1, whose cutwidth is ≥ n/2 − 1, pathwidth is
≥ n− 2, yet whose linear CV-width is ≤ 1.

Proof. ∆n = {x ∨ y1, . . . , x ∨ yn, y1 ∨ . . . ∨ yn}. Consider the
variable ordering π = X,Y1, . . . , Yn. Figure 4 shows the right-linear
vtree induced by π. According to this figure, the CV-width of this
vtree is 1 and the linear CV-width of CNF ∆n is ≤ 1. Consider now
an arbitrary variable ordering π for ∆n. The size of the (n − 1)th

separator of this order must be≥ n−2. To see this, note that the last
two variables in order π cannot both be X . So, due to clause {y1 ∨
. . .∨yn}, the (n−1)th separator must contain at least n−2 variables.
Thus, the pathwidth is≥ n−2 for any order π. To show that cutwidth
is≥ n/2−1, we will look at the position of variableX in the order π.
Assume π = V1, . . . , Vn+1. Let Vi = X . If i ≤ bn/2c, then the set
{Vi+1, . . . , Vn+1} has at least dn/2e+1 variables. Note that there is
a distinct clause {x∨ vj} for each Vj , j 6= i. So, the ith cutset has at
least dn/2e+1 clauses. If i ≥ bn/2c+1, then the set {V1, . . . , Vi−1}
has at least bn/2c variables. Then, the (i − 1)th cutset has at least
bn/2c clauses. So, the cutwidth is ≥ bn/2c, which is ≥ n/2 − 1,
for any order π. �

E Proof of Theorem 1

Theorem 1. The call c2s(v, {}) returns a DNNF that respects vtree
v and that is equivalent to CNF (v).

Proof. The proof is by induction on vtree nodes. Base case, which
happens when v is a leaf node, is trivially satisfied by Line 3. Now,
let v be an internal node. As an induction hypothesis, assume that for
each vtree node v′ below v, c2s(v′, S′) computes a DNNF that re-
spects v′, and that is equivalent toCNF (v′)∪S′, where S′ is a CNF
over V ars(v′). During the call to v, we either perform variable split-
ting (Lines 4–13) or clause splitting (Lines 14–20). In both cases, due
to the induction hypothesis, recursive calls c2s(v′, S′) must com-
pute structured DNNFs of CNF (v′) ∪ S′. As variable and clause
splittings are both sound methods, the algorithm returns a DNNF of
CNF (v)∪S that respects v. So, the call c2s(v, {}) returns a DNNF
that respects vtree v and that is equivalent to CNF (v). �

F Proof of Lemma 1
To prove Lemma 1, we need the following results.

Lemma 10. Consider a CNF and its corresponding vtree. Let v be
an internal vtree node with variables X and context variables V.
Let Σ be the clauses in the CNF that mention variables inside and
outside X. If a call c2s(v, S) is made to node v by Algorithm 1, then
S ∈ CNFs(Σ,X|V).

Proof. Note that S is over variables X, and it must be obtained from
the original clauses of the CNF through a (possibly) series of variable
and clause splittings. Thus, clauses in S are sub-clauses of those in
Σ. Consider the path from the root to v. To reach v, at each node
on the path, Algorithm 1 performs either variable or clause split-
ting. So, there must be a sequence K of variable and clause split-
tings that would lead us to S when applied on Σ. Let v be the in-
stantiation of V that presents in K. Since we must have perfomed
variable splitting using v on Σ, clauses in S must be sub-clauses
of those in Σ|v. We know that each clause in Σ has variables in X
and X . Let Σ|v = ∆(X) ∪∆(X,X). Here, ∆(X) must be some
of the clauses in S, i.e., ∆(X) ⊆ S. Otherwise, K cannot be the
sequence that would lead us to S. Assume S = ∆(X) ∪ S′. So,
clauses in S′ must be sub-clauses in ∆(X,X). Otherwise, again, K
cannot be the sequence that would lead us to S. More precisely, let
∆(X,X) = {γ1, . . . , γn} and let αi be the sub-clause of γi with
variables in X. Then, S′ is a subset of {α1, . . . , αn}. Therefore,
S ∈ CNFs(Σ|v,X), which implies S ∈ CNFs(Σ,X|V). �

Lemma 11. Let ∆ = ∆1 ∪ ∆2 be a CNF, where ∆1 and ∆2 are
disjoint. Let X be a set of variables. Then,

CNFs(∆,X) = {Σ1 ∪ Σ2 | Σ1 ∈ CNFs(∆1,X),

Σ2 ∈ CNFs(∆2,X)}.

Proof. In the following, for any CNF Σ, we denote the clauses in
Σ that only mention variables X by Σ(X). Further, we assume
{δ1, . . . , δn} contains the clauses in ∆ that mention variables in-
side and outside X. So, we denote by {α1, . . . , αn} the sub-clauses
of δi with variables in X. Finally, we assume {δ1

1 , . . . , δ
1
k} contains

the clauses in ∆1 that mention variables inside and outside X, and
likewise {δ2

1 , . . . , δ
2
l } is the clauses in ∆2 that mention variables in-

side and outside X. So, we denote by {α1
1, . . . , α

1
k} the sub-clauses

of δ1
i with variables in X, and similarly {α2

1, . . . , α
2
l } denotes the

sub-clauses of δ2
i with variables in X. Note that

{δ1, . . . , δn} = {δ1
1 , . . . , δ

1
k} ∪ {δ2

1 , . . . , δ
2
l },

{α1, . . . , αn} = {α1
1, . . . , α

1
k} ∪ {α2

1, . . . , α
2
l }.

Then, we have the following equations:

CNFs(∆,X) = {∆(X) ∪ Γ | Γ ⊆ {α1, . . . , αn}}
= {∆1(X) ∪∆2(X) ∪ Γ | Γ ⊆ {α1, . . . , αn}}
= {∆1(X) ∪ Γ1 ∪∆2(X) ∪ Γ2 |

Γ1 ⊆ {α1
1, . . . , α

1
k}, Γ2 ⊆ {α2

1, . . . , α
2
l }}

= {Σ1 ∪ Σ2 | Σ1 ∈ CNFs(∆1,X),

Σ2 ∈ CNFs(∆2,X)}.

�

Lemma 12. Let v be an internal vtree node, which is not Shannon,
with variables X, cutset clauses ∆, context clauses Γ and context
variables V. If a call c2s(v, S) is made to node v by Algorithm 1,
then S1 ∪ S2 ∈ CNFs(Γ,X|V), and S3 ∈ CNFs(∆ \ C,X|V).

Proof. By Lemma 10, S ∈ CNFs(Σ,X|V) with Σ being clauses
that mention variables inside and outside X. That means, there exists
an instantiation v of V such that S ∈ CNFs(Σ|v,X). Note that,
for a vtree node that is not Shannon, Σ = Γ∪ (∆ \C), where Γ and
∆ \ C are disjoint. Then, we have the following:

S ∈ CNFs(Γ|v ∪ (∆ \ C)|v,X)

S ∈ {Σ1 ∪ Σ2 | Σ1 ∈ CNFs(Γ|v,X), (1)

Σ2 ∈ CNFs((∆ \ C)|v,X)}
S3 ∈ CNFs((∆ \ C)|v,X) (2)

S3 ∈ CNFs(∆ \ C,X|V) (3)

S1 ∪ S2 ∈ CNFs(Γ|v,X) (4)

S1 ∪ S2 ∈ CNFs(Γ,X|V). (5)

Eq. (1) is due to Lemma 11. Eq. (2) is due to S3 consists of clauses
that mention both variables in vl and vr , but none of the clauses in
CNFs(Γ|v,X) can mention both variables in vl and vr . Eq. (3)
follows from Definition 3. Eq. (4) is due to S1 ∪ S2 does not contain
any clause that mentions both variables in vl and vr , but each clause
in CNFs((∆ \C)|v,X) must mention both variables in vl and vr .
Eq. (5) follows from Definition 3. �

Lemma 1. Let v be an internal vtree node with variables X, cutset
clauses ∆, context clauses Γ and context variables V. The following
hold when Algorithm 1 starts executing a call c2s(v, S):

If v is a Shannon node, then

(a) S ∈ CNFs(Γ,X|V)

If v is not a Shannon node, then

(b) C ⊆ ∆

(c) S1 ∪ S2 ∈ CNFs(Γ,X|V)

(d) S3 ⊆ Σ↓X where Σ = ∆ \ C

Proof. Item (a) is an immediate corollary of Lemma 10, as for a
Shannon node clauses that mention variables inside and outside X
are its context clauses Γ. Item (b) holds because of the way clauses
are distributed over vtree nodes. Item (c) is due to Lemma 12. For
Item (d), by Lemma 12, we know that S3 ∈ CNFs(Σ,X|V). This
simply implies that S3 is obtained from some of the clauses in Σ by
replacing them with their sub-clauses that mention variables X. That
is, S3 ⊆ Σ↓X. �

