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Abstract
We propose the Probabilistic Sentential De-
cision Diagram (PSDD): A complete and
canonical representation of probability dis-
tributions defined over the models of a
given propositional theory.1 Each parame-
ter of a PSDD can be viewed as the (con-
ditional) probability of making a decision
in a corresponding Sentential Decision Dia-
gram (SDD). The SDD itself is a recently
proposed complete and canonical represen-
tation of propositional theories. PSDDs are
tractable representations, and further, the
parameters of a PSDD can be efficiently es-
timated, in closed form, from complete data.
We empirically evaluate the quality of PS-
DDs learned from data, when we have knowl-
edge, a priori, of the domain logical con-
straints.

1. Introduction

The interplay between logic and probability has been
of great interest throughout the history of AI. One
of the earliest proposals in this direction is Nilsson’s
probabilistic logic (Nilsson, 1986), which aimed at
augmenting first-order logic with probabilities. This
has prompted similar approaches, including, for ex-
ample, Halpern (1990). The focus of these approaches,
however, was mainly semantical, yielding no effective
schemes for realizing them computationally. More re-
cently, the area of lifted probabilistic inference has

1This is an updated version of a paper to appear in
the Proceedings of the 14th International Conference on
Principles of Knowledge Representation and Reasoning
(KR) (Kisa et al., 2014). This paper is slightly abbre-
viated, but provides a new set of experimental results.
The full version of the paper, with proofs, is available at
http://reasoning.cs.ucla.edu/, under “publications”

tackled this interplay, while employing a different com-
promise (Poole, 2003). In these efforts, the focus has
been mostly on restricted forms of first-order logic
(e.g., function-free and finite domain), but with the
added advantage of efficient inference (e.g., algorithms
whose complexity is polynomial in the domain size).

On the propositional side, the thrust of the interplay
has been largely computational. An influential de-
velopment in this direction has been the realization
that enforcing certain properties on propositional rep-
resentations, such as decomposability and determin-
ism, provides one with the power to answer proba-
bilistic queries efficiently. This development was ac-
tually based on two technical observations. First,
that decomposable and deterministic representations
allow one to perform weighted model counting effi-
ciently. Second, that probabilistic reasoning can be
reduced to weighted model counting. This develop-
ment, which has its first roots in Darwiche (2002), has
been underlying an increasing number of probabilistic
reasoning systems in the last decade. This is especially
true for representations that employ both logical and
probabilistic elements (e.g., Chavira et al. (2006) and
Fierens et al. (2011)). Moreover, the technique has
been extended recently to certain first-order represen-
tations as well (Van den Broeck et al., 2011).

This paper is concerned with an orthogonal contri-
bution to this interplay between propositional logic
and probability theory. The problem we tackle here
is that of developing a representation of probability
distributions in the presence of massive, logical con-
straints. That is, given a propositional logic theory
which represents domain constraints, our goal is to
develop a representation that induces a unique proba-
bility distribution over the models of the given theory.
Moreover, the proposed representation should satisfy
requirements that are sometimes viewed as necessary
for the practical employment of such representations.

http://reasoning.cs.ucla.edu/
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L K P A Students
0 0 1 0 6
0 0 1 1 54
0 1 1 1 10
1 0 0 0 5
1 0 1 0 1
1 0 1 1 0
1 1 0 0 13
1 1 1 0 8
1 1 1 1 3

Table 1. Student enrollment data.

These include a clear semantics of the representation
parameters; an ability to reason with the representa-
tion efficiently; and an ability to learn its parameters
from data, also efficiently.

Our proposal is called a Probabilistic Sentential De-
cision Diagram (PSDD). It is based on the recently
proposed Sentential Decision Diagram (SDD) for rep-
resenting propositional theories (Darwiche, 2011; Xue
et al., 2012; Choi & Darwiche, 2013). While the SDD
is comprised of logical decision nodes, the PSDD is
comprised of probabilistic decision nodes, which are in-
duced by supplying a distribution over the branches of
a logical decision node. Similar to SDDs, the PSDD is
a canonical representation, but under somewhat more
interesting conditions. Moreover, computing the prob-
ability of a term can be done in time linear in the
PSDD size. In fact, the probability of each and ev-
ery literal can be computed in only two passes over
the PSDD. It is particularly notable that the local pa-
rameters of a PSDD have clear semantics with respect
to the global distribution induced by the PSDD. We
will also show that these parameters can be learned
efficiently from complete data.

This paper is structured as follows. We start by a con-
crete discussion on some of the applications that have
driven the development of PSDDs and follow by an in-
tuitive exposure of PSDDs and their salient features.
We next provide a formal treatment of the syntax, se-
mantics and properties of PSDDs. This allows us to
present our algorithm for learning PSDD parameters
from complete data. The paper concludes with some
experimental results showing the promise of PSDDs
in learning probability distributions under logical con-
straints. Additional discussions and experiments ap-
pear in the original version of this paper (Kisa et al.,
2014) (to be presented at KR 2014), including a dis-
cussion on related work.

2. Motivation

PSDDs were inspired by the need to learn probability
distributions that are subject to domain constraints.
Take for example a computer science department that
organizes four courses: Logic (L), Knowledge Repre-
sentation (K), Probability (P ), and Artificial Intel-
ligence (A). Students are asked to enroll for these
courses under the following restrictions: (1) a student
must take at least one of Probability or Logic, (2) prob-
ability is a prerequisite for AI, and (3) the prerequisite
for KR is either AI or Logic.

The department may have data on student enroll-
ments, as in Table 1, and may wish to learn a prob-
abilistic model for reasoning about student prefer-
ences. For example, the department may need to know
whether students are more likely to satisfy the prereq-
uisite of KR using AI or using Logic.

A mainstream approach for addressing this problem
is to learn a probabilistic graphical model, such as a
Bayesian network. In this case, a network structure
is constructed manually or learned from data. The
structure is then turned into a Bayesian network by
learning its parameters from the data. Other graphical
models can also be used. This includes, for example,
Markov networks or their variations.

What is common among all these approaches is that
they lack a principled and effective method for ac-
commodating the domain constraints into the learn-
ing process—that is, ensuring, for example, that a
student with a profile A ∧ K ∧ L ∧ ¬P , or a profile
¬A ∧K ∧ ¬L ∧ P , has zero probability in the learned
model. In principle, the zero parameters of a graph-
ical model can capture logical constraints, although
a fixed model structure will not in general accommo-
date arbitrary logical constraints. We could introduce
additional structure into the model to capture such
constraints, using, e.g., the method of virtual evidence
(Pearl, 1988; Mateescu & Dechter, 2008). However,
incorporating constraints in this manner will in gen-
eral lead to a highly-connected network, making infer-
ence intractable. Even if inference remained tractable,
such an approach is not ideal as we now have to learn
a distribution that is conditioned on the constraints.
This would require new learning algorithms (e.g., gra-
dient methods) for performing parameter estimation
as traditional methods may no longer be applicable.
For example, in Bayesian networks, the closed-form
parameter estimation algorithm under complete data
will no longer be valid in this case.

The domain constraints of our example can be ex-
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pressed using the following CNF.

P ∨ L
A⇒ P

K ⇒ A ∨ L
(1)

Even though there are 16 combinations of courses, the
CNF says that only 9 of them are valid choices. An
approach that observes this information must learn a
probability distribution that assigns a zero probabil-
ity to every combination that is not allowed by these
constraints.

None of the standard learning approaches we are fa-
miliar with has been posed to address this problem.
The complication here is not strictly with the learning
approaches, but with the probabilistic models that are
amenable to being learned under these circumstances.
In particular, these models are not meant to induce
probability distributions that respect a given set of
logical constraints.

The simple problem we posed in this section is exem-
plary of many real-world applications. We mention in
particular configuration problems that arise when pur-
chasing products, such as cars and computers. These
applications give users the option to configure prod-
ucts, but subject to certain constraints. Data is abun-
dant for these applications and there is a clear eco-
nomic interest in learning probabilistic models under
the given constraints. We also mention reasoning about
physical systems, which includes verification and diag-
nosis applications. Here, propositional logic is typi-
cally used to encode some system functionality, while
leaving out some system behaviors which may have a
non-deterministic nature (e.g., component failures and
probabilistic transitions). There is also an interest here
to learn probabilistic models of these systems, subject
to the given constraints.

Our goal in this paper is to introduce the PSDD rep-
resentation for addressing this particular need. We
will start by an intuitive (and somewhat informal) in-
troduction to PSDDs, followed by a more formal treat-
ment of their syntax, semantics and the associated rea-
soning and learning algorithms.

3. PSDDs

We will refer to domain constraints as the base of
a probability distribution. Our proposed approach
starts by representing this base as a Sentential Deci-
sion Diagram (SDD) as in Figure 1 (Darwiche, 2011;
Xue et al., 2012; Choi & Darwiche, 2013). An SDD is
determined by a vtree, which is a full binary tree with
leaves corresponding to the domain variables (Pipat-
srisawat & Darwiche, 2008). The choice of a particular

SDD can then be thought of as a choice of a particular
vtree. We will later discuss the impact of this choice
on the represented distribution. For now, however,
we will develop some further understanding of SDDs
as they are the backbones of our probability distribu-
tions.

SDDs. An SDD is either a decision node or a termi-
nal node. A terminal node is a literal, the constant >
(true) or the constant ⊥ (false). A decision node is a
disjunction of the form (p1∧s1)∨ . . .∨(pn∧sn), where
each pair (pi, si) is called an element. A decision node
is depicted by a circle and its elements are depicted by
paired boxes. Here, p1, . . . , pn are called primes and
s1, . . . , sn are called subs. Primes and subs are them-
selves SDDs. Moreover, the primes of a decision node
are always consistent, mutually exclusive and exhaus-
tive. The SDD in Figure 1 has seven decision nodes.
The decision node to the far left has two elements
(¬L,K) and (L,⊥). It represents (¬L∧K)∨ (L∧⊥),
which is equivalent to ¬L ∧K. There are two primes
for this node ¬L and L. The two corresponding subs
are K and ⊥.

Structure. An SDD can be viewed as a structure
that induces infinitely many probability distributions
(all having the same base). By parameterizing an SDD,
one obtains a PSDD that induces a particular proba-
bility distribution.

Parameters. Figure 2 depicts a PSDD which is ob-
tained by parameterizing the SDD in Figure 1. Both
decision and terminal SDD nodes are parameterized,
but we focus here on decision nodes. Let n be a
decision node having elements (p1, s1), . . . , (pn, sn).
To parameterize node n is to provide a distribution
θ1, . . . , θn. Intuitively, θi is the probability of prime pi
given that the decision of node n has been implied. We
will formalize and prove this semantics later. We will
also provide an efficient procedure for learning the pa-
rameters of a PSDD from complete data. The PSDD
parameters in Figure 2 were learned using this proce-
dure from the data in Table 2. The table also depicts
the probability distribution induced by the learned
PSDD.

Independence. The PSDD structure is analogous to
a Bayesian network structure in the following sense.
The latter can be parameterized in infinitely many
ways, with each parameterization inducing a particu-
lar probability distribution. Moreover, all the induced
distributions satisfy certain independences that can be
inferred from the underlying Bayesian network struc-
ture. The same is true for PSDDs. Each parameteriza-
tion of a PSDD structure yields a unique probability
distribution. Moreover, all the induced distributions
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Figure 1. A vtree and SDD for the student enrollment problem. Numbers in circles correspond to vtree nodes.
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Figure 2. A PSDD for the student enrollment problem, which results from parameterizing the SDD in Figure 1. The
parameters were learned from the dataset in Table 1 (also shown in Table 2).

L K P A Students Learned PSDD Distribution
0 0 1 0 6 0.6 · 0.1 6.0%
0 0 1 1 54 0.6 · 0.9 54.0%
0 1 1 1 10 0.1 10.0%
1 0 0 0 5 0.3 · 0.2 · 0.6 3.6%
1 0 1 0 1 0.3 · 0.2 · 0.4 · 0.75 1.8%
1 0 1 1 0 0.3 · 0.2 · 0.4 · 0.25 0.6%
1 1 0 0 13 0.3 · 0.8 · 0.6 14.4%
1 1 1 0 8 0.3 · 0.8 · 0.4 · 0.75 7.2%
1 1 1 1 3 0.3 · 0.8 · 0.4 · 0.25 2.4%

Table 2. Student enrollment data and learned distribution.

satisfy independences that can be inferred from the
PSDD structure. We showed in (Kisa et al., 2014),
however, that PSDD independence is more refined
than Bayesian network independence as it allows one
to express more qualified independence statements.

4. The Syntax and Semantics of PSDDs

PSDDs are based on normalized SDDs in which every
node n is associated with (normalized for) a vtree node
v according to the following rules (Darwiche, 2011).
If n is a terminal node, then v is a leaf node which
contains the variable of n (if any). If n is a decision

node, then its primes (subs) are normalized for the left
(right) child of v. If n is the root SDD node, then v is
the root vtree node.

The SDD in Figure 1 is normalized. Each decision
node in this SDD is labeled with the vtree node it is
normalized for. We are now ready to define the syntax
of a PSDD.

Definition 1 (PSDD Syntax) A PSDD is a nor-
malized SDD with the following parameters.

– For each decision node (p1, s1), . . . , (pk, sk) and
prime pi, a positive parameter θi is supplied such
that θ1 + . . .+ θk = 1 and θi = 0 iff si = ⊥.

– For each terminal node >, a positive parameter θ
is supplied such that 0 < θ < 1.

A terminal node> with parameter θ will be denoted by
X :θ, where X is the variable of leaf vtree node that >
is normalized for. Other terminal nodes (i.e., ⊥, X and
¬X) have fixed, implicit parameters (discussed later)
and will be denoted as is. A decision PSDD node will
be denoted by (p1, s1, θ1), . . . , (pk, sk, θk). Graphically,
we will just annotate the edge into element (pi, si) with
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x y Prpi(x) Prsi(y) θi Prn(xy)
P A 1 0.25 0.4 0.1
P ¬A 1 0.75 0.4 0.3
¬P A 1 0 0.6 0.0
¬P ¬A 1 1 0.6 0.6

Table 3. Distribution of node n = (¬P,¬A)(P,>).

the parameter θi. Figure 2 provides examples of this
notation.

We next define the distribution of a PSDD, induc-
tively. That is, we first define the distribution induced
by a terminal node. We then define the distribution of
a decision node in terms of the distributions induced
by its primes and subs.

Definition 2 (PSDD Distribution) Let n be a
PSDD node that is normalized for vtree node v. Node
n defines a distribution Prn over the variables of vtree
v as follows. If n is a terminal node, and v has variable
X, then

n Prn(X) Prn(¬X)
X :θ θ 1− θ
⊥ 0 0
X 1 0
¬X 0 1

If n is a decision node (p1, s1, θ1), . . . , (pk, sk, θk) and
v has left variables X and right variables Y, then

Prn(xy)
def
= Prpi(x) · Prsi(y) · θi

for i where x |= pi.

Applying this definition to the PSDD of Figure 2 leads
to the distribution in Table 2 for its root node. The
following table depicts the distribution induced by a
non-root node in this PSDD, which appears in the mid-
dle of Figure 2.

The SDD node associated with a PSDD node n is
called the base of n and is denoted by [n]. When there
is no ambiguity, we will often not distinguish between
a PSDD node n and its base [n].

A PSDD assigns a strictly positive probability to a
variable instantiation iff the instantiation satisfies its
base. This can be seen, for example, in Table 3. This
is also the first key property of PSDDs.

Theorem 1 (Base) Consider a PSDD node n that is
normalized for vtree node v. If Z are the variables of
vtree v, then Prn(z) > 0 iff z |= [n].

We will now discuss the second key property of PSDDs,
which reveals the local semantics of PSDD parameters.

Theorem 2 (Parameter Semantics) Let n be a
decision node (p1, s1, θ1), . . . , (pk, sk, θk). We have
θi = Prn([pi]).

Consider the PSDD in Figure 2 and its decision node
n in Table 3. Prime ¬P of this node has parame-
ter 0.6. According to Theorem 2, we must then have
Prn(¬P ) = 0.6, which can be verified in Table 3. Sim-
ilarly, Prn(P ) = 0.4.

The third key property of PSDDs is the relationship
between the local distributions induced by its various
nodes (node distributions) and the global distribution
induced by its root node (PSDD distribution)—for ex-
ample, the relationship between the distribution of
node n in Table 3 and the PSDD distribution given
in Table 2.

Node distributions are linked to the PSDD distribution
by the notion of context.

Definition 3 (Context) Let (p1, s1), . . . , (pk, sk) be
the elements appearing on some path from the SDD
root to node n.2 Then p1 ∧ . . . ∧ pk is called a sub-
context for node n and is feasible iff si 6= ⊥. The con-
text is a disjunction of all sub-contexts and is feasible
iff some sub-context is feasible.

Consider Figure 1. The three decision nodes normal-
ized for vtree node v = 5 have the contexts ¬L∧K, L
and ¬L ∧ ¬K. Moreover, the terminal nodes normal-
ized for vtree v = 6 have the contexts:

– A: ¬L ∧K ∧ P

– ¬A: L ∧ ¬P

– ⊥: (¬L∧K∧¬P )∨ (¬L∧¬K∧¬P ) = (¬L∧¬P )

– >: (L ∧ P ) ∨ (¬L ∧ ¬K ∧ P ) = (L ∨ ¬K) ∧ P.

Contexts satisfy interesting properties.

Theorem 3 (Context) A node is implied by its con-
text and the underlying SDD. Nodes normalized for the
same vtree node have mutually exclusive and exhaus-
tive contexts. The sub-contexts of a node are mutually
exclusive. A context/sub-context is feasible iff it has a
strictly positive probability.

Contexts give a global semantics to node distributions.

2That is, n = pk or n = sk.
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Theorem 4 (Node Distribution) Consider a
PSDD r and let n be one of its nodes. If γn is a
feasible sub-context or feasible context of node n, then
Prn(.) = Prr(. | γn).

Contexts give a global semantics to parameters.

Corollary 1 (Parameter Semantics) Consider a
PSDD r and node n with feasible sub-context or feasi-
ble context γn.

– If n is a terminal node X :θ, then θ = Prr(X | γn).

– If n is a decision node (p1, s1, θ1), . . . , (pk, sk, θk),
then θi = Prr([pi] | γn) for i = 1, . . . , k.

This corollary says that the parameters of a node are
conditional probabilities of the PSDD distribution.

In (Kisa et al., 2014), we show that PSDDs are com-
plete as they are capable of representing any probabil-
ity distribution. We also show that PSDDs are canon-
ical under a condition known as compression. More
precisely, we show that there is a unique compressed
PSDD for each distribution and vtree. This is partic-
ularly important for learning PSDDs (structure and
parameters) as it reduces the problem of searching for
a PSDD into the problem of searching for a vtree.

5. Learning with PSDDs

In the original paper (Kisa et al., 2014), we further
discussed the conditional independencies of PSDDs,
and algorithms for reasoning with them. In particular,
given a PSDD r and an instantiation e of some vari-
ables (evidence), we provided an algorithm for com-
puting the probability of this evidence Prr(e). We also
presented an algorithm for computing the conditional
probability Prr(X | e) for every variable X. Both al-
gorithms run in time which is linear in the PSDD size
(and hence, PSDDs are a tractable representation).

We now present an algorithm for learning the param-
eters of a PSDD from a complete dataset. We start
first with some basic definitions. An instantiation of
all variables is called an example. There are 2n distinct
examples over n propositional variables. A complete
dataset is a multi-set of examples.3 That is, an exam-
ple may appear multiple times in a dataset. Given a
PSDD structure (a normalized SDD), and a complete
dataset, our goal is to learn the value of each PSDD
parameter. More precisely, we wish to learn maximum
likelihood parameters: ones that maximize the proba-
bility of examples in the dataset.

3In an incomplete dataset, an example corresponds to
an instantiation of some variables (not necessarily all).

We will use Prθ to denote the distribution induced by
the PSDD structure and parameters θ. The likelihood
of these parameters given dataset D is defined as

L(θ|D) =

N∏
i=1

Prθ(di),

where di ranges over all N examples in dataset D. Our
goal is to find the maximum likelihood parameters

θml = argmax
θ

L(θ|D).

We will use D#(α) to denote the number of exam-
ples in dataset D that satisfy propositional sentence
α. For a decision node n = (p1, s1, θ1), ..., (pk, sk, θk)
with context γn, we propose the following estimate for
parameter θi:

θmli =
D#(pi, γn)

D#(γn)
. (2)

For terminal node n = X :θ with context γn, we pro-
pose the following estimate for parameter θ:

θml =
D#(X, γn)

D#(γn)
. (3)

We can now show the following.

Theorem 5 The parameter estimates of Equations 2
and 3 are the only estimates that maximize the likeli-
hood function.

Our parameter estimates admit a closed-form, in terms
of the counts D#(α) in the data. One can compute
these estimates using a single pass through the exam-
ples of a dataset. Moreover, each distinct example can
be processed in time linear in the PSDD size.4 These
are very desirable properties for a parameter learning
algorithm. These properties are shared with Bayesian
network representations, but are missing from many
others, including Markov networks.

When learning probabilistic graphical models, one
makes a key distinction between learning structures

4A dataset may not include every example that is con-
sistent with the domain constraints. If this is the case, a
parameter θ for prime p may be estimated to zero, even
though its sub s may not be ⊥; see Theorem 1. To ad-
dress this, one can assume a pseudo-count for each distinct
example, which can be thought of as providing a prior dis-
tribution on parameters. In our experiments, we assumed
a pseudo-count of 2/mc for each distinct example, where
mc is the model count of the SDD. This corresponds to a
very weak prior since, in aggregate, these pseudo-counts
contribute a total count that is equivalent to two real ex-
amples in the dataset.
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versus learning parameters (the former being harder
in general). While learning PSDD structures is be-
yond the scope of this paper, the experimental results
we present next do use a basic method for learning
structures. In particular, since we compile logical con-
straints into an SDD (i.e., a PSDD structure), the
compilation technique we use is effectively “learning” a
structure. We used the publicly available SDD package
for this purpose (http://reasoning.cs.ucla.edu/
sdd/). The SDD package tries to dynamically min-
imize the size of the compiled SDD and, as a result,
tries to minimize the number of PSDD parameters.

6. Empirical Evaluation

In this Section, we empirically evaluate our parameter
estimation algorithm for PSDDs. This section presents
extended results, compared to the preliminary empiri-
cal results presented in a paper to be presented at KR
2014 (Kisa et al., 2014). In particular, our goal here
is to illustrate how much the quality of a probabilis-
tic model, learned from data, can be impacted by the
ability to exploit background knowledge in the form
of domain constraints. More specifically, we illustrate
how we can learn PSDDs that represent the data bet-
ter, compared to other approaches that are unable to
incorporate such background knowledge.

Here, we simulate datasets from suites of highly-
deterministic Bayesian networks, which can be viewed
as already encoding domain constraints. For exam-
ple, many Bayesian networks used in practice are con-
structed based on domain knowledge, using domain
experts. The zero parameters that appear in such net-
works can further be assumed to be based on known
domain constraints (i.e., the domain expert who con-
structed such a network would only assign a probabil-
ity of zero to an event, only if that event were impos-
sible, as opposed to just being unlikely).

Using such benchmarks, we simulate datasets of in-
creasing size, from which we will learn a variety of
probabilistic graphical models. In the case of PSDDs,
we exploit the given domain constraints that we de-
scribed above (in all cases, we discard the original
structure used to simulate the datasets). We can ex-
tract the propositional theory represented by the ze-
ros of the Bayesian network as a CNF,5 which we in
turn compile to an SDD. This SDD is further dynami-
cally minimized, which reduces its size, and hence, re-
duces the number of parameters in the corresponding
PSDD. We compare the PSDDs that we learn with

5For each zero parameter θx|u in the Bayesian network,
we have in our CNF a clause that is found by negating the
instantiation xu.

other probabilistic models: Chow-Liu trees (CLTs),
Aritmetic Circuits for Bayesian Networks (ACBNs)
(Lowd & Domingos, 2008), and Sum-Product Net-
works (SPNs) (Gens & Domingos, 2013).6 ACBNs and
SPNs, in particular, are recently proposed representa-
tions, with publicly available implementations. How-
ever, these systems are not equipped to take advantage
of the domain knowledge that PSDDs can. Our goal is
to highlight that this is indeed an advantage one would
want to exploit, when such background knowledge is
available.

The first set of benchmarks we considered were taken
from the UAI-08 inference evaluation.7 These in-
cluded blockmap and students networks from the re-
lational benchmarks, and 90-30 networks from the
grids benchmarks. All of these benchmarks are no-
table because they have a high degree of determin-
ism (roughly 90% of parameters in students and
90-30 networks are zero, and roughly 99% are zero in
blockmap). Figure 3 highlights the results, of learning
PSDDs (with the corresponding domain knowledge),
and CLTs, ACBNs, and SPNs (which can not exploit
the domain knowledge). Each plot point represents
an average of k different networks, with 10 datasets
simulated from each (3 networks for blockmap, 1 for
students, and 10 for 90-30). Training and testing
sets were simulated indepedently, each of the same
size. As we can see, the ability of PSDDs to ex-
ploit domain knowledge is significant here, as it can
learn much more accurate models (higher test-set like-
lihoods), even when there is a very small amount of
data (the smallest data sets considered were of size
128). These results suggest that when there is a signif-
icant amount of domain constraints (as was the case
in these benchmarks), then PSDDs could be a com-
pelling option, compared to alternatives that do not
exploit such knowledge.

Figure 4 presents results for another set of bench-
marks. These benchmarks correspond to real-world
Bayesian networks, where we injected determinism at
random, in order to simulate high amounts of domain
constraints. In particular, we iterated over every CPT
column (for non-root nodes), and made it 0/1 with
probability 0.9 (we selected the one value at random).
Here, each plot point represents an average of (at least)

6CLTs and ACBNs were learned using the Libra library
available at http://libra.cs.uoregon.edu/. SPNs were
learned using the SPN package available at http://spn.
cs.washington.edu/learnspn/. The Libra library allow
for a limit on the number of edges used for ACBNs. The
number of edges in an SDD’s corresponding AC is at most
3 times the size of the SDD, hence we enforced this limit
on ACBNs, for a fairer comparison.

7At http://graphmod.ics.uci.edu/uai08/

http://reasoning.cs.ucla.edu/sdd/
http://reasoning.cs.ucla.edu/sdd/
http://libra.cs.uoregon.edu/
http://spn.cs.washington.edu/learnspn/
http://spn.cs.washington.edu/learnspn/
http://graphmod.ics.uci.edu/uai08/
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Figure 3. We observe the increasing quality of different models learned (y-axis), as we increase dataset size (x-axis).
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Figure 4. We observe the increasing quality of different models learned (y-axis), as we increase dataset size (x-axis).
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Figure 5. We observe the increasing quality of models
learned (y-axis), as we increase dataset size (x-axis).

8 networks constructed by injecting determinism at
random, with 10 datasets simulated from each. We
see a similar story here, as before.

Finally, consider Figure 5, where we selected a bench-
mark from the grids suite, and learned networks
from a wider range of dataset sizes (from sizes 128 to
16, 384). Here, we see that PSDDs have an advantage
with smaller data set sizes. However, for this particu-
lar example, we see at larger data set sizes that the un-
derlying SDD is not expressive enough to capture this
distribution (the likelihood stops increasing). While
the PSDD parameters are learned from the data, we
fix the structure of the underlying SDD (which is con-

structed once from the domain constraints). Fixing
the structure makes certain assumptions about the
conditional independencies of the PSDD distribution
(which may not be reflected in the data). In con-
trast, ACBNs and SPNs perform structure learning,
and hence they learn better models given enough data,
in this case. However, as PSDDs are canonical rep-
resentations (and hence can represent any probability
distribution), there is still a significant opportunity for
learning the structure of PSDDs, even when there is
not a large amount of domain constraints.

7. Conclusion

We presented the PSDD as a representation of proba-
bility distributions that respect a given propositional
theory. The PSDD is a complete and canonical rep-
resentation, with parameters that are interpretable as
conditional probabilities. The PSDD encodes context-
specific independences, which can be derived from
its structure. The PSDD is a tractable represen-
tation, allowing one to compute the probability of
any term in time linear in its size. The PSDD has
unique maximum likelihood parameters under com-
plete data, which can be learned efficiently using a
closed form. Preliminary experimental results suggest
that the PSDD can be quite effective in learning dis-
tributions under domain constraints.
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