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Abstract

In this paper we study lifted inference for
the Weighted First-Order Model Counting
problem (WFOMC), which counts the assign-
ments that satisfy a given sentence in first-
order logic (FOL); it has applications in Sta-
tistical Relational Learning (SRL) and Prob-
abilistic Databases (PDB). We present sev-
eral results. First, we describe a lifted in-
ference algorithm that generalizes prior ap-
proaches in SRL and PDB. Second, we pro-
vide a novel dichotomy result for a non-trivial
fragment of FO CNF sentences, showing that
for each sentence the WFOMC problem is
either in PTIME or #P-hard in the size of
the input domain; we prove that, in the first
case our algorithm solves the WFOMC prob-
lem in PTIME, and in the second case it
fails. Third, we present several properties of
the algorithm. Finally, we discuss limitations
of lifted inference for symmetric probabilistic
databases (where the weights of ground liter-
als depend only on the relation name, and not
on the constants of the domain), and prove
the impossibility of a dichotomy result for the
complexity of probabilistic inference for the
entire language FOL.

1 INTRODUCTION

Weighted model counting (WMC) is a problem at the
core of many reasoning tasks. It is based on the model
counting or #SAT task (Gomes et al., 2009), where
the goal is to count assignments that satisfy a given
logical sentence. WMC generalizes model counting by
assigning a weight to each assignment, and computing
the sum of their weights. WMC has many applica-
tions in AI and its importance is increasing. Most
notably, it underlies state-of-the-art probabilistic in-

ference algorithms for Bayesian networks (Darwiche,
2002; Sang et al., 2005; Chavira and Darwiche, 2008),
relational Bayesian networks (Chavira et al., 2006)
and probabilistic programs (Fierens et al., 2011).

This paper is concerned with weighted first-order
model counting (WFOMC), where we sum the weights
of assignments that satisfy a sentence in finite-domain
first-order logic. Again, this reasoning task under-
lies efficient algorithms for probabilistic reasoning,
this time for popular representations in statistical
relational learning (SRL) (Getoor and Taskar, 2007),
such as Markov logic networks (Van den Broeck et al.,
2011; Gogate and Domingos, 2011) and probabilistic
logic programs (Van den Broeck et al., 2014). More-
over, WFOMC uncovers a deep connection between
AI and database research, where query evaluation in
probabilistic databases (PDBs) (Suciu et al., 2011) es-
sentially considers the same task. A PDB defines a
probability, or weight, for every possible world, and
each database query is a sentence encoding a set of
worlds, whose combined probability we want to com-
pute.

Early on, the disconnect between compact relational
representations of uncertainty, and the intractability
of inference at the ground, propositional level was
noted, and efforts were made to exploit the relational
structure for inference, using so-called lifted inference
algorithms (Poole, 2003; Kersting, 2012). SRL and
PDB algorithms for WFOMC all fall into this category.
Despite these commonalities, there are also impor-
tant differences. SRL has so far considered symmetric
WFOMC problems, where relations of the same type
are assumed to contribute equally to the probability
of a world. This assumption holds for certain queries
on SRL models, such as single marginals and partition
functions, but fails for more complex conditional prob-
ability queries. These break lifted algorithms based on
symmetric WFOMC (Van den Broeck and Darwiche,
2013). PDBs, on the other hand, have considered the
asymmetric WFOMC setting from the start. Prob-
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abilistic database tuples have distinct probabilities,
many have probability zero, and no symmetries can be
expected. However, current asymmetric WFOMC al-
gorithms (Dalvi and Suciu, 2012) suffer from a major
limitation of their own, in that they can only count
models of sentences in monotone disjunctive normal
form (MDNF) (i.e., DNF without negation). Such
sentences represent unions of conjunctive database
queries (UCQ). WFOMC encodings of SRL models al-
most always fall outside this class.

The present work seeks to upgrade a well-known PDB
algorithm for asymmetric WFOMC (Dalvi and Suciu,
2012) to the SRL setting, by enabling it to count
models of arbitrary sentences in conjunctive normal
form (CNF). This permits its use for lifted SRL in-
ference with arbitrary soft or hard evidence, or equiv-
alently, probabilistic database queries with negation.
Our first contribution is this algorithm, which we call
LiftR, and is presented in Section 3.

Although LiftR has clear practical merits, we are
in fact motivated by fundamental theoretical ques-
tions. In the PDB setting, our algorithm is known
to come with a sharp complexity guarantee, called
the dichotomy theorem (Dalvi and Suciu, 2012). By
only looking at the structure of the first-order sen-
tence (i.e., the database query), the algorithm reports
failure when the problem is #P-hard (in terms of
data complexity), and otherwise guarantees to solve
it in time polynomial in the domain (i.e., database)
size. It can thus precisely classify MDNF sen-
tences as being tractable or intractable for asym-
metric WFOMC. Whereas several complexity results
for symmetric WFOMC exist (Van den Broeck, 2011;
Jaeger and Van den Broeck, 2012), the complexity of
asymmetric WFOMC for SRL queries with evidence
is still poorly understood. Our second and main con-
tribution, presented in Section 4, is a novel dichotomy
result over a small but non-trivial fragment of CNFs.
We completely classify this class of problems as either
computable in polynomial time or #P-hard. This rep-
resents a first step towards proving the following con-
jecture: LiftR provides a dichotomy for asymmetric
WFOMC on arbitrary CNF sentences, and therefore
perfectly classifies all related SRL models as tractable
or intractable for conditional queries.

As our third contribution, presented in Section 5, we
illustrate the algorithm with examples that show its
application to common probabilistic models. We dis-
cuss the capabilities of LiftR that are not present in
other lifted inference techniques.

As our fourth and final contribution, in Section 6,
we discuss extensions of our algorithm to symmet-
ric WFOMC, but also show the impossibility of a di-

chotomy result for arbitrary first-order logic sentences.

2 BACKGROUND

We begin by introducing the necessary background on
relational logic and weighted model counting.

2.1 RELATIONAL LOGIC

Throughout this paper, we will work with the re-
lational fragment of first-order logic (FOL), which
we now briefly review. An atom P (t1, . . . , tn) con-
sists of predicate P /n of arity n followed by n argu-
ments, which are either constants or logical variables{x, y, . . . }. A literal is an atom or its negation. A
formula combines atoms with logical connectives and
quantifiers ∃ and ∀. A substitution [a/x] replaces all
occurrences of x by a. Its application to formula F is
denoted F [a/x]. A formula is a sentence if each logi-
cal variable x is enclosed by a ∀x or ∃x. A formula is
ground if it contains no logical variables. A clause is
a universally quantified disjunction of literals. A term
is an existentially quantified conjunction of literals. A
CNF is a conjunction of clauses, and a DNF is a dis-
junction of terms. A monotone CNF or DNF contains
no negation symbols. As usual, we drop the universal
quantifiers from the CNF syntax.

The semantics of sentences are defined in the usual
way (Hinrichs and Genesereth, 2006). An interpreta-
tion, or world, I that satisfies sentence ∆ is denoted
by I ⊧ ∆, and represented as a set of literals. Our
algorithm checks properties of sentences that are unde-
cidable in general FOL, but decidable, with the follow-
ing complexity, in the CNF fragment we investigate.

Theorem 2.1. (Sagiv and Yannakakis, 1980) Check-
ing whether logical implication Q ⇒ Q′ or equiva-
lence Q ≡ Q′ holds between two CNF sentences is Πp

2-
complete.

2.2 WEIGHTED MODEL COUNTING

Weighted model counting was introduced as a propo-
sitional reasoning problem.

Definition 2.2 (WMC). Given a propositional sen-
tence ∆ over literals L, and a weight function w ∶ L →
R
≥0, the weighted model count (WMC) is

WMC(∆,w) = ∑
I⊧∆

∏
ℓ∈I

w(ℓ).
We will consider its generalization to weighted first-
order model counting (WFOMC), where ∆ is now a
sentence in relational logic, and L consists of all ground
first-order literals for a given domain of constants.

The WFOMC task captures query answering in prob-



abilistic database. Take for example the database

Prof(Anne) ∶ 0.9 Prof(Charlie) ∶ 0.1
Student(Bob) ∶ 0.5 Student(Charlie) ∶ 0.8

Advises(Anne,Bob) ∶ 0.7 Advises(Bob,Charlie) ∶ 0.1
and the UCQ (monotone DNF) query

Q = ∃x,∃y, Prof(x) ∧ Advises(x, y) ∧ Student(y).
If we set ∆ = Q and w to map each literal to its prob-
ability in the database, then our query answer is

Pr(Q) =WFOMC(∆,w) = 0.9 ⋅ 0.7 ⋅ 0.5 = 0.315.
We refer to the general case above as asymmetric
WFOMC, because it allows w(Prof(Anne)) to be
different from w(Prof(Charlie)). We use symmetric
WFOMC to refer to the special case where w simplifies
into two weight functions w⋆, w̄⋆ that map predicates
to weights, instead of literals, that is

w(ℓ) = ⎧⎪⎪⎨
⎪⎪⎩

w⋆(P ) when ℓ is of the form P (c)
w̄⋆(P ) when ℓ is of the form ¬P (c)

Symmetric WFOMC no longer directly captures
PDBs. Yet it can still encode many SRL models, in-
cluding parfactor graphs (Poole, 2003), Markov logic
networks (MLNs) (Richardson and Domingos, 2006)
and probabilistic logic programs (De Raedt et al.,
2008). We refer to (Van den Broeck et al., 2014) for
the details, and show here the following example MLN.

2 Prof(x) ∧ Advises(x, y) ⇒ Student(y)

It states that the probability of a world increases by a
factor e2 with every pair of people x, y for which the
formula holds. Its WFOMC encoding has ∆ equal to

∀x,∀y, F(x, y) ⇔

[Prof(x) ∧ Advises(x, y)⇒ Student(y)]
and weight functions w⋆, w̄⋆ such that w⋆(F) = e2 and
all other predicates map to 1.

Answering an SRL query Q given evidence E, that
is, Pr(Q ∣E), using a symmetric WFOMC encoding,
generally requires solving two WFOMC tasks:

Pr(Q ∣E) = WFOMC(Q ∧E ∧∆,w)
WFOMC(E ∧∆,w)

Symmetric WFOMC problems are strictly more
tractable than asymmetric ones. We postpone the
discussion of this observation to Section 5, but al-
ready note that all theories ∆ with up to two log-
ical variables per formula support domain-lifted in-
ference (Van den Broeck, 2011), which means that
any WFOMC query runs in time polynomial in
the domain size (i.e, number of constants). For
conditional probability queries, even though fixed-
parameter complexity bounds exist that use symmet-
ric WFOMC (Van den Broeck and Darwiche, 2013),

the actual underlying reasoning task is asymmetric
WFOMC, whose complexity we investigate for the first
time.

Finally, we make three simplifying observations. First,
SRL query Q and evidence E typically assign values
to random variables. This means that the query and
evidence can be absorbed into the asymmetric weight
function, by setting the weight of literals disagreeing
with Q or E to zero. We hence compute:

Pr(Q ∣E) = WFOMC(∆,wQ∧E)
WFOMC(∆,wE)

This means that our complexity analysis for a given
encoding ∆ applies to both numerator and denom-
inator for arbitrary Q and E, and that polytime
WFOMC for ∆ implies polytime Pr(Q ∣E) computa-
tion. The converse is not true, since it is possible
that both WFOMC calls are #P-hard, but their ra-
tio is in PTIME. Second, we will from now on assume
that ∆ is in CNF. The WFOMC encoding of many
SRL formalisms is already in CNF, or can be reduced
to it (Van den Broeck et al., 2014). For PDB queries
that are in monotone DNF, we can simply compute
Pr(Q) = 1 − Pr(¬Q), which reduces to WFOMC on a
CNF. Moreover, by adjusting the probabilities in the
PDB, this CNF can also be made monotone. Third,
we will assume that w(ℓ) = 1−w(¬ℓ), which can always
be achieved by normalizing the weights.

Under these assumptions, we can simply refer to
WFOMC(Q,w) as Pr(Q), to Q as the CNF query,
to w(ℓ) as the probability Pr(ℓ), and to the entire
weight function w as the PDB. This is in agreement
with notation in the PDB literature.

3 ALGORITHM LiftR

We present here the lifted algorithm LiftR (pro-
nounced lift-ER), which, given a CNF formula Q com-
putes Pr(Q) in polynomial time in the size of the PDB,
or fails. In the next section we provide some evidence
for its completeness: under certain assumptions, if
LiftR fails on formula Q, then computing Pr(Q) is
#P-hard in the PDB size.

3.1 DEFINITIONS

An implicate of Q is some clause C s.t. the logical
implication Q ⇒ C holds. C is a prime implicate if
there is no other implicate C′ s.t. C′ ⇒ C.

A connected component of a clause C is a minimal
subset of its atoms that have no logical variables in
common with the rest of the clause. If some prime
implicate C has more than one connected component,



then we can write it as:

C =D1 ∨D2 ∨⋯ ∨Dm

where each Di is a clause with distinct variables. Ap-
plying distributivity, we write Q in union-CNF form:

Q = Q1 ∨Q2 ∨⋯∨Qm

where each Qi is a CNF with distinct variables.

We check for disconnected prime implicates D1 ∨D2

where both D1 and D2 subsume some clause of Q. In-
tuitively, this means that when we apply inclusion/ex-
clusion to the union-CNF, the resulting queries are
simpler. The search for D1, D2 can proceed using
some standard inference algorithm, e.g. resolution. By
Theorem 2.1, this problem is Πp

2-complete in the size
of the query Q, but independent of the PDB size.

A set of separator variables for a query Q = ⋀k
i=1Ci

is a set of variables xi, i = 1, k such that, (a) for each
clause Ci, xi occurs in all atoms of Ci, and (b) any two
atoms (not necessarily in the same clause) referring to
the same relation R have their separator variable on
the same position.

3.2 PREPROCESSING

We start by transforming Q (and PDB) such that:

1. No constants occur in Q.
2. If all the variables in Q are x1, x2, . . . , xk, then

every relational atom in Q (positive or negated) is
of the form R(xi1 , xi2 , . . . ) such that i1 < i2 < . . .

Condition (1) can be enforced by shattering Q w.r.t.
its variables. Condition (2) can be enforced by modi-
fying both the query Q and the database, in a process
called ranking and described in the appendix. Here, we
illustrate ranking on an example. Consider the query:

Q = (R(x, y) ∨ S(x, y)) ∧ (¬R(x, y) ∨ ¬S(y, x))
Define R1(x, y) ≡ R(x, y) ∧ (x < y); R2(x) ≡ R(x,x);
R3(y, x) ≡ R(x, y)∧(x > y). Define similarly S1, S2, S3.
Given a PDB with relations R, S, we define a new
PDB′ over the six relations by setting Pr(R1(a, b)) =
Pr(R(a, b)) when a < b, Pr(R1(a, b)) = 0 when a > b,
Pr(R2(a)) = Pr(R(a, a)), etc. Then, the query Q over
PDB is equivalent to the following query over PDB’:

(R1(x, y) ∨ S1(x, y)) ∧ (¬R1(x, y) ∨ ¬S3(x, y))
(R2(x) ∨ S2(x)) ∧ (¬R2(x) ∨ ¬S2(x))
(R3(x, y) ∨ S3(x, y)) ∧ (¬R3(x, y) ∨ ¬S1(x, y))

3.3 ALGORITHM DESCRIPTION

Algorithm LiftR, given in Figure 1, proceeds recur-
sively on the structure of the CNF query Q. When it
reaches ground atoms, it simply looks up their proba-

bilities in the PDB. Otherwise, it performs the follow-
ing sequence of steps.

First, it tries to express Q as a union-CNF. If it suc-
ceeds, and if the union can be partitioned into two sets
that do not share any relational symbols, Q = Q1∨Q2,
then it applies a Decomposable Disjunction:

Pr(Q) = 1 − (1 −Pr(Q1)(1 −Pr(Q2))
Otherwise, it applies the Inclusion/Exclusion formula:

Pr(Q) = − ∑
s⊆[m]

(−1)∣s∣Pr(⋀
i∈s

Qi)
However, before computing the recursive probabilities,
our algorithm first checks for equivalent expressions,
i.e. it checks for terms s1, s2 in the inclusion/exclusion
formula such that ⋀i∈s1 Qi ≡ ⋀i∈s2 Qi: in that case,
these terms either cancel out, or add up (and need be
computed only once). We show in Section 5.4 the crit-
ical role that the cancellation step plays for the com-
pleteness of the algorithm. To check cancellations, the
algorithm needs to check for equivalent CNF expres-
sions. This can be done using some standard inference
algorithm (recall from Theorem 2.1 that this problem
is Πp

2-complete in the size of the CNF expression).

If neither of the above steps apply, then the algorithm
checks if Q can be partitioned into two sets of clauses
that do not share any common relation symbols. In
that case, Q = Q′∧Q′′, and its probability is computed
using a Decomposable Conjunction:

Pr(Q) = Pr(Q′) ⋅Pr(Q′′)
Finally, if none of the above cases apply to the CNF
query Q = C1 ∧ C2 ∧ ⋯ ∧ Ck, then the algorithm tries
to find a set of separator variables x1, . . . , xk (one for
each clause). If it finds them, then the probability is
given by a Decomposable Universal Quantifier:

Pr(Q) = ∏
a∈Domain

Pr(C1[a/x1] ∧⋯∧Ck[a/xk])
We prove our first main result:

Theorem 3.1. One of the following holds: (1) either
LiftR fails on Q, or (2) for any domain size n and a
PDB consisting of probabilities for the ground tuples,
LiftR computes Pr(Q) in polynomial time in n.

Proof. (Sketch) The only step of the algorithm that
depends on the domain size n is the decomposable uni-
versal quantifier step; this also reduces by 1 the arity
of every relation symbol, since it substitutes it by the
same constant a. Therefore, the algorithm runs in time
O(nk), where k is the largest arity of any relation sym-
bol. We note that the constant behind O(⋯) may be
exponential in the size of the query Q.



Algorithm LiftR

Input: Ranked and shattered query Q

Probabilistic DB with domain D

Output: Pr(Q)

1 Step 0 : I f Q i s a s i n g l e ground l i t e r a l ℓ ,

r e turn i t s p r obab i l i t y Pr(ℓ) in PDB

2 Step 1 : Write Q as a union−CNF :

Q =Q1 ∨Q2 ∨⋯∨Qm

3 Step 2 : I f m > 1 and Q can be p a r t i t i o n e d in to

two s e t s Q =Q′ ∨Q′′ with d i s j o i n t r e l a t i o n

symbol s , r e turn 1 − (1 −Pr(Q1)) ⋅ (1 −Pr(Q2))

4 /∗ Decomposable Disjunction ∗/

5 Step 3 : I f Q cannot be p a r t i t i o n e d , re turn

∑s⊆[m]Pr(⋀i∈s Qi)

6 /∗ Inclusion/Exclusion − perform

c a n c e l l a t i o n s b e f o r e r e cu r s i on ∗/

7 Step 4 : Write Q in CNF: Q = C1 ∧C2 ∧⋯ ∧Ck

8 Step 5 : I f k > 1 , and Q can be p a r t i t i o n e d in to

two s e t s Q =Q′ ∧Q′′ with d i s j o i n t r e l a t i o n

symbol s , r e turn Pr(Q1) ⋅Pr(Q2)

9 /∗ Decomposable Conjunction ∗/

10 Step 6 : I f Q has a sepa ra to r v a r i a b l e , re turn

∏a∈D Pr(C1[a/x1] ∧⋯∧Ck[a/xk])

11 /∗ Decomposable Universal Quantifier ∗/

12 Otherwise FAIL

Figure 1: Algorithm for Computing Pr(Q)

4 MAIN COMPLEXITY RESULT

In this section we describe our main technical result
of the paper: that the algorithm is complete when
restricted to a certain class of CNF queries.

We first review a prior result, to put ours in per-
spective. (Dalvi and Suciu, 2012) define an algo-
rithm for Monotone DNF (called Unions Of Conjunc-
tive Queries), which can be adapted to Monotone
CNF; that adaptation is equivalent to LiftR restricted
to Monotone CNF queries. (Dalvi and Suciu, 2012)
prove:

Theorem 4.1. If algorithm LiftR FAILS on a Mono-
tone CNF query Q, then computing Pr(Q) is #P-hard.

However, the inclusion of negations in our query lan-
guage increases significantly the difficulty of analyzing
query complexities. Our major technical result of the
paper extends Theorem 4.1 to a class of CNF queries
with negation.

Define a Type-1 query to be a CNF formula where each
clause has at most two variables denoted x, y, and each
atom is of one of the following three kinds:

– Unary symbols R1(x),R2(x),R3(x), . . .
– Binary symbols S1(x, y), S2(x, y), . . .
– Unary symbols T1(y), T2(y), . . .

or the negation of these symbols.

Our main result is:

Theorem 4.2. For every Type-1 query Q, if algorithm
LiftR FAILS then computing Pr(Q) is #P-hard.

The proof is a significant extension of the techniques
used by (Dalvi and Suciu, 2012) to prove Theorem 4.1;
we give a proof sketch in Section 7 and include the full
proof in the appendix.

5 PROPERTIES OF LiftR

We now describe several properties of LiftR, and the
relationship to other lifted inference formalisms.

5.1 NEGATIONS CAN LOWER THE
COMPLEXITY

The presence of negations can lower a query’s com-
plexity, and our algorithm exploits this. To see this,
consider the following query

Q = (Tweets(x) ∨ ¬Follows(x, y))
∧ (Follows(x, y) ∨ ¬Leader(y))

The query says that if x follows anyone then x tweets,
and that everybody follows the leader1.

Our goal is to compute the probability Pr(Q), knowing
the probabilities of all atoms in the domain. We note
that the two clauses are dependent (since both refer to
the relation Follow), hence we cannot simply multiply
their probabilities; in fact, we will see that if we remove
all negations, then the resulting query is #P-hard; the
algorithm described by (Dalvi and Suciu, 2012) would
immediately get stuck on this query. Instead, LiftR

takes advantage of the negation, by first computing
the prime implicate:

Tweets(x) ∨ ¬Leader(y)
which is a disconnected clause (the two literals use
disjoint logical variables, x and y respectively). After
applying distributivity we obtain:

Q ≡(Q ∧ (Tweets(x))) ∨ (Q ∧ (¬Leader(y)))
≡Q1 ∨Q2

and LiftR applies the inclusion-exclusion formula:

Pr(Q) =Pr(Q1) +Pr(Q2) −Pr(Q1 ∧Q2)
After simplifying the three queries, they become:

Q1 =(Follows(x, y) ∨ ¬Leader(y))∧ (Tweets(x))
Q2 =(Tweets(x) ∨ ¬Follows(x, y)) ∧ (¬Leader(y))

Q1 ∧Q2 =(Tweets(x)) ∧ (¬Leader(y))
The probability of Q1 can now be obtained by multi-

1To see this, rewrite the query as (Follows(x, y) ⇒
Tweets(x)) ∧ (Leader(y) ⇒ Follows(x, y)).



plying the probabilities of its two clauses; same for the
other two queries. As a consequence, our algorithm
computes the probability Pr(Q) in polynomial time in
the size of the domain and the PDB.

If we remove all negations from Q and rename the
predicates we get the following query:

h1 =(R(x) ∨ S(x, y)) ∧ (S(x, y) ∨ T (y))
(Dalvi and Suciu, 2012) proved that computing the
probability of h1 is #P-hard in the size of the PDB.
Thus, the query Q with negation is easy, while h1 is
hard, and our algorithm takes advantage of this by
applying resolution.

5.2 ASYMMETRIC WEIGHTS CAN
INCREASE THE COMPLEXITY

(Van den Broeck, 2011) has proven that any query
with at most two logical variables per clause is domain-
liftable. Recall that this means that one can compute
its probability in PTIME in the size of the domain, in
the symmetric case, when all tuples in a relation have
the same probability. However, queries with at most
two logical variables per clause can become #P-hard
when computed over asymmetric probabilities, as wit-
nessed by the query h1 above.

5.3 COMPARISON WITH PRIOR LIFTED
FO-CIRCUITS

(Van den Broeck et al., 2011; Van den Broeck, 2013)
introduce FO d-DNNF circuits, to compute symmetric
WFOMC problems. An FO d-DNNF is a circuit whose
nodes are one of the following: decomposable conjunc-
tion (Q1 ∧Q2 where Q1,Q2 do not share any common
predicate symbols), deterministic-disjunction (Q1∨Q2

where Q1 ∧ Q2 ≡ false), inclusion-exclusion, decom-
posable universal quantifier (a type of ∀x,Q(x)), and
deterministic automorphic existential quantifier. The
latter is an operation that is specific only to structures
with symmetric weights, and therefore does not apply
to our setting. We prove that our algorithm can com-
pute all formulas that admit an FO d-DNNF circuit.

Fact 5.1. If Q admits an FO d-DNNF without a deter-
ministic automorphic existential quantifier, then LiftR

computes Pr(Q) in PTIME in the size of the PDB.

The proof is immediate by noting that all other node
types in the FO d-DNNF have a corresponding step in
LiftR, except for deterministic disjunction, which our
algorithm computes using inclusion-exclusion: Pr(Q1∨

Q2) = Pr(Q1)+Pr(Q2)−Pr(Q1∧Q2) = Pr(Q1)+Pr(Q2)
because Q1 ∧ Q2 ≡ false. However, our algorithm
is strictly more powerful than FO d-DNNFs for the
asymmetric WFOMC task, as we explain next.

5.4 CANCELLATIONS IN
INCLUSION/EXCLUSION

We now look at a more complex query. First, let us
denote four simple queries:

q0 = (R(x0) ∨ S1(x0, y0))
q1 = (S1(x1, y1) ∨ S2(x1, y1))
q2 = (S2(x2, y2) ∨ S3(x2, y2))
q3 = (S3(x3, y3) ∨ T (y3))

(Dalvi and Suciu, 2012) proved that their conjunction,
i.e. the query h3 = q0 ∧ q1 ∧ q2 ∧ q3, is #P-hard in data
complexity. Instead of h3, consider:

QW = (q0 ∨ q1) ∧ (q0 ∨ q3) ∧ (q2 ∨ q3)
There are three clauses sharing relation symbols, hence
we cannot apply a decomposable conjunction. How-
ever, each clause is disconnected, for example q0 and
q1 do not share logical variables, and we can thus write
QW as a disjunction. After removing redundant terms:

QW = (q0 ∧ q2) ∨ (q0 ∧ q3) ∨ (q1 ∧ q3)
Our algorithm applies the inclusion/exclusion formula:

Pr(QW ) = Pr(q0 ∧ q2) +Pr(q0 ∧ q3) +Pr(q1 ∧ q3)
−Pr(q0 ∧ q2 ∧ q3) −Pr(q0 ∧ q1 ∧ q3) −Pr(q0 ∧⋯∧ q3)
+Pr(q0 ∧⋯∧ q3)

At this point our algorithm performs an important
step: it cancels out the last two terms of the inclu-
sion/exclusion formula. Without this key step, no
algorithm could compute the query in PTIME, be-
cause the last two terms are precisely h3, which is
#P-hard. To perform the cancellation the algorithm
needs to first check which FOL formulas are equivalent,
which, as we have seen, is decidable for our language
(Theorem 2.1). Once the equivalent formulas are de-
tected, the resulting expressions can be organized in a
lattice, as shown in Figure 2, and the coefficient of each
term in the inclusion-exclusion formula is precisely the
lattice’s Möbius function (Stanley, 1997).

6 EXTENSIONS AND

LIMITATIONS

We describe here an extension of LiftR to symmetric
WFOMC, and also prove that a complete characteriza-
tion of the complexity of all FOL queries is impossible.

6.1 SYMMETRIC WFOMC

Many applications of SRL require weighted model
counting for FOL formulas over PDBs where the prob-
abilities are associated to relations rather than individ-
ual tuples. That is, Friend(a, b) has the same prob-
ability, independently of the constants a, b in the do-
main. In that symmetric WFOMC case, the model has



1̂

q0 ∧ q2 q0 ∧ q3 q1 ∧ q3

q0 ∧ q2 ∧ q3 q0 ∧ q1 ∧ q3

q0 ∧ q1 ∧ q2 ∧ q3

Figure 2: Lattice for Qw. The bottom query is #P-hard, yet all terms in the inclusion/exclusion formula that
contain this term cancel out, and Pr(QW ) is computable in PTIME.

a large number of symmetries (since the probabilities
are invariant under permutations of constants), and
lifted inference algorithms may further exploit these
symmetries. (Van den Broeck, 2013) employ one op-
erator that is specific to symmetric probabilities, called
atom counting, which is applied to a unary predicate
R(x) and iterates over all possible worlds of that pred-
icate. Although there are 2n possible worlds for R, by
conditioning on any world, the probability will depend
only on the cardinality k of R, because of the symme-
tries. Therefore, the system iterates over k = 0, n, and
adds the conditional probabilities multiplied by (n

k
).

For example, consider the following query:

H = (¬R(x) ∨ S(x, y) ∨ ¬T (y)) (1)

Computing the probabilities of this query is #P-hard
(Theorem 4.2). However, if all tuples R(a) have the
same probability r ∈ [0,1], and similarly tuples in S,T

have probabilities s, t, then one can check that2

Pr(H) = ∑
k,l=0,n

rk ⋅ (1 − r)n−k ⋅ tl ⋅ (1 − t)n−l ⋅ (1 − skl)

Denote Sym-LiftR the extension of LiftR with a de-
terministic automorphic existential quantifier opera-
tor. The question is whether this algorithm is complete
for computing the probabilities of queries over PDBs
with symmetric probabilities. Folklore belief was that
this existential quantifier operator was the only opera-
tor required to exploit the extra symmetries available
in PDBs with symmetric probabilities. For example,
all queries in (Van den Broeck et al., 2011) that can be
computed in PTIME over symmetric PDBs have the
property that, if one removes all unary predicates from
the query, then the residual query can be computed in
PTIME over asymmetric PDBs.

We answer this question in the negative. Consider the
following query:

Q =(S(x1, y1) ∨ ¬S(x1, y2) ∨ ¬S(x2, y1) ∨ S(x2, y2))
Here, we interpret S(x, y) as a typed relation, where

2Conditioned on ∣R∣ = k and ∣T ∣ = l, the query is true if
S contains at least one pair (a, b) ∈ R × T .

the values x and y are from two disjoint domains, of
sizes n1, n2 respectively, in other words, S ⊆ [n1]×[n2].
Theorem 6.1. We have that

– Pr(Q) can be computed in time polynomial in the
size of a symmetric PDB with probability p as
Pr(Q) = f(n1, n2) + g(n1, n2) where:

f(n1,0) = 1
f(n1, n2) = n1

∑
k=1

(n1

k
)pkn2g(n1 − k,n2)

g(0, n2) = 1
g(n1, n2) = n2

∑
ℓ=1

(n2

ℓ
)(1 − p)n1ℓf(n1, n2 − ℓ)

– Sym-LiftR fails to compute Q.

The theorem shows that new operators will be required
for symmetric WFOMC. We note that it is currently
open whether computing Pr(Q) is #P-hard in the case
of asymmetric WFOMC.

Proof. Denote Dx,Dy the domains of the variables x

and y. Fix a relation S ⊆ D1 × D2. We will denote
a1, a2, . . . ∈ D1 elements from the domain of the vari-
able x, and b1, b2, . . . ∈ D2 elements from the domain
of the variable y. For any a, b, define a ≺ b if (a, b) ∈ S,
and a ≻ b if (a, b) /∈ S; in the latter case we also write
b ≺ a. Then, (1) for any a, b, either a ≺ b or b ≺ a,
(2) ≺ is a partial order on the disjoint union of the do-
mains D1 and D2 iff S satisfies the query Q. The first
property is immediate. To prove the second property,
notice that Q states that there is no cycle of length 4:
x1 ≺ y2 ≺ x2 ≺ y1 ≺ x1. By repeatedly applying resolu-
tion between Q with itself, we derive that there are no
cycles of length 6, 8, 10, etc. Therefore, ≺ is transitive,
hence a partial order. Any finite, partially ordered set
has a minimal element, i.e. there exists z s.t. ∀x, x /≺ z.
Let Z be the set of all minimal elements, and denote
X =D1∩Z and Y =D2 ∩Z. Then exactly one of X or
Y is non-empty, because if both were non-empty then,
for a ∈ X and b ∈ Y we have either a ≺ b or a ≻ b con-
tradicting their minimality. Assuming X ≠ ∅, we have



(a) for all a ∈ X and b ∈ D2, (a, b) ∈ S, and (b) Q is
true on the relation S′ = (D1 −X)×D2. This justifies
the recurrence formula for Pr(Q).
6.2 THE COMPLEXITY OF ARBITRARY

FOL QUERIES

We conjecture that, over asymmetric probabilities
(asymmetric WFOMC), our algorithm is complete, in
the sense that whenever it fails on a query, then the
query is provably #P-hard. Notice that LiftR applies
only to a fragment of FOL, namely to CNF formulas
without function symbols, and where all variables are
universally quantified. We present here an impossibil-
ity result showing that a complete algorithm cannot
exist for general FOL queries. We use for that a clas-
sic result by Trakhtenbrot (Libkin, 2004):

Theorem 6.2 (Finite satisfiability). The problem:
“given a FOL sentence Φ, check whether there exists
a finite model for Φ” is undecidable.

From here we obtain:

Theorem 6.3. There exists no algorithm that, given
any FOL sentence Q checks whether Pr(Q) can be
computed in PTIME in the asymmetric PDB size.

Proof. By reduction from the finite satisfiability prob-
lem. Fix the hard query H in Eq.(1), for which the
counting problem is #P-hard. Recall that H uses the
symbols R,S,T . Let Φ be any formula over a disjoint
relational vocabulary (i.e. it doesn’t use R,S,T ). We
will construct a formulaQ, such that computing Pr(Q)
is in PTIME iff Φ is unsatisfiable in the finite: this
proves the theorem. To construct Q, first we modify
Φ as follows. Let P (x) be another fresh, unary rela-
tional symbol. Rewrite Φ into Φ′ as follows: replacing
every (∃x.Γ) with (∃x.P (x)∧Γ) and every (∀x.Γ) with(∀x.P (x)⇒ Γ) (this is not equivalent to the guarded
fragment of FOL); leave the rest of the formula un-
changed. Intuitively, Φ′ checks if Φ is true on the sub-
structure defined by the domain elements that satisfy
P . More precisely: for any database instance I, Φ′ is
true on I iff Φ is true on the substructure of I defined
by the domain elements that satisfy P (x). Define the
query Q = (H ∧Φ′). We now prove the claim.

If Φ is unsatisfiable then so is Φ′, and therefore
Pr(Q) = 0 is trivially computable in PTIME.

If Φ is satisfiable, then fix any deterministic database
instance I that satisfies Φ; notice that I is determin-
istic, and I ⊧ Φ. Let J be any probabilistic instance
over the vocabulary for H over a domain disjoint from
I. Define P (x) as follows: P (a) is true for all domain
elements a ∈ I, and P (b) is false for all domain ele-
ments b ∈ J . Consider now the probabilistic database

I ∪ J . (Thus, P (x) is also deterministic, and selects
the substructure I from I ∪ J ; therefore, Φ′ is true in
I ∪ J .) We have Pr(Q) = Pr(H ∧ Φ′) = Pr(H), be-
cause Φ′ is true on I∪J . Therefore, computing Pr(Q)
is #P-hard. Notice the role of P : while I satisfies Φ, it
is not necessarily the case that I ∪ J satisfies Φ. How-
ever, by our construction we have ensured that I ∪ J

satisfies Φ′.

7 PROOF OF THEOREM 4.2

The proof of Theorem 4.2 is based on a reduction
from the #PP2-CNF problem, which is defined as
follows. Given two disjoint sets of Boolean vari-
ables X1, . . . ,Xn and Y1, . . . , Yn and a bipartite graph
E ⊆ [n]× [n], count the number of satisfying truth as-
signments #Φ to the formula: Φ = ⋀(i,j)∈E(Xi ∨ Yj).
(Provan and Ball, 1983) have shown that this problem
is #P-hard.

More precisely, we prove the following: given any
Type-1 query Q on which the algorithm LiftR fails,
we can reduce the #PP2-CNF problem to comput-
ing Pr(Q) on a PDB with domain size n. The re-
duction consists of a combinatorial part (the construc-
tion of certain gadgets), and an algebraic part, which
makes novel use of the concepts of algebraic indepen-
dence (Yu, 1995) and annihilating polynomials (Kayal,
2009). We include the latter in the appendix, and
only illustrate here the former on a particular query of
Type-1.

We illustrate the combinatorial part of the proof on
the following query Q:

(R(x) ∨ ¬S(x, y) ∨ T (y))∧ (¬R(x) ∨ S(x, y) ∨ ¬T (y))
To reduce Φ to the problem of computing Pr(Q), we
construct a structure with unary predicates R and T

and binary predicate S, with active domain [n].
We define the tuple probabilities as follows. Letting
x, y, a, b ∈ (0,1) be four numbers that will be specified
later, we define:

Pr(R(i)) = x
Pr(T (j)) = y

Pr(S(i, j)) = { a if (i, j) ∈ E
b if (i, j) /∈ E

Note this PDB does not have symmetric probabilities:
in fact, over structures with symmetric probabilities
one can compute Pr(Q) in PTIME.

Let θ denote a valuation of the variables in Φ. Let Eθ

denote the event ∀i.(R(i) = true iff θ(Xi) = true)
∧ ∀j.(T (j) = true iff θ(Yj) = true).
Eθ completely fixes the unary predicates R and T and



leaves S unspecified. Given Eθ, each Boolean variable
corresponding to some S(x, y) is now independent of
every other S(x′, y′). In general, given an assignment
of R(i) and T (j), we examine the four formulas that
define the probability that the query is true on (i, j):
F1 = Q[R(i) = 0, T (j) = 0], F2 = Q[R(i) = 0, T (j) = 1],
F3 = Q[R(i) = 1, T (j) = 0], F4 =Q[R(i) = 1, T (j) = 1].
For Q, F1, F2, F3, F4 are as follows:

F1 = ¬S(i, j) F2 = F3 = true F4 = S(i, j)
Denote f1, f2, f3, f4 the arithmetization of these
Boolean formulas:

f1 = { 1 − a if (i, j) ∈ E
1 − b if (i, j) /∈ E

f4 = { a if (i, j) ∈ E
b if (i, j) /∈ E

Note that f2 = f3 = 1 and do not change Pr(Q).
Define the parameters k, l, p, q of Eθ as k = number of
i’s s.t. R(i) = true, l = number of j’s s.t. T (j) = true,
p = number of (i, j) ∈ E s.t. R(i) = T (j) = true, q =
number of (i, j) ∈ E s.t. R(i) = T (j) = false.
Let N(k, l, p, q) = the number of θ’s that have pa-
rameters k, l, p, q. If we knew all (n + 1)2(m + 1)2
values of N(k, l, p, q), we could recover #Φ by sum-
ming over N(k, l, p, q) where q = 0. That is, #Φ =

∑k,l,pN(k, l, p,0).
We now describe how to solve for N(k, l, p, q), com-
pleting the hardness proof for Pr(Q).
We have Pr(Eθ) = xk(1 − x)n−kyl(1 − y)n−l and
Pr(Q∣Eθ) = ap(1 − a)qbkl−p(1 − b)(n−k)(n−l)−q. Com-
bined, these give the following expression for Pr(Q):

Pr(Q) =∑
θ

Pr(Q∣Eθ)Pr(Eθ)
= (1 − b)n2(1 − x)n(1 − y)n ∑

k,l,p,q

T (1)

where:

T =N(k, l, p, q) ∗ (a/b)p[(1 − a)/(1 − b)]q
[x/(1 − b)n(1 − x)]k[y/(1 − b)n
(1 − y)]l[b(1 − b)]kl
=N(k, l, p, q) ∗ApBqXkY lCkl (2)

Equations (1) and (2) express Pr(Q) as a polynomial
in X,Y,A,B,C with unknown coefficients N(k, l, p, q).
Our reduction is the following: we choose (n+1)2(m+

1)2 values for the four parameters x, y, a, b ∈ (0,1),
consult an oracle for Pr(Q) for these settings of the pa-
rameters, then solve a linear system of (n+1)2(m+1)2
equations in the unknowns N(k, l, p, q). The crux of
the proof consists of showing that the matrix of the
system is non-singular: this is far from trivial, in fact

had we started from a PTIME query Q then the sys-
tem would be singular. Our proof consists of two
steps (1) prove that we can choose X,Y,A,B indepen-
dently, in other words that the mapping (x, y, a, b) ↦(X,Y,A,B) is locally invertible (has a non-zero Ja-
cobian), and (2) prove that there exists a choice of(n + 1)2(m + 1)2 values for (X,Y,A,B) such that the
matrix of the system is non-singular: then, by (1) it
follows that we can find (n + 1)2(m + 1)2 values for(x, y, a, b) that make the matrix non-singular, complet-
ing the proof. For our particular example, Part (1) can
be verified by direct computations (see Section A.3);
for general queries this requires Section A.12. Part (2)
for this query is almost as general as for any query and
we show it in Section A.2.

8 RELATED WORK

The algorithm and complexity results of
(Dalvi and Suciu, 2012), which apply to positive
queries, served as the starting point for our inves-
tigation of asymmetric WFOMC with negation.
See (Suciu et al., 2011) for more background on
their work. The tuple-independence assumption
of PDBs presents a natural method for modeling
asymmetric WFOMC. Existing approaches for PDBs
can express complicated correlations (Jha et al.,
2010; Jha and Suciu, 2012) but only consider queries
without negation.

Close in spirit to the goals of our
work are (Van den Broeck, 2011) and
(Jaeger and Van den Broeck, 2012). They intro-
duce a formal definition of lifted inference and
describe a powerful knowledge compilation technique
for WFOMC. Their completeness results for first-
order knowledge compilation on a variety of query
classes motivate our exploration of the complexity of
lifted inference. (Cozman and Polastro, 2009) analyze
the complexity of probabilistic description logics.

Other investigations of evidence in lifted inference in-
clude (Van den Broeck and Davis, 2012), who allow
arbitrary hard evidence on unary relations, (Bui et al.,
2012), who allow asymmetric soft evidence on a single
unary relation, and (Van den Broeck and Darwiche,
2013), who allow evidence of bounded Boolean rank.
Our model allows entirely asymmetric probabilities
and evidence.

9 CONCLUSION

Our first contribution is the algorithm LiftR for count-
ing models of arbitrary CNF sentences over asymmet-
ric probabilistic structures. Second, we prove a novel
dichotomy result that completely classifies a subclass



of CNFs as either PTIME or #P-hard. Third, we de-
scribe capabilities of LiftR not present in prior lifted
inference techniques. Our final contribution is an ex-
tension of our algorithm to symmetric WFOMC and
a discussion of the impossibility of establishing a di-
chotomy for all first-order logic sentences.
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A APPENDIX

A.1 RANKING QUERIES

We show here that every query can be ranked (see
Section 3.2), by modifying both the query Q and the
database. Each relational symbol R of arity k is re-
placed by several symbols, one for each possible or-
der of its attributes. We illustrate this for the case
of a binary relation symbol R(x, y). Given a do-
main of size n and probabilities Pr(R(a, b)) for all
tuples in R, we create three new relation symbols,
R1(x, y),R2(x),R3(y, x), and define their probabili-
ties as follows:

Pr(R1(a, b)) ={ Pr(R(a, b)) if a < b
0 otherwise

Pr(R2(a)) =Pr(R(a, a))
Pr(R3(b, a)) ={ Pr(R(a, b)) if a > b

0 otherwise

Then, we also modify the query as follows. First, we
replace every atom R(x, y) with R1(x, y) ∨R′2(x, y) ∨
R3(y, x), and every negated atom ¬R(x, y) with
¬R1(x, y)∧¬R′2(x, y)∧¬R3(y, x), re-write the query in
CNF, then replace each clause containing some atom
R′2(x, y) with two clauses: in the first we substitute
y ∶= x, and in the second we replace R′2(x, y) with
false (which means that, if R′2(x, y) was positive then
we remove it, and if it was negated then we remove the
entire clause). Section 3.2 provides an example of this
procedure.

A.2 PROVING THE MATRIX OF
SECTION 7 IS INVERTIBLE

LetM(m1,m2, n1, n2) be the matrix whose entries are:

Ap
uB

q
vX

k
wY

l
zC

kl
uv

where the row is (p, q, k, l) and column is (u, v,w, z)
and the ranges are:

p, u = 0, ..,m1 − 1

q, v = 0, ..,m2 − 1

k,w = 0, .., n1 − 1

l, z = 0, .., n2 − 1

Given a vector X0,X1, . . . ,Xn−1 denote V(X) the de-
terminant of their Vandermonde matrix: V (X) =
∏0≤k<k′<n(Xk −Xk′)

Lemma A.1. If m1 =m2 = 1 then

det(M) = Cn1n2(n1−1)(n2−1)/4
00 V n2(X)V n1(Y )

Proof. The matrix M(1,1, n1, n2) has the following
entries:

Xk
wY

l
zC

kl
00

All elements in row (k, l) have the common factor Ckl
00.

After we factorize it from each row, the remaining ma-
trix is a Kronecker product of two Vandermonde ma-
trices.

Lemma A.2.

det(M(m1,m2, n1, n2)) =
∏
u>0

(Au −A0)m2n1n2

det(M(1,m2, n1, n2))
det(M(m1 − 1,m2, n1, n2))

Where in M(m1 − 1,m2, n1, n2) instead of
A0, . . . ,Am1−2 we have A1, . . . ,Am1−1, i.e. the
index u is shifted by one, and similarly in Cuv the
index u is shifted by one.

Proof. We eliminate A0, similarly to how we would
eliminate it from a Vandermonde matrix: subtract
from row (p + 1, q, k, l) the row (p, q, k, l) multiplied
by A0; do this bottom up, and cancel A0 in all rows,
except the rows of the form (0, q, k, l). We only need to
be careful that, when we cancel A0 in row (p+1, q, k, l)
we use the same q, k, l to determine the row (p, q, k, l).
For an illustration we show below these two rows(p, q, k, l) and (p + 1, q, k, l), and the two columns,(0, v0,w0, z0) and (u, v,w, z):
In the original matrix:

⎛⎜⎜⎜⎜⎜⎝

⋮ ⋮ ⋮ ⋮ ⋮

. . . T1 . . . T2 . . .

⋮ ⋮ ⋮ ⋮ ⋮

. . . T3 . . . T4 . . .

⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎠
Where:

T1 = A
p
0B

q
v0
Xk

w0
Y l
z0
Ckl

0,v0

T2 = A
p
uB

q
vX

k
wY

l
zC

kl
uv

T3 = A
p+1
0 Bq

v0
Xk

w0
Y l
z0
Ckl

0,v0

T4 = A
p+1
u Bq

vX
k
wY

l
zC

kl
uv

Subtract the first row times A0 from the second row,
and obtain:



⎛⎜⎜⎜⎜⎜⎝

⋮ ⋮ ⋮ ⋮ ⋮

. . . T1 . . . T2 . . .

⋮ ⋮ ⋮ ⋮ ⋮

. . . 0 . . . T4 −A0T2 . . .

⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎠
Where:

T4 −A0T2 = (Au −A0)Ap
uB

q
vX

k
wY

l
zC

kl
uv

Repeat for all rows in this order: (m1−1, q, k, l), (m1−

2, q, k, l), . . . , (1, q, k, l), and for all combinations of
q, k, l. Let’s examine the resulting matrix.

Assume that the first m2n1n2 rows are of the form(0, q, k, l). Also, assume that the firstm2n1n2 columns
are the form (0, v,w, z) (permute if necessary)

Therefore the matrix looks like this:

( m1 . . .

0 M ′ )
Where:

• The top-left m2n1n2 rows and columns are pre-
ciselym1 =M(1,m2, n1, n2). Notice that this ma-
trix does not depend on A. All entries below it
are 0.

• Therefore, det(M) = det(m1)det(M ′)
where M ′ is the bottom right matrix (what re-
mains after removing the first m2n1n2 rows and
columns). This follows from a theorem on ex-
panding determinants

• M ′ has a factor (Au − A0) in every column(u, v,w, z). Factorize this common factor, noting
that it occurs m2n1n2 times (for all combinations
of v,w, z). Thus:

det(M ′) =∏
u

(Au −A0)m2n1n2det(M ′′)
where M ′′ is the matrix resulting from M ′ after
factorizing.

• The entries of M ′′ are precisely:

Ap
uB

q
vX

k
wY

l
zC

kl
uv

where p = 0, . . . ,m1 − 2, and u = 1, . . . ,m1 − 1 and
the other indices have the same range as before.

• Therefore, M ′′
= M(m1 − 1,m2, n1, n2), with the

only change that the index u is shifted by one.

Lemmas A.1 and A.2 prove that det(M) ≠ 0 whenever
all the A’s, the B’s, the X ’s, and the Z’s are distinct,
and all Cuv ≠ 0. Thus, our determinant in Section 7 is
nonzero, as Cuv = (Au − 1)(Bv − 1)/(Bv −Au).

A.3 PROVING THE FUNCTIONS OF
SECTION 7 ARE LOCALLY
INVERTIBLE

In this section, we prove that the functions from the
example in Section 7 are locally invertible:

X(x, b) = x

(1 − x)(1 − b)n
Y (y, b) = y

(1 − y)(1 − b)n
A(a, b) =a

b

B(a, b) =1 − a

1 − b

We show this by computing the determinant of the Ja-
cobian matrix of these functions. In the general proof,
the concept of algebraic independence replaces the no-
tion of locally invertible.

Let J be the Jacobian matrix of the
vector-valued function F (x, y, a, b) =(X(x, b), Y (y, b),A(a, b),B(a, b)).

J =

⎛⎜⎜⎜⎜⎝

1
b

−a
b2

0 0
−1
1−b

1−a
(1−b)2

0 0

0 nx
(1−x)(1−b)n+1

1
(1−x)2(1−b)n

0

0 ny

(1−y)(1−b)n+1
0 1

(1−y)2(1−b)n

⎞⎟⎟⎟⎟⎠
The determinant of this matrix is:

det(J) = b − a

(1 − y)2(1 − x)2b2(1 − b)2(n+1)
For any values of x, y, a, b s.t. a ≠ b, det(J) ≠ 0. By
the inverse function theorem, F is invertible in some
neighborhood contained in (0,1)4. We pick our values
of x, y, a, b to lie within this neighborhood.

A.4 DEFINITIONS

Let Q be a query with a single left unary and a single
right unary symbol U(x), V (y). Let F be its Boolean
formula, and denote:

F00 = F [0/U,0/V ]
F01 = F [0/U,1/V ]
F10 = F [1/U,0/V ]
F11 = F [1/U,1/V ]

With some abuse of notation we refer to these func-
tions as F1, F2, F3, F4, and their arithmetizations to
multilinear polynomials as f1, f2, f3, f4.

Call Q splittable if F has a prime implicate consist-
ing only of unary symbols with at least one left unary
symbol U and at least one right unary symbol V . Note



that if Q is splittable, then the algorithm applies the
inclusion/exclusion formula.

Call Q decomposable if F = (F1 ∧ F2), where all left
unary symbols Ui are in F1, all right unary symbols
Vj are in F2, and F1, F2 do not share any common
symbols (they are independent). Note that if Q is de-
composable, then the algorithm applies decomposable
conjunction.

Call Q immediately unsafe if it is neither splittable
nor decomposable. When running the algorithm on
an immediately unsafe query Q, the algorithm is im-
mediately stuck.

Given queries Q,Q′ we say that Q rewrites to Q′, with
notation Q → Q′, if Q′ can be obtained from Q by
setting some symbol to true or to false, i.e. F ′ =

F [0/Z] or F ′ = F [1/Z].
Call a query Q unsafe if it can be rewritten to some
immediately unsafe query: Q → . . . → Q′ and Q′ is
immediately unsafe.

Call a query Q forbidden if it is immediately unsafe,
and any further rewriting Q → Q′ is to a safe query
(i.e. Pr(Q′) can be computed by the algorithm, and
therefore is in PTIME).

Fact A.3. Q is splittable iff one of the four functions
F1, . . . , F4 is unsatisfiable.

Proof. If Q is splittable then it has a prime implicate
of the form ((¬)U ∨ (¬)V ). Then that corresponding
function is 0. For example, suppose Q ⇒ (¬U ∨ V ).
Then F10 = F [1/U,0/V ] = 0.
Fact A.4. Q is decomposable iff there exists poly-
nomials g0, g1 and h0, h1 such that the polynomials
f00, f01, f10, f11 factorize as follows:

f00 = g0h0

f01 = g0h1

f10 = g1h0

f11 = g1h1

Proof. Assume f00, f01, f10, f11 factorize as above.
Then we have f = (1 − u)(1 − v)f00 + ⋅ ⋅ ⋅ + uvf11 =((1 − u)g0 + ug1)((1 − v)h0 + vh1) proving that Q is
decomposable. The converse is immediate.

Our hardness proof requires the following background
on multivariate polynomials:

Definition A.5 (Annihilating Polynomial). Let
f1, . . . , fn be multivariate polynomials. An annihilat-
ing polynomial is a polynomial A(z1, . . . , zn) such that
the following identity holds: A(f1, . . . , fn) = 0.

Definition A.6 (Algebraic Independence). A set of
polynomials f1, . . . , fn is algebraically independent if
there does not exist an annihilating polynomial that
annihilates f1, . . . , fn. If f1, . . . , fn have an anni-
hilating polynomial, then the Jacobian determinant
Det(J(f1, . . . , fn)) = 0 everywhere. In this case, the
polynomials are said to be algebraically dependent.

Proposition A.7. If f1, . . . , fn are over n − 1 vari-
ables, then they have an annihilating polynomial.
Equivalently, f1, . . . , fn are algebraically dependent.

Proposition A.8. If f1, . . . , fn have an annihilating
polynomial, and any n − 1 are algebraically indepen-
dent, then there exists a unique irreducible annihilating
polynomial A for f1, . . . , fn.

Proposition A.9. If the Jacobian J(f1, . . . , fn) has
rank less than n, then f1, . . . , fn have an annihilating
polynomial.

Our proofs consider annihilating polynomials for the
four Boolean functions resulting from a query Q con-
ditioned on its unary left and right predicates.

Consider the following two examples of annihilating
polynomials:

• If Q decomposes: f1 = g0h0, f2 = g0h1, f3 = g1h0,
f4 = g1h1, then the annihilating polynomial is
A = f1f4 − f2f3 = 0

• Suppose f1 = x1 + x2 − x1x2, f2 = x1x2, f3 = x1.
Then A = (f1 + f2 − f3)f3 − f2 = 0

We also need the following: (1) The ideal generated
by f1, . . . , fn, denoted ⟨f1, . . . , fn⟩, is the set of poly-
nomials of the form f1h1 + ⋅ ⋅ ⋅ + fnhn, for arbitrary
h1, . . . , hn. (2) The variety of an ideal I is V (I) ={a∣∀f ∈ I, f[a/x] = 0}. In particular, V (f1, . . . , fn)
is the variety of ⟨f1, . . . , fn⟩ and consists of all com-
mon roots of f1, . . . , fn. (3) Hilbert’s Nullstellensatz:
if V (I) ⊆ V (f) then there exists m s.t. fm

∈ I. We
only need a very simple consequence: if p is irreducible
and V (p) ⊆ V (f), then f ∈ ⟨p⟩. In other words, f is
divisible by p.

A.5 OUTLINE OF HARDNESS PROOF

Given a forbidden query Q, we prove hardness by
reduction from #PP2CNF (see Section 7). Given a
PP2CNF formula Φ:

Φ = ⋀
(i,j)∈E

(Xi ∨ Yj)



Where E ⊆ [n]×[n], we set the probabilities as follows:
Pr(U(i)) = u
Pr(V (j)) = v
Pr(X1(i, j)) = x1,Pr(X2(i, j) = x2, . . . if(i, j) ∈ E
Pr(X1(i, j)) = y1,Pr(X2(i, j) = y2, . . . if(i, j) /∈ E

Fix an assignment θ ∶ {X1, . . . ,Xn, Y1, . . . , Yn} →{0,1}.
Define the following parameters of θ:

k = number of i’s s.t. Xi = 1

l = number of j’s s.t. Yj = 1

q = number of (i, j) ∈ E s.t. Xi = 0, Yj = 0

r = number of (i, j) ∈ E s.t. Xi = 0, Yj = 1

s = number of (i, j) ∈ E s.t. Xi = 1, Yj = 0

p = number of (i, j) ∈ E s.t. Xi = 1, Yj = 1

Let N(k, l, q, r, s, p) = number of assignments θ with
these parameters.

By repeating the calculations we did for the example
query, and omitting a constant factor, we obtain:

Pr(Q) = ∑
k,l,q,r,s,p

N(k, l, q, r, s, p)AqBrCsDpXkY lHkl

Where:

A = f00(x1, x2, . . . )/f00(y1, y2, . . . )
B = f01(x1, x2, . . . )/f01(y1, y2, . . . )
C = f10(x1, x2, . . . )/f10(y1, y2, . . . )
D = f11(x1, x2, . . . )/f11(y1, y2, . . . )
H = depends on A,B,C,D

X = depends on A,B,C,D and u

Y = depends on A,B,C,D and v

As in the example of Section 7, we use an oracle for
Pr(Q) repeatedly to construct a system of linear equa-
tions and solve for N(k, l, q, r, s, p) in polynomial time.
From here we derive #Φ.

To do this, we must prove that the matrix M of the
resulting system has det(M) ≠ 0.
The same technique used in Section A.2 generalizes
to prove that M is non-singular, as long as we can
produce distinct values for A,B,C, and D. This es-
tablishes the following:

Fact A.10. Let m = ∣E∣. Consider four sequences of
m+1 distinct numbers:

Au u = 0, . . . ,m

Bv v = 0, . . . ,m

Cw w = 0, . . . ,m

Dz z = 0, . . . ,m

Suppose that for every combination of u, v,w, z

we can find probabilities x1, x2, . . . , y1, y2, . . .

s.t. Au = f00(x1, x2, . . . )/f00(y1, y2, . . . ),
Bv = f01(x1, x2, . . . )/f01(y1, y2, . . . ), etc. Then
det(M) ≠ 0.
Thus, to prove that Pr(Q) is #P-hard it suffices to
prove that the four functions A,B,C,D are invertible:
that is, given their output values Au, . . . ,Dz , we must
find inputs x1, x2, . . . , y1, y2, . . . s.t. when the func-
tions are applied to those inputs they result in the
desired values.

Clearly, A,B,C,D are not invertible in two trivial
cases: when some of the functions f00, f01, f10, f11 are
constants, or when two or more are equivalent. There
are several other special cases, detailed later. As we
will see, some of these cases may still be solved by iden-
tifying a subset of {A,B,C,D} which is invertible, and
the rest of the cases are solved by a second hardness
proof technique referred to as the zigzag construction.

Overloading terminology, we say that a query Q is in-
vertible iff A,B,C,D (or a subset thereof, if some func-
tions are equivalent or constant) are invertible. The
case analysis of Section A.7 proves the following theo-
rem:

Theorem A.11. Let Q be a forbidden Type 1 query.
Then one of the following holds:

• Q is invertible and we apply the hardness proof as
described above

• Q admits the zigzag construction and hardness
proof of Section A.11

A.6 IMPLICATIONS OF ALGEBRAIC
INDEPENDENCE

Establishing the algebraic independence of the func-
tions A,B,C,D is one of two primary challenges
in the proof technique of Section A.5. We dis-
cuss here how algebraic independence of the func-
tions f1g1, f2g2, f3g3, f4g4 implies the invertibility of
A,B,C,D.

Theorem A.12. Let Q be a forbidden query with
two unary atoms U,V . Suppose the four functions
F00, F01, F10, F11 are distinct and non-constant (Note
that this implies that there are at least two variables
x1, x2). Then the Jacobian of the four functions
A,B,C,D has rank 4.

Proof. We denote the four functions
f1(x), f2(x), f3(x), f4(x), where x = (x1, x2, . . . )
is the set of variables. Further denote
g1(y) = f1[y/x], . . . , g4(y) = f4[y/x], where
y = (y1, y2, . . . ) are distinct new variables. Re-



call that:

A =f1(x)/g1(y)
B =f2(x)/g2(y)
C =f3(x)/g3(y)
D =f4(x)/g4(y)

Their Jacobian has the same rank as the Jacobian of
their log, which is:

log(A) = log(f1) − log(g1)
log(B) = log(f2) − log(g2)
log(C) = log(f3) − log(g3)
log(D) = log(f4) − log(g4)

The Jacobian matrix looks like this:

J =

⎛⎜⎜⎝
1
f1

∂f1
∂x1

1
f1

∂f1
∂x2

. . . −
1
g1

∂g1
∂y1

−
1
g1

∂g1
∂y2

. . .

⋮ ⋮ . . . ⋮ ⋮ . . .
1
f4

∂f4
∂x1

1
f4

∂f4
∂x2

. . . −
1
g4

∂g4
∂y1

−
1
g4

∂g4
∂y2

. . .

⎞⎟⎟⎠
Each column corresponding to a y-variable has a minus
sign. Reversing these signs, which does not change the
rank of the matrix, we obtain the Jacobian of these
four functions:

log(f1) + log(g1)
log(f2) + log(g2)
log(f3) + log(g3)
log(f4) + log(g4)

This Jacobian is of rank 4 iff the four func-
tions f1g1, f2g2, f3g3, f4g4 are algebraically indepen-
dent.

A.7 CASE ANALYSIS

Queries which satisfy the assumptions of Lemma A.19
are invertible, and we apply the hardness proof de-
scribed in Section A.5. We consider the remaining
queries that do not satisfy the conditions of Lemma
A.19.

These queries possess functions f1, f2, f3, f4 such that:

∀q ∈ Factors(f4) −Factors(f3),
∀p ∈ Factors(f3),
V (p, q) ⊆ V (f1 ∗ f2)

And the same holds for all permutations of f1, f2, f3, f4
in the above equations.

Let:

f ′3 =Factors(f3) − Factors(f4) (1)

f ′4 =Factors(f4) − Factors(f3)
f34 =Factors(f3) ∩ Factors(f4)

The condition above is equivalent to:

∀p ∈ f3, q ∈ f
′
4, V (p, q) ⊆ V (f1 ∗ f2)

and permuting f3, f4:

∀p ∈ f ′3, q ∈ f4, V (p, q) ⊆ V (f1 ∗ f2)
The two conditions above are equivalent to the follow-
ing:

∀p ∈ f ′3, q ∈ f
′
4, V (p, q) ⊆ V (f1 ∗ f2)

∀p ∈ f ′3, q ∈ f34, V (p, q) ⊆ V (f1 ∗ f2)
∀p ∈ f34, q ∈ f

′
4, V (p, q) ⊆ V (f1 ∗ f2)

In the last two cases p, q have disjoint sets of variables.
We prove the following:

Proposition A.13. If p, q, are irreducible polyno-
mials over disjoint sets of variables, then V (p, q) ⊆
V (f ∗ g) iff V (p, q) ⊆ V (f) or V (p, q) ⊆ V (g).
The proposition follows from the following lemma.

Lemma A.14. Let p(x), q(y) be irreducible polynomi-
als, over disjoint sets of variables x and y respectively.
Suppose V (p, q) ⊆ V (f1f2) where f1(x, y), f2(x, y) are
arbitrary polynomials. Then at least one of the follow-
ing holds:

• V (p, q) ⊆ V (f1)
• V (p, q) ⊆ V (f2)

Proof. Notice that V (p, q) = {(a, b)∣p(a) = 0 ∧ q(b) =
0}. In other words, V (p, q) is the cartesian product
V (p) × V (q), and the assumption of the lemma is:

∀a ∈ V (p),∀b ∈ V (q)⇒ (a, b) ∈ V (f1f2)
We claim:

∀a ∈ V (p) ∶ either q divides f1[a/x] or (*)

q divides f2[a/x]
Indeed, if a ∈ V (p), then:

{a} × V (q) ⊆ V ((f1f2)[a/x])
Thus q divides f1[a/x]f2[a/x], hence it either divides
f1[a/x] or divides f2[a/x] (because it is irreducible).

We claim that the following stronger property holds:

either: ∀a ∈ V (p), q divides f1[a/x] (**)

or: ∀a ∈ V (p), q divides f2[a/x]
This claim proves the lemma, because in the first case
V (p, q) ⊆ V (f1), and in the second case V (p, q) ⊆
V (f2).
We prove (**) by using the remainder of dividing
f1(x, y) by q(y), which we denote g1. In other words:

g1(x, y) = sumece(x)ye (1)



Where every exponent sequence e for y is “smaller”
than the multidegree of g. Formally, following
standard notations for multivariate polynomials and
Gröbner bases, fix an admissible monomial order <,
then g1 is the normal form of g1 w.r.t. p, that is
f1⇒∗q g1 and there is no h s.t. g1⇒q h.

Similarly, let g2(x, y) be the remainder of dividing f2
by q:

g2(x, y) = sume′de′(x)ye′ (2)

From (*) we have:

∀a ∈ V (p) ∶ (+)

either: ∀e, ce[a/x] = 0
or ∀e′, de′[a/x] = 0

This implies:

∀a ∈ V (p),∀e, e′ce[a/x]de′[a/x] = 0
Or, equivalently:

∀e, e′,∀a ∈ V (p), ce[a/x]de′ [a/x] = 0
Or, still equivalently:

∀e, e′ ∶ p(x) divides ce(x)de′(x)
Since p(x) is irreducible, it implies that p(x) either
divides ce(x) or divides de′(x). We claim that the
following holds:

either: ∀e, p(x) divides ce(x) (++)

or: ∀e′, p(x) divides de′(x)
Suppose not. Then there exists e such that p(x) does
not divide ce(x) and there exists e′ such that p(x) does
not divide de′(x). This is a contradiction, because we
know that p(x) must divide one of ce(x) or de′(x).
Property (++) immediately implies (**).

Intuitively, proposition A.13 generalizes the fact that:
V (p) ⊆ V (fg) implies V (p) ⊆ V (f) or V (p) ⊆ V (g)
(because V (p) ⊆ V (f ∗ g) implies that p divides fg,
hence it divides either f or g, because p is irreducible).

By applying this argument repeatedly we obtain
V (p, q) ⊆ V (r), where r is some factor of f1 or f2.
Recall from equation (1) that f ′3 = Factors(f3) −
Factors(f4) and f ′4 = Factors(f4) − Factors(f3).
Abusing notation by using f1 to denote Factors(f1),

the conditions become:

∀p ∈ f ′3, q ∈ f34, either(p ∈ f1 ∪ f2) or
(q ∈ f1 ∪ f2)

∀p ∈ f34, q ∈ f
′
4, either(p ∈ f1 ∪ f2) or
(q ∈ f1 ∪ f2)

These conditions are equivalent to:

(f ′3 ⊆ f1 ∪ f2) or (f34 ⊆ f1 ∪ f2)
(f34 ⊆ f1 ∪ f2) or (f ′4 ⊆ f1 ∪ f2)

Indeed, suppose otherwise, i.e. there exists p ∈ f ′3 and
q ∈ f34 s.t. neither p nor q are in f1 ∪f2: then the first
condition above fails too.

Applying distributivity, these conditions are equiva-
lent to:

(f ′3 ⊆ f1 ∪ f2) and (f ′4 ⊆ f1 ∪ f2)
or

f34 ⊆ f1 ∪ f2

In other words, the proposition fails only on queries
that satisfy the following three conditions, and all con-
ditions obtained by permuting f1, . . . , f4:

f3 ⊆ f1 ∪ f2 (C1)

or

f4 ⊆ f1 ∪ f2 (C2)

or

∆(f3, f4) ⊆ f1 ∪ f2 (C3)

Where ∆ denotes the symmetric difference operator.

We can now classify the queries that do not satisfy the
assumptions of Lemma A.19 according to the following
corollary:

Corollary A.15. If a query Q does not satisfy the
assumptions of A.19, then one of the following two
cases holds:

1. There exists an irreducible factor w that occurs
in only one of the four functions F1, . . . , F4. As-
sume without loss of generality that w ∈ F4.
Then (C1) must hold, under all permutations of
f1, f2, f3. This implies that every factor that oc-
curs in f1, f2, f3 occurs in at least two of them.



Therefore, these functions look like this:

f1 = p ∗ q ∗ s

f2 = p ∗ r ∗ s

f3 = q ∗ r ∗ s

f4 = w ∗ . . .

That is, p contains all factors that occur in both
f1 and f2, likewise for q, r, s, and w occurs only
in f4. For example:

f1 = x1x2(1 − x3)
f2 = x1(1 − x3)
f3 = x2(1 − x3)
f4 = x3

2. Every factor occurs in two or more func-
tions.Then the functions look like this:

f1 = p ∗ q ∗ r ∗ [rest]
f2 = p ∗ s ∗ t ∗ [rest]
f3 = q ∗ s ∗ r ∗ [rest]
f4 = r ∗ t ∗ r ∗ [rest]

where p consists of all factors that occur in both f1
and f2, likewise for q, r, s, t, and [rest] represents
factors that occur in three or more functions.

In Section A.8 and Section A.9 we describe how
queries of these type are handled. For all other queries,
the conditions of A.19 are satisfied and we apply the
hardness proof described in Section A.5.

A.8 CASE 1

In this section, we prove that queries falling into case
1 of the analysis of Corollary A.15 still contain an al-
gebraically independent set of functions such that the
hardness proof of Section A.5 applies.

Our four functions look like:

f1 = p ∗ q ∗ s

f2 = p ∗ r ∗ s

f3 = q ∗ r ∗ s

f4 = w ∗ . . .

Where p is a product of factors, and similarly q, r, s.
w is any factor. Note that p, q, r, s do not share any
variables, due to multilinearity.

We assume that f4 ≠ 1 and is distinct from each of
f1, f2, f3.

We consider the following possibilities:

f1 = f2 = f3

or

f1 = f2, f1 ≠ f3

or

f1 ≠ f2, f1 ≠ f2, f2 ≠ f3

Note that the cases f1 = f3, f1 ≠ f2 and f2 = f3, f2 ≠ f1
are symmetric to the second case, f1 = f2, f1 ≠ f3.

Suppose f1 = f2 = f3. This implies that p = q = r = 1,
and s is any factor. Our functions are:

f1 = s

f2 = s

f3 = s

f4 = w ∗ . . .

If s = 1, then we can invert the unary predicates (by
replacing each probability p with 1 − p) as necessary
to ensure that f4 = f00, and we can solve the #PP2-
CNF by summing over assignments where the number
of clauses with end points both false is held to zero.

If s ≠ 1, then we group f1, f2, f3 into a single func-
tion, f ′. We consider an annihilating polynomial A
s.t. A(f ′g′, f4g4) = 0. We set g4 = 0 and g′ ≠ 0 (by
setting the factor w of f4 to 0) and obtain A(f ′,0) =
0 ⇒ A = a2R, a contradiction of the irreducibility of
A. This shows algebraic independence of the poly-
nomials f ′g′, f1g4, allowing the hardness reduction of
Section A.5 to proceed.

Next, suppose f1 = f2, f1 ≠ f3. If f3 = 1, then q = r =

s = 1 and our functions are:

f1 = p

f2 = p

f3 = 1

f4 = w ∗ . . .

As before, we group f1 and f2 and ensure (by manip-
ulating tuple probabilities for the unary predicates)
that f4 corresponds to f00. Algebraic independence of
f1g1 and f4g4 follows by the same argument above.

The case f1 = f2 = 1, and f3 ≠ 1, is impossible due to
the assumed structure on our functions (every factor
in f3 also appears in either f1 or f2)

Consider now the case when f1, f2, f3 are distinct.
Since s appears in all three functions, we ignore it for
now and look at p, q, r. For the functions to be dis-
tinct, we must have at least two of these factors not
equal to 1 (and themselves distinct). Assume wlog
that p ≠ 1, q ≠ 1, p ≠ q.



Then, if r = 1, our functions are:

f1 = p ∗ q ∗ s

f2 = p ∗ s

f3 = q ∗ s

f4 = w ∗ . . .

Since p, q, s are over distinct variables, there are at
least 3 distinct variables in f1, f2, f3. Consider the
(rectangular) Jacobian of f1, f2, f3 with respect to
x1, x2, x3, where x1 is chosen s.t. x1 is in p, x2 is
in q, and x3 is in s.

The Jacobian contains the following 3x3 sub matrix:

J =
⎛⎜⎝
qs∂p/∂x1

ps∂q/∂x2
pq∂s/∂x3

s∂p/∂x1
0 p∂s/∂x3

0 s∂q/∂x2
q∂s/∂x3

⎞⎟⎠
The determinant of J is:

det(J) = −pqs ∗ ∂p/∂x1
∗ ∂q/∂x2

∗ ∂s/∂x3
≠ 0

This establishes the algebraic independence of
f1, f2, f3.

Suppose there exists an annihilating polynomial
A(a1, a2, a3, a4) s.t. A(f1g1, f2g2, f3g3, f4g4) = 0. We
set g4 = 0 (using the distinct w factor) and set
g1 = c1 ≠ 0, g2 = c2 ≠ 0, g3 = c3 ≠ 0. We obtain
A(c1f1, c2f2, c3f3,0) = 0. It follows that A = a4R, as
any terms of A without a4 imply the existence of an
annihilating polynomial for c1f1, c2f2, c3f3, which im-
plies an annihilating polynomial for f1, f2, f3. Thus,
by contradiction, f1, f2, f3, f4 are algebraically inde-
pendent.

The final case is if r ≠ 1. Our functions are:

f1 = p ∗ q ∗ s

f2 = p ∗ r ∗ s

f3 = q ∗ r ∗ s

f4 = w ∗ . . .

Since p, r, q are over distinct variables, there are at
least 3 distinct variables in f1, f2, f3. As before, we
consider the (rectangular) Jacobian of f1, f2, f3 with
respect to x1, x2, x3, where x1 is chosen s.t. x1 is in p,
x2 is in q, and x3 is in r.

The Jacobian contains the following 3x3 sub matrix:

J =
⎛⎜⎝
q∂p/∂x1

p∂q/∂x2
0

r∂p/∂x1
0 p∂r/∂x3

0 r∂q/∂x2
q∂r/∂x3

⎞⎟⎠
With determinant:

det(J) = −2qpr∂p/∂x1
∗ ∂q/∂x2

∗ ∂r/∂x3

None of these terms are constantly zero, so we have
that the determinant is nonzero. Repeating the previ-
ous argument with annihilating polynomials, we prove
that f1, f2, f3, f4 are algebraically independent.

A.9 CASE 2

We prove that queries falling into case 2 of the
analysis of Corollary A.15 are precisely those queries
satisfying the conditions of the zigzag construction.
For these queries, we prove hardness as described in
Section A.11.

Our four functions look like:

f1 = p ∗ q ∗ r

f2 = p ∗ s ∗ t

f3 = q ∗ s ∗ k

f4 = r ∗ t ∗ k

Where arbitrary additional factors may be added, as
long as each of these additional factors appears in at
least three of the four functions.

Only p and k, or q and t, or r and s, can share vari-
ables. Every other pair of factors appears together in
one of f1, f2, f3, f4, and thus must have distinct vari-
ables by multilinearity. Let x be the variables of p, k,
let y be the variables of q, t, and let z be the variables
of r, s, with x, y, z all disjoint. We have:

f1 = p(x) ∗ q(y) ∗ r(z)
f2 = p(x) ∗ t(y) ∗ s(z)
f3 = k(x) ∗ q(y) ∗ s(z)
f4 = k(x) ∗ t(y) ∗ s(z)

Because x, y, z are disjoint sets of variables, we can
set p(x) = k(x) = c1 ≠ 0, q(y) = t(y) = c2 ≠ 0, and
r(z) = s(z) = c3 ≠ 0. (If a factor is identically one,
then ci = 1)

This gives us:

f1 = c1 ∗ c2 ∗ c3

f2 = c1 ∗ c2 ∗ c3

f3 = c1 ∗ c2 ∗ c3

f4 = c1 ∗ c2 ∗ c3

Note that any additional factors, added to at least
three of the four functions, must be over an indepen-
dent set of variables. Thus, we can set each such
additional factor to 1 and retain the same value of
f1, f2, f3, f4 as above.

This gives us a setting of all four functions to a con-
stant, non-zero value. This is the precondition for ap-



plying the zigzag construction of Section A.11.

A.10 MULTIPLE UNARY SYMBOLS

We prove that a query with multiple left or right unary
symbols can always be rewritten to an equivalent, in
terms of hardness, query with one unary symbol.

A.10.1 Rewriting an immediately unsafe
query

We first prove that, if Q is immediately unsafe, it is
equivalent to a query with only one left and one right
unary symbol.

Proposition A.16. If Q is immediately unsafe and U

any unary symbol, then Q[0/U] is not splittable, and
Q[1/U] is not splittable.

Proof. Let Q[0/U]⇒ T , where T is a prime implicate
consisting only of unary symbols, with at least one Ui

and one Vj . Then Q⇒ U ∨T , and one can check that
no strict subset of U ∨ T is an implicate of Q, hence
U ∨ T is a prime implicate of Q, proving that Q is
splittable, a contradiction.

Proposition A.17. If Q is immediately unsafe, has at
least two unary symbols U1, U2, and both Q[0/U1,0/U2]
and Q[1/U1,0/U2] are satisfiable, then at least one of
the following four queries is not decomposable:

Q[0/U1],Q[1/U1],Q[0/U2],Q[1/U2]
Proof. We use the following two facts:

(A) If p does not depend on u and divides f , then p

divides both f[0/u] and f[1/u]
(B) Conversely: let u, v be two distinct variables, f a

multilinear polynomial, and assume f[0/u] ≠ 0.
Let p′(v), p(v) be the unique factors of f and
f[0/u], respectively, that contain v.
Then, if p′(v) does not depend on u, then p′(v) =
p(v). In other words, the factor p(v) of f[0/u]
is also a factor of f . Notice that we must assume
f[0/u] ≠ 0, otherwise p(u) is not uniquely defined.
The same statement holds for f[1/u].

Suppose both q[0/U1] and q[1/U1] are decompos-
able. Let v be any variable corresponding to a right
predicate. Since q depends on v, at least one of
q[0/U1], q[1/U1] also depends on v, and we assume
wlog q[0/U1] depends on v.

Let p(v) be the irreducible factor of q[0/U1] that con-
tains v. By definition, p(v) does not depend on U2.

From fact (A) we obtain:

p(v) divides q[0/U1,0/U2] and
p(v) divides q[0/U1,1/U2]

Suppose now that q[0/U2] is also decomposable, and
let p′(v) be its irreducible factor containing the vari-
able v. (If q[0/U2] does not depend on v, then
p′(v) = 1.)
From Fact (A) we also obtain:

p′(v) divides q[0/U1,0/U2] and
p′(v) divides q[1/U1,0/U2]

We apply fact (B) to f = q[0/U1] and f[0/U2] =
q[0/U1,0/U2]: their factors containing v are p(v) and
p′(v) respectively, and since q[0/U1,0/U2] ≠ 0 we must
have p(v) = p′(v).
We apply fact (B) again to f = q[1/U1] and f[0/U2] =
q[1/U1,0/U2]: since the latter has the factor p(v), so
must the former, in other words p(v) is a factor of
q[1/U1].
Therefore p(v) is a factor of q, and does not contain
any unary symbol U1, U2, . . . . Repeating this argu-
ment for every variable v, we conclude that q is de-
composable, which is a contradiction.

The only cases that remain to be handled are when:

Q[0/U1] = 0 and Q[1/U2] = 0 or

Q[0/U1] = 0 and Q[1/U2] = 0
Thus, either Q ⇒ (U1 ⇔ U2), or Q ⇒ (U1 ⇔ ¬U2).
We treat these cases by substituting all occurrences
of the predicate U2 with U1 (or ¬U1) in Q. The new
query Q′ has the same probability as Q but one fewer
unary symbol.

A.10.2 Hardness of Q after
inclusion/exclusion

We prove that if the algorithm starts with queryQ and
reaches an immediately unsafe query Q′ during an in-
clusion/exclusion step, there is a sequence of determin-
istic rewrites from Q to an immediately unsafe query
Q′′. This shows that, if the algorithm gets stuck during
an inclusion/exclusion step while computing Pr(Q),
then computing Pr(Q) is #P-hard.

Suppose Q is splittable. Then Q contains one or more
splittable clauses of the form (Li∨Ri), where Li is the
disjunction of one or more left unary symbols and Ri

is the disjunction of one or more right unary symbols:

Q = (L1 ∨R1) ∧ (L2 ∨R2) ∧⋯∧ (Lm ∨Rm) ∧Q

After splitting on the (L1 ∨ R1) clause and applying
distributivity, Q may be written:



Q = L1 ∧ (L2 ∨R2) ∧⋯ ∧ (Lm ∨Rm) ∧Q

∨

R1 ∧ (L2 ∨R2) ∧⋯∧ (Lm ∨Rm) ∧Q

= Q1 ∨Q2

We may continue to split Q1 and Q2 into
Q11,Q12,Q21,Q22, and so on. Some clauses may be
lost due to the introduction of redundancy, but in gen-
eral we end up with an expression for Q as the disjunc-
tion of 2m CNF formulas Qi:

Q = Q1 ∨Q2 ∨⋯ ∨Q2m

Each Qi is of the form:

Qi = Lw1
∧⋯∧Lwj

∧Rz1 ∧⋯∧Rzk ∧Q

Where w and z define sequences mapping to
L1, . . . , Lm and R1, . . . ,Rm.

The above expression for Q in terms of the Qi is
generated by the algorithm before applying the inclu-
sion/exclusion step. Thus, the algorithm attempts to
compute Pr(Q) recursively according to the formula
Pr(Q) = −∑s⊆[m](−1)∣s∣Pr(⋀i∈s Qi). Note that every
term in this summation can be written in the gen-
eral form of Qi above. We claim that, if any term of
the summation is immediately unsafe, there is a de-
terministic rewrite sequence ρ (setting unary symbols
to true or false) that satisfies each Li and Rj clause,
such that Qi[ρ] = Q[ρ], and that Q[ρ] is immediately
unsafe. This implies that, if the algorithm gets stuck
while recursively processing a query Q after an inclu-
sion/exclusion step, Q is #P-hard.

We now prove the following proposition, from which
the above claim follows immediately.

Proposition A.18. If Q′ = L ∧ Q, where L is a
disjunction of only left or only right unary symbols,
and Q′ is immediately unsafe, then there exists a
unary symbol Ui in L and value α ∈ {0,1} such that
Q′[α/Ui] = true∧Q[α/Ui] =Q[α/Ui], and Q[α/Ui] is
immediately unsafe.

Proof. Let m be the number of positive literals in L

and n be the number of negated literals, such that L

may be written:

L = U1 ∨⋯∨Um ∨ ¬Um+1 ∨⋯ ∨ ¬Um+n

Denote by q the arithmetization of the grounding of
Q′ over a domain of size 1.

The clause L in Q′ implies that q must take the fol-

lowing form:

q = ∑
s⊆[m+n]

∏
i∈s,

1≤i≤m

ui ∏
j∈s,

m+1≤j≤m+n

(1 − uj)fs
Which states that every term of q must contain a vari-
able corresponding to some Ui in L.

Now, suppose that q[1/ui] is decomposable for all 1 ≤
i ≤ m and q[0/ui] is decomposable for all m + 1 ≤ j ≤
m + n.

We can write q[1/u1] as follows:
q[1/u1] = f{1} + ∑

s⊆[m+n]

∏
i∈s,

1≤i≤m,
i≠1

ui ∏
j∈s,m+1≤j≤m+n

(1 − uj)fs

= s1t1

Where s1 is a polynomial that contains every left unary
variable, and t1 is a polynomial that contains every
right unary variable,, and the variables of s1 and t1
are disjoint.

Since t1 divides q[1/u1], and t1 does not de-
pend on any ui, we have that t1 also divides
q[1/u1,0/u2, . . . ,0/um,1/um+1, . . . ,1/um+n] = f{1}.
Repeating this process for every ui, we see that ti di-
vides fi, for every 1 ≤ i ≤m + n. Finally, each ti must
divide q[1/u1, . . . ,1/um,0/um+1, . . . ,0/um+n], or ti = tj
for all i, j. Let t denote this common value.

We may repeat this process for all subsets of [m+n] of
size two, obtaining that t must also divide those, and
continue for all subsets of size 3,4, . . . ,m + n, until we
have that t divides fs for all s ⊆ [m + n]. From here,
we see that t divides q, contradicting the assumption
that Q′ was not decomposable.

A.11 ZIGZAG CONSTRUCTION

The zigzag construction is a technique used in
(Dalvi and Suciu, 2012) to prove the #P-hardness of
positive queries. The essence of their technique is that,
given a query Q, one can construct a DB such that
Pr(Q) ≡ Pr(Q′), where Q′ = Q1 ∧Q2 ∧ ⋯; essentially,
Q′ is the conjunction of multiple copies of Q, each
over distinct relational atoms except for their unary
atoms, which are connected in a linear chain from
Q1 → Q2 → ⋯. This is an essential tool in their re-
duction from #Φ for positive queries. The full con-
struction is quite complex, and we refer to their work
for complete details.

We note here one crucial assumption behind the zigzag
construction that prevents it from applying directly
to queries with negation: with a monotone query, by
setting tuple probabilities to 0 or 1 as appropriate, it



is simple to ensure that Pr(Q′) does not depend on
unwanted edges between atoms of KB, e.g., between
a unary atom of Qi and a unary atom of Qi+2. If the
query is monotone, we simply set all such probabilities
to 1 (in the CNF case) and the undesired components
of the query vanish. However, this is not guaranteed
to work for queries with negation: we must consider
all possible assignments to tuples in the domain, and
thus, in general, the claim that Pr(Q) ≡ Pr(Q′) fails.
The motivation for our analysis in Section A.9 is that,
when the probabilities on each unwanted edge of the
query Q′ can be set to some non-zero constant ci, we
can treat all unwanted components of the expression
for Pr(Q′) as constant factor c0, dependent on the size
of the domain and the constants c1, . . . , ck. This gives
us Pr(Q) ≡ c0Pr(Q′), allowing us in these cases to use
the zigzag construction to prove hardness for queries
with negation.

A.12 ALGEBRAIC VARIETIES

Lemma A.19. Suppose there exists two factors p ∈

Factors(f3), q ∈ Factors(f4) such that the following
hold:

(a) V (q) /⊆ V (f3)
(b) V (p, q) /⊆ V (f1) ∪ V (f2)

If k1, k2 are algebraically independent, then the poly-
nomials f1k1, f2k2, f3k3, f4k4 are algebraically inde-
pendent.

Proof. Suppose the contrary, that there exists an an-
nihilating polynomial:

A(f1k1, . . . , f4k4) = 0
From (b) we derive that there exists some value a ∈

V (p, q) such that:

f1[a/x] ≠ 0, f2[a/x] ≠ 0, f3[a/x] = f4[a/x] = 0
From (a) and (b) we derive that V (q) is not included
in V (f1)∪V (f2)∪V (f3). Otherwise V (q) ⊆ V (f1f2f3)
and by Hilbert’s Nullstellensatz: (f1f2f3)m ∈ ⟨q⟩,
hence q is a factor of (f1f2f3)m, hence it is a factor
of either f1, f2, or f3, violating either (b) or (a) Thus,
there exists a value b ∈ V (q) such that:

f1[b/x] ≠ 0, f2[b/x] ≠ 0, f3[b/x] ≠ 0, f4[b/x] = 0
We claim that it is possible to choose a and b such
that they are consistent, in other words we claim that
p[b/x] has some free variables (not set by b) such that
we can obtain a by setting those variables to some
constants.

This is easiest to see using the quotient construction.

If R[x] denotes the ring of multivariate polynomials
over x, then R[x]/q(x) is the quotient ring.

For any polynomial f(x) ∈ R[x], its equivalence class
is denoted [f(x)] ∈ R[x]/q(x). Setting q = 0 means,
technically, replacing every polynomial f with [f ].
Note that [q(x)] = 0, which implies [f4] = 0, and we
have [f1], [f2], [f3] ≠ 0, because V (q) is not a subset
of V (f1f2f3).
For a polynomial F (x, y) ∈ R[x, y], its equivalence
class [F (x, y)] is obtained by writing F as a sum of
monomials:

F = sumeCe(x)ye
Then [F (x, y)] = sume[Ce(x)]ye. Therefore, [f1k1] =[f1]k1, and likewise for f2, f3, f4.

Denoting B(z1, z2, z3) = A(z1, z2, z3,0), we cannot
have B ≡ 0 because then A would be reducible. Thus:

0 =[A(f1k1, . . . , f4k4)]
=A([f1]k1, [f2]k2, [f3]k3,0)
=B([f1]k1, [f2]k2, [f3]k3)
=B1([f1]k1, [f2]k2, [f3]k3)

Since B([f1]k1, . . . ) is identically 0, there exists an
irreducible polynomial B1 s.t. B1([f1]k1, . . . ) is iden-
tically 0.

Next, we set [p] = 0. Formally, we obtain this by
constructing the new quotient ring (R[x]/⟨q⟩)/⟨p⟩,
and mapping every polynomial [f] to [[f]]. We
have [[p]] = 0, hence [[f3]] = 0. We claim that[[f1]], [[f2]] ≠ 0. Indeed, suppose [[f1]] = 0, then[f1] ∈ ⟨[p]⟩, which is equivalent to f1 ∈ ⟨p, q⟩, but this
contradicts (b). Therefore:

0 =B1([[f1]]k1, [[f2]]k2, [[f3]]k3)
=B1([[f1]]k1, [[f2]]k2,0)

Since [[f1]], [[f2]] are non-zero, we can substitute all
their variables with constants s.t. [[f1]] = c1 ≠ 0,[[f2]] = c2 ≠ 0:

0 = B1(c1k1, c2k2,0)
This is a contradiction, proving the claim.
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