
Reasoning about Bayesian Network Classifiers

Hei Chan and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

{hei,darwiche}@cs.ucla.edu

Abstract

Bayesian network classifiers are used in many
fields, and one common class of classifiers
are naive Bayes classifiers. In this paper, we
introduce an approach for reasoning about
Bayesian network classifiers in which we ex-
plicitly convert them into Ordered Decision
Diagrams (ODDs), which are then used to
reason about the properties of these classi-
fiers. Specifically, we present an algorithm
for converting any naive Bayes classifier into
an ODD, and we show theoretically and ex-
perimentally that this algorithm can give us
an ODD that is tractable in size even given
an intractable number of instances. Since
ODDs are tractable representations of clas-
sifiers, our algorithm allows us to efficiently
test the equivalence of two naive Bayes clas-
sifiers and characterize discrepancies between
them. We also show a number of additional
results including a count of distinct classifiers
that can be induced by changing some CPT
in a naive Bayes classifier, and the range of
allowable changes to a CPT which keeps the
current classifier unchanged.

1 Introduction

A Bayesian network is a compact, graphical model of
a probability distribution which assigns a probability
to every event of interest [8, 6]. For example, in the
medical domain, a Bayesian network can be used to
compute the probability of any particular disease given
the symptoms displayed by a patient.

However, when using Bayesian networks, one is often
not interested in the exact probability of an event, but
in whether that probability is above (or below) a cer-
tain threshold, say, .5. That is, we usually use the
Bayesian network as a classifier, where we attempt to

 Pregnant?
(P)

Urine test
(U)

Blood test
(B)

Scanning test
(S)

P θp

yes .87

P S θs|p
yes −ve .10
no +ve .01

P B θb|p
yes −ve .36
no +ve .106

P U θu|p
yes −ve .27
no +ve .107

Figure 1: A Bayesian network.

classify the input (e.g., patient symptoms) into a small
number of, usually two, classes (e.g., whether the prob-
ability of a disease is no less than the given threshold).
For example, consider the network in Figure 1, where
all variables are binary. The network represents a sce-
nario where there are three different tests for detecting
pregnancy. One may use this network to classify a set
of test results into whether they confirm pregnancy, de-
pending on whether the probability of pregnancy given
the results is no less than, say, .9.

The formal definition of a Bayesian network classifier
is as follows. Given a Bayesian network N , which de-
fines the probability distribution Pr , we select a vari-
able C, called the class variable, and a set of variables
E = {E1, . . . , En} known as the attributes.1 Each in-
stantiation e of E is known as an instance. Moreover,
for some probability threshold p, the Bayesian network
can be viewed as inducing the function FN which maps
each instance e into {0, 1} as follows: FN (e) = 1 if
Pr(c | e) ≥ p, and FN (e) = 0 otherwise. The function
FN is called a Bayesian network classifier [4, 5].

1The other variables in the network are called hidden
or intermediate variables. They are not mentioned and are
used for modelling purposes.

U

+ve

-ve
B

S

Pr(P=yes) ≥ 0.9
(1)

+ve

-ve

Pr(P=yes) < 0.9
(0)

-ve

+ve

Figure 2: An ODD that represents the classifier in-
duced by the Bayesian network in Figure 1 with prob-
ability threshold .9, with respect to variable order
(U,B, S).

The goal of this paper is to provide a principled ap-
proach for reasoning about Bayesian network classi-
fiers. In particular, we are interested in answering the
following type of questions:

• Given two Bayesian networks N and N ′, do they
induce the same classifier? If not, which, and how
many, instances do they disagree on?

• Given a Bayesian network N , what are the allow-
able changes to some CPT in N which will not
change the current classifier induced, FN ?

These questions can be answered by enumerating all
instances e explicitly. However, this brute–force ap-
proach is often infeasible given the exponential number
of instances. Instead, we propose to build a tractable
logical representation of the classifier FN , which allows
us to answer the above questions in time linear in the
size of the constructed representation.

The specific logical representation we propose is that of
Ordered Decision Diagrams (ODDs), which are known
to be tractable; see Figure 2. Although our long–term
objective is to construct ODDs for general Bayesian
network classifiers, we focus in this paper on the sim-
plest, yet very common, class of naive Bayes classifiers,
which are induced by naive Bayes networks.

Specifically, we start in Section 2 by defining naive
Bayes classifiers, and provide the answer to the follow-
ing key question: how much change can we apply to
a CPT in the network without changing the current
classifier induced? In Section 3, we introduce an al-
gorithm for converting a naive Bayes classifier into an
ODD, and provide an interesting asymptotic bound on

its complexity. We then show in Section 4 experimen-
tal results on building ODDs for both random and
real–world naive Bayes classifiers, demonstrating the
scalability of our algorithm. Section 5 is dedicated to
the applications of these ODDs, which are mostly en-
abled by the tractability of this representation. We
then discuss in Section 6 our plans to extend our work
beyond our proposed framework of naive Bayes clas-
sifiers. We finally close in Section 7 with some con-
cluding remarks. Proofs of theorems are included in
Appendix A.

2 Naive Bayes Classifiers

The simplest, yet very common, type of Bayesian net-
work classifiers is naive Bayes classifiers [3, 7], which
are induced by naive Bayes networks. A naive Bayes
network contains the class variable C as the root, with
the attributes E = {E1, . . . , En} as its children. No
other nodes or edges exist in the network. An exam-
ple is shown in Figure 1.

To classify an instance e = {e1, . . . , en}, we need to
compute the conditional probability Pr(c | e). How-
ever, for ease of computations, we will compute this
probability in log–odds space, where its log–odds is
given by log O(c | e) = Pr(c | e)/(1 − Pr(c | e)).
Given a naive Bayes network N where C is binary,2 if
φ is an instantiation of a subset of E, and ei is a value
of an uninstantiated attribute Ei, we have:

log O(c | φ, ei) = log O(c | φ) + log
Pr(ei | c)
Pr(ei | c) . (1)

The weight of evidence ei is defined as wei =
log(Pr(ei | c)/Pr(ei | c)). We can now compute the
value log O(c | e) using Equation 1:

log O(c | e) = log O(c) +
n∑

i=1

wei . (2)

We call the value log O(c) the prior log–odds of N .
Therefore, a naive Bayes network is a tuple N =
(C, {E1, . . . , En}, log O(c), {wei}). We now formally
define the naive Bayes classifier induced by a naive
Bayes network N given a probability threshold.

Definition 2.1 Given a naive Bayesian network N ,
and the threshold ρ = log(p/(1 − p)), where p is the
probability threshold, the naive Bayes classifier F ρ

N is
defined as follows:

F ρ
N (e) =

{
1 if log O(c | e) ≥ ρ;
0 otherwise.

2We will make the restriction of C being binary in this
paper, and discuss how we will extend to the case of C
being non–binary in Section 6.

For example, in the naive Bayes network N in Fig-
ure 1, P is the class variable, and {U,B, S} are the at-
tributes. Given the threshold ρ = log(.9/.1) = 2.197,
the naive Bayes classifier F ρ

N determines if given an
instance (a set of test results in this case), whether
the probability of pregnancy is no less than .9.

We now discuss the following key question: how much
change can we apply to a CPT in the network N with-
out changing the current classifier induced, F ρ

N ?

2.1 Changing the Prior Log–Odds

We first look at the case where we change only
the CPT of the class variable C, and obtain a new
Bayesian network N ′. This is equivalent to chang-
ing only the prior log–odds log O(c) to the new value
log O′(c). Now the question is, are F ρ

N and F ρ
N ′ the

same classifier? This obviously depends on the amount
of change to the prior log–odds. However, the follow-
ing theorem states that the amount of allowable change
can be determined precisely once we know the follow-
ing two values, known as margins:

• The minimum value of log O(c | e) attained by
any positive instance e:

α = min
e: F ρ

N (e)=1
log O(c | e). (3)

• The maximum value of log O(c | e) attained by
any negative instance e:

β = max
e: F ρ

N (e)=0
log O(c | e). (4)

Theorem 2.1 Let N ′ be a naive Bayes network
obtained from N by changing the CPT of the
class variable C, such that the prior log–odds
changes from log O(c) to log O′(c). The classi-
fiers F ρ

N and F ρ
N ′ are the same iff log O′(c) ∈

[log O(c) + ρ− α, log O(c) + ρ− β), where α and β are
given by Equations 3 and 4.3 We call this interval the
equivalence interval of F ρ

N , denoted by I (F ρ
N).

Consider now the naive Bayes classifier F ρ
N , induced

by the network in Figure 1 with threshold ρ = 2.197.
By enumerating all instances explicitly, we find that
α = 3.327 and β = .619. Therefore, any change in
the CPT of variable P will keep the classifier F ρ

N un-
changed as long as the new prior log–odds is in the
equivalence interval I (F ρ

N) = [.772, 3.479). Therefore,
the classifier will be unchanged as long as the new prior
probability Pr(P = yes) falls in [.684, .970). Note that
the current probability value is .87, showing that we

3If there are no positive instances, α = ∞, and if there
are no negative instances, β = −∞.

can apply a significant change to this prior probability
without changing the induced classifier. Later we will
show how we can find the equivalence interval without
enumerating all instances explicitly.

The maximum number of distinct naive Bayes clas-
sifiers (including the current classifier) that can be
induced by changing the prior log–odds can also be
counted, as given by the next theorem.

Theorem 2.2 The number of distinct naive Bayes
classifiers (including the current classifier) that can be
induced by changing prior log–odds is at most ‖E‖+1,
where ‖E‖ is the number of instances.4

If all attributes are binary, this number is 2n + 1. For
the network in Figure 1, 9 different classifiers can be
induced by changing the CPT of variable P . Note,
however, that the total number of distinct Boolean
functions is 22n

= 256 in this case.

To further illustrate Theorems 2.1 and Theorems 2.2,
we will rephrase them using the mathematical notion
of equivalence class. Given naive Bayes network N =
(C, {E1, . . . , En}, log O(c), {wei}), we define the set S
= {N ′ : N ′ = (C, {E1, . . . , En}, log O′(c), {wei})}, i.e.,
S contains exactly all naive Bayes networks N ′ ob-
tained from N by changing only the prior log–odds
(including N). The equivalence class [N] ⊂ S is de-
fined such that N ′ ∈ [N] iff the classifiers F ρ

N and
F ρ
N ′ are the same. Theorem 2.1 allows us to test for
N ′ ∈ [N] by verifying if log O′(c) ∈ I (F ρ

N),5 while
Theorem 2.2 gives us a count of the number of equiv-
alence classes that form the partition of S.6

We close this section by stressing that Theorems 2.1
and 2.2 will be crucial to our algorithm in Section 3,
which converts a naive Bayes classifier into an ODD.

2.2 Changing all Weights of Evidence of Ei

We now look at the case where we change only the
CPT of attribute Ei, and obtain the new Bayesian
network N ′. This is equivalent to changing only the
weight of evidence ei from wei to the new value w′ei

for
every value ei of Ei. Now the question is, are F ρ

N and
F ρ
N ′ the same classifier? The following theorem states

this can be determined once we know the following two

4In general, if |Xi| is the cardinality of variable Xi,
i.e., the number of possible values of Xi, ‖X1, . . . , Xk‖ =∏k

i=1
|Xi| is the number of instantiations of variables

X1, . . . , Xk.
5Note that if N ′ ∈ [N], we have [N ′] = [N] and

I (F ρ
N ′) = I (F ρ

N) by the definition of equivalence class.
6We note that both theorems hold not only for naive

Bayes classifiers, but more generally for any Bayesian net-
work classifier in which the attributes E are all descendants
of the class variable C.

values for every ei:

• The minimum value of log O(c | e) attained by
any positive instance e such that ei ∈ e:

αei = min
e: ei∈e,F ρ

N (e)=1
log O(c | e). (5)

• The maximum value of log O(c | e) attained by
any negative instance e such that ei ∈ e:

βei
= max

e: ei∈e,F ρ
N (e)=0

log O(c | e). (6)

Theorem 2.3 Let N ′ be a naive Bayes network ob-
tained from N by changing the CPT of attribute
Ei, such that the weight of evidence ei changes from
wei to w′ei

for every value ei of Ei. The classifiers
F ρ
N and F ρ

N ′ are the same iff for every ei, w′ei
∈

[wei + ρ− αei , wei + ρ− βei), where αei and βei are
given by Equations 5 and 6.

Consider again the naive Bayes classifier F ρ
N , induced

by the network in Figure 1 with threshold ρ = 2.197.
If we would like to change the CPT of attribute
U without changing the classifier, the allowable new
weights of evidence are w′U=+ve ∈ [.791, 3.498) and
w′U=−ve ∈ [−3.294, .791). For example, even if we im-
prove the reliability of the urine test by changing the
probabilities Pr(U =−ve|P = yes) from .27 to .1 and
Pr(U =+ve|P =no) from .107 to .05, the classifier will
still remain unchanged.

The maximum number of distinct naive Bayes classi-
fiers (including the current classifier) that can be in-
duced by changing all weights of evidence of attribute
Ei can also be counted, as given by the next theorem.

Theorem 2.4 The number of distinct naive Bayes
classifiers (including the current classifier) that can
be induced by changing all weights of evidence of at-
tribute Ei is at most (k +1)b−bk/2cb−dk/2eb, where
k = ‖E− Ei‖ and b = |Ei|.

If all attributes are binary, this number is 22n−3+2n +
1. For the network in Figure 1, at most 17 different
classifiers can be induced by changing the CPT of at-
tribute U .

3 Converting a Naive Bayes Classifier
into an Ordered Decision Diagram

In this section, we will introduce an algorithm that
converts a naive Bayes classifier into an Ordered Deci-
sion Diagram (ODD), which we will define next.

Definition 3.1 An Ordered Decision Diagram
(ODD), with respect to variable order (E1, . . . , En),

is a rooted, directed, acyclic graph, with two sinks
labelled with 1 and 0, called 1-Sink and 0-Sink
respectively. Every node (except the sinks) in the
ODD is labelled with a variable Ei, and for every
value ei of Ei, there is an edge labelled with ei exiting
this node. Finally, a node is labelled with Ei and its
child is labelled with Ej only if j > i.

An ODD represents a classifier F with attributes
E = {E1, . . . , En} as follows. Given an instance
e = {e1, . . . , en}, we traverse the ODD starting at the
root. At a node labelled with Ei, we go to the child
pointed by the edge labelled with ei. If we reach the
1-Sink, we have F (e) = 1, and if we reach the 0-Sink,
we have F (e) = 0. The ODD shown in Figure 2 repre-
sents the naive Bayes classifier induced by the network
in Figure 1 with probability threshold .9, with respect
to variable order (U,B, S). If all the variables in the
ODD are binary, as in this case, it is called an Or-
dered Binary Decision Diagram (OBDD) [1], a well–
researched representation of boolean functions. As we
will discuss in Section 5, the tractability of the ODD
representation allows us to answer the questions we
posed earlier in time linear in the size of the ODD.

3.1 Building the ODD

Suppose now that we are given a naive Bayes classi-
fier F ρ

N , which is induced by the naive Bayes network
N = (C, {E1, . . . , En}, log O(c), {wei}) with threshold
ρ. Our goal is to build an ODD D that represents F ρ

N ,
with respect to attribute order (E1, . . . , En). Before
we state our algorithm and its compleixty, we first ex-
plain two key observations underlying our algorithm.

First, given an instantiation φ = e1, . . . , ek of the first
k attributes E1, . . . , Ek, we assume the node reached
by the path φ from the root of ODD D is the root of a
sub–ODD denoted by Dφ. A new naive Bayes network
Nφ = (C, {Ek+1, . . . , En}, log O(c | φ), {wei}) can
be obtained by removing attributes E1, . . . , Ek from
N , and updating the prior log–odds to log O(c | φ).
Note that the output of the naive Bayes classifier F ρ

N
given instance e = φ, ek+1, . . . , en can now be ob-
tained from the new naive Bayes classifier F ρ

Nφ
, since

F ρ
N (e) = F ρ

Nφ
(ek+1, . . . , en). Therefore, the sub–ODD

Dφ represents F ρ
Nφ

.

The second key observation is based on Theorem 2.1.
If ψ is another instantiation of attributes E1, . . . , Ek,
the path ψ reaches the root of the sub–ODD Dψ,
which represents the naive Bayes classifier F ρ

Nψ
, where

Nψ = (C, {Ek+1, . . . , En}, log O(c | ψ), {wei}). Be-
cause Nφ and Nψ differ by only their prior log–odds,
from Theorem 2.1, the classifiers F ρ

Nφ
and F ρ

Nψ
are the

same iff log O(c | ψ) ∈ I (F ρ
Nφ

). If this is true, the two

sub–ODDs Dφ and Dψ are isomorphic, and we can
build the ODD D such that the paths φ and ψ reach
the same node. This allows us to save space and time
when building the ODD D. The next theorem shows
how we can compute the equivalence interval I (F ρ

Nφ
)

inductively, as it is key to our algorithm.

Theorem 3.1 If φ is an instantiation of attributes
E1, . . . , Ek, the equivalence interval I (F ρ

Nφ
) can

be computed if we know the equivalence interval
I (F ρ

Nφ,ek+1
) for every value ek+1 of Ek+1:

I (F ρ
Nφ

) =
⋂

ek+1

{
x : x + wek+1 ∈ I (F ρ

Nφ,ek+1
)
}

.

In our algorithm, we associate the node node with
the equivalence interval I [node] = I (F ρ

Nφ
) if node is

reached by path φ. Theorem 3.1 states that we can
compute this equivalence interval if we are given the
equivalence interval of every child of node. Therefore,
we can compute the equivalence interval of every node
in the ODD D inductively, with the end conditions
I [1-Sink] = [ρ,∞) and I [0-Sink] = (−∞, ρ).

To identify isomorphic sub–ODDs, we employ n + 1
caches in our algorithm, one for each k = 0, . . . , n,
where the k-th cache will store nodes at depth k. In
each cache, nodes are indexed by their equivalence in-
tervals. Given some path ψ of length k, we check if
there already exists some node in the k-th cache where
log O(c | ψ) ∈ I [node]. If this is true, the ODD D will
be built such that the path ψ also reaches node.

Algorithm 1 shows the procedure Build-ODD(N , ρ),
which returns the root of the ODD D that repre-
sents the naive Bayes classifier F ρ

N , with respect to
attribute order (E1, . . . , En). After initializations, the
ODD is built recursively by calling the procedure
Build-sub-ODD(k, v), shown in Algorithm 2. This
procedure returns the root of the sub–ODD Dφ that
represents the naive Bayes classifier F ρ

Nφ
, where φ is

an instantiation of E1, . . . , Ek, and v = log O(c | φ) is
the prior log–odds of Nφ.

The next theorem gives us a theoretical upper bound
on the number of nodes in the ODD D, and the time
complexity of Algorithm 1. It can be proved using
Theorem 2.2; see Appendix A.

Theorem 3.2 The number of nodes in the ODD D
built by Algorithm 1 is at most:

n∑

k=0

min{‖E1, . . . , Ek‖, ‖Ek+1, . . . , En‖+ 1}.

If all attributes have at most b values, the space com-
plexity is O(bn/2). Moreover, the time complexity of
Algorithm 1 is O(nbn/2).

Algorithm 1 Build-ODD(N , ρ): returns the root
of the ODD D that represents the naive Bayes classi-
fier F ρ

N , with respect to attribute order (E1, . . . , En),
where N = (C, {E1, . . . , En}, log O(c), {wei}) is a
naive Bayes network, and ρ is the threshold.

1-Sink ← Create-Node()
I [1-Sink] ← [ρ,∞)
Store-in-Cache(n, 1-Sink)
0-Sink ← Create-Node()
I [0-Sink] ← (−∞, ρ)
Store-in-Cache(n, 0-Sink)
return Build-sub-ODD(0, log O(c))

Algorithm 2 Build-sub-ODD(k, v): returns the
root of the sub–ODD Dφ that represents the naive
Bayes classifier F ρ

Nφ
, where φ is an instantiation of

E1, . . . , Ek, and v = log O(c | φ) is the prior log–
odds of Nφ. We define the following procedures
as: Create-Node() returns a newly-created node;
Find-in-Cache(j, x) returns node in the j-th cache
where x ∈ I [node], or Nil if no such node ex-
ists; Store-in-Cache(j, node) stores node in the j-th
cache, indexed by I [node]; Add-Child(node, child, l)
adds child as a child of node, with l being the label of
the edge; Offset(S, δ) returns {x : x− δ ∈ S}.

node ← Create-Node()
I [node] ← (−∞,∞)
for all values ek+1 of Ek+1 do

vchild ← v + wek+1

child ← Find-in-Cache(k + 1, vchild)
if child = Nil then

child ← Build-sub-ODD(k + 1, vchild)
Add-Child(node, child, ek+1)
I [node] ← I [node] ∩Offset(I [child],−wek+1)

Store-in-Cache(k, node)
return node

Therefore, for a naive Bayes classifier with n at-
tributes, we are able to convert it into an ODD in time
and space that is no more than exponential in n/2.
This is significant both theoretically and practically
compared to the brute–force method which is expo-
nential in n. Hence, classifiers with up to 50 attributes
can be handled in practice. However, as we will show
in our experimental results, the actual time and space
required by the algorithm is usually much less than
the theoretical upper bound, showing promise for clas-
sifiers with even more attributes.

Finally, we also note that the actual number of nodes
in the ODD will depend on the attribute order, and
in the following section, we will suggest some ordering
heuristics which perform well in practice.

n ‖E‖ Bound Random Desc. Asc.
10 1024 99 64 56 51
15 32768 518 347 270 263
20 1× 106 3080 2032 1541 1531
25 3× 107 16395 11968 8753 8740
30 1× 109 98317 66160 50116 50100

Table 1: Experimental results of building ODDs that
represent random naive Bayes classifiers.

4 Experimental Results

We now show experimental results on building ODDs
for both random and real–world naive Bayes classifiers
using Algorithm 1.

In the first part of our experiment, we build ODDs
that represent random naive Bayes classifiers with bi-
nary attributes E = {E1, . . . , En}, for different values
of n. The prior log–odds and all the weights of evi-
dence of the naive Bayes network take on random val-
ues, which are translated to the log–odds space from
the uniform probability space. The threshold is set
at ρ = 0, meaning F ρ

N (e) = 1 iff Pr(c | e) ≥ 0.5.
We generate 100 random classifiers for each n, and the
results are displayed in Table 1. The second column
shows the number of instances, i.e., ‖E‖ = 2n, while
the third column shows the theoretical upper bound
on the number of nodes in the ODDs given by Theo-
rem 3.2. The fourth column shows the average number
of nodes in the ODDs built using 100 random attribute
orders. As we can see, the number of nodes is on aver-
age about two–thirds of the bound. We also sort the
attributes by the absolute differences of the weights
of evidence, i.e., |wei − wei

|, where a larger absolute
difference means the attribute Ei has more evidential
impact on the probabilities Pr(c | e). The sizes of the
ODDs built using the attribute orders with descending
and ascending orders of evidential impact are shown in
the fifth and sixth columns respectively. In both cases,
the number of nodes is on average about half of the
bound, an improvement over using random attribute
orders.

In the second part of our experiment, we build ODDs
that represent real–world naive Bayes classifiers. The
naive Bayes networks are constructed by learning data
obtained from the UCI Machine Learning Repository
(www.ics.uci.edu/∼mlearn/MLRepository.html). The
threshold ρ is also set at 0. The results are displayed
in Table 2 for several networks. The second column
shows n, the number of attributes in the classifier,
while the third column shows ‖E‖, the number of in-
stances. Note that many of the attributes in the net-
works are non–binary. The fourth column shows the
theoretical upper bound on the number of nodes in the

Network n ‖E‖ Bound Best
tic-tac-toe 9 19683 247 58

votes 16 65536 774 396
spect 22 4× 106 6153 609

breast-cancer-w 9 1× 109 21117 4405
hepatitis 19 2× 1010 46794 9644
kr-vs-kp 36 1× 1011 917488 59905

mushroom 22 1× 1014 1× 108 43638

Table 2: Experimental results of building ODDs that
represent real–world naive Bayes classifiers.

ODDs given by Theorem 3.2.7 For each classifier, we
build ODDs using 100 random attribute orders, plus
the attribute orders with descending and ascending or-
ders of evidential impact,8 and the final column shows
the least number of nodes among the ODDs built.

The results we produce are very satisfactory, since for
many of these classifiers, there is an intractable num-
ber of instances, yet we are able to build ODDs with
at most 60000 nodes in the best cases. The number of
nodes actually created are also often much less than
the theoretical upper bound, even with a random at-
tribute order, because many of the CPTs in the classi-
fiers are sparse, i.e., filled with 0’s and 1’s. An example
is the mushroom network. The time to run our algo-
rithm is also relatively short, as it takes less than five
seconds to build an ODD with about 60000 nodes.

We also note that although the sizes of the ODDs vary
with the attribute orders, experimentally we find that
for each classifier, the size of the ODD in the worst case
is at most about twice the size of the ODD in the best
case. Therefore, even with a random attribute order,
we are able to build ODDs of reasonable size. In the
future, we would like to explore other ordering heuris-
tics. Our current method of sorting the attributes by
ascending order of evidential impact gives us the best
results in many, but not all cases.

Finally, our algorithm can also be augmented, without
affecting its complexity, to generate reduced ODDs [1],
which eliminate nodes whose outgoing edges all point
to the same child. However, we find that after includ-
ing this reduction step, the sizes of the ODDs decrease
by less than 1% in many of the cases, and less than
5% in most of the cases. Therefore, we do not include
this in our algorithm for simplicity of exposition.

7Because the bound varies with the attribute order if
the attributes do not have the same cardinality (number
of values), the bound displayed here is computed for the
ODD with the best result obtained.

8For a non–binary attribute Ei, we use a measure [2]
that computes the difference between the maximum and
minimum weights of evidence, i.e. maxei wei −minei wei .

5 Applications

Now that we have an algorithm for converting a naive
Bayes classifier into an ODD, our goal in this section
is to discuss the variety of applications enabled by the
construction of such an ODD.

We first point out that ODDs are a tractable represen-
tation in the sense that they permit a number of op-
erations on the functions they represent in time poly-
nomial in their size, even though such operations are
intractable in general. In particular, given two ODDs
D and D′ with respect to the same variable order, with
sizes s and s′, we can perform the following operations:

• Testing whether the ODDs are equivalent can be
done in O(s + s′) time.

• Counting the number of instances mapped to 1/0
by ODD D (positive/negative instances) can be
done in O(s) time.

• Testing whether all positive/negative instances of
ODD D satisfy some conjunction or disjunction
of features (attribute/value pairs) can be done in
O(s) time.

• Conjoining or disjoining the ODDs D and D′ can
be done in O(ss′) time.

All of the above operations on ODDs
are supported by standard packages such
as the CU Decision Diagram Package
(vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html).
These operations, plus many others, can be combined
to answer queries. For example, if we want to know
the number of positive instances in the intersection of
two classifiers, we can first conjoin the two classifiers
and then perform a count operation.

The equivalence operation is one of the most impor-
tant operations because if two Bayesian network clas-
sifiers are shown to be equivalent, we can use either
network to model the domain for the purpose of clas-
sifying instances. This is helpful if we want to test
whether simplifications to a Bayesian network, such as
rounding off the parameters, change the classification
of any instance. We can also check if adding another
attribute will improve the classification ability of the
network. For example, for the network in Figure 1,
we may want to know if adding a particular new test
will be beneficial in detecting pregnancy, i.e., given any
set of results from the current tests, whether applying
this new test may potentially support the presence or
absence of pregnancy.

Moreover, we can use the equivalence operation to see
if the classification outputs given by networks pro-
duced from different learning algorithms are the same

when run over the same data set, since the networks
will differ in the parameters and possibly the struc-
ture. We can also determine if adding some data sam-
ples will change the behavior of the classifier produced
by any learning algorithm.

Another application of converting a naive Bayes clas-
sifier F ρ

N into an ODD D is that we can effectively
find the intervals identified by Theorems 2.1 and 2.3
as a side effect of our algorithm. This is due to the
computation of the equivalence interval of every node
in the ODD D by Algorithm 2. For example, we note
that the equivalence interval I (F ρ

N) identified by The-
orem 2.1, which contains the allowable prior log–odds
which will keep the classifier unchanged from F ρ

N , is
equal to I [root] if root is the root of the ODD D.

We can also find the intervals identified by Theo-
rem 2.3, which contain the allowable weights of ev-
idence of attribute Ei which will keep the classifier
unchanged from F ρ

N . However, in order to find these
intervals, it is required that Ei must come first in the
attribute order used to build the ODD D. In this case,
if the node childei is the ei child of the root of the ODD
D, the equivalence interval I [childei] = I (F ρ

Nei
) con-

tains the allowable weight of evidence wei which will
keep the classifier unchanged from F ρ

N .

Therefore, instead of enumerating all instances ex-
plicitly, we can find the intervals identified by The-
orems 2.1 and 2.3 by building the corresponding ODD
using Algorithm 1. The asymptotic time and space
complexity is exponential only in n/2, where n is the
number of attributes, but as seen in Section 4, the
actual time and space required are often much less.

6 Extending the Proposed Framework

We now discuss some important extensions to our
framework, some of which are relatively straightfor-
ward, while others are subjects of future work.

Non–binary class variables Throughout this pa-
per, we have made the restriction that the class vari-
able C of the naive Bayes network is binary. In the
case that C is non–binary, we may be interested in
mapping an instance e to the value of C which is most
likely given e. To handle this generalization, we need
two extensions to our framework. First, an ODD will
need to have multiple sinks corresponding to the dif-
ferent values of C, which is relatively straightforward
conceptually and does not change complexity as long
as the cardinality of C is bounded. Second, our algo-
rithm for building the ODD must be changed so that
instead of computing the equivalence interval I for ev-
ery node in the ODD, we compute the equivalence re-
gion, whose dimension is |C| − 1.

Beyond naive Bayes classifiers We also plan on
expanding our work beyond naive Bayes classifiers. In
particular, we are interested in classifiers induced from
Tree Augmented Naive Bayes networks (TANs) [4] and
Augmented Naive Bayes networks (ANBs), which are
both derivatives of naive Bayes networks. In these net-
works, directed edges are added between attributes to
model the domain more accurately. Because of the
added edges, our algorithm has to be modified, be-
cause the weights of evidence may no longer be inde-
pendent of the instantiated attributes. The attributes
must now be divided into groups, such that two at-
tributes in different groups are independent given the
class variable C. Then, the ODD is built with respect
to an order of groups, where every node in the ODD
branches on instantiations of variables in a group. If
there are x variables in each group, and a total of y
groups, the theoretical upper bound on the number of
nodes in the ODD is O(bxy/2) = O(bn/2), in the case
where all attributes have at most b values.9 Therefore,
the space complexity remains the same.

The ultimate goal of our future work is to generalize
our algorithm to build logical representations corre-
sponding to classifiers induced by any Bayesian net-
work, and bound their sizes using measures of the net-
work and the attribute order, such as the tree width.

7 Conclusion

In this paper, we introduced an algorithm for convert-
ing a naive Bayes classifier into an ODD, and proved
a theoretical upper bound on the number of nodes in
the ODD, which is asymptotically much less than the
number of instances. Our experimental results showed
that for real–world classifiers, the ODDs built tends to
have even much fewer nodes than the bound. For ap-
plications, we showed how we can use our ODD to
tractably reason about classifiers by applying a num-
ber of operations, such as testing for equivalence of
two classifiers, in time linear in the size of the ODD.
We also identified the range of allowable changes to
a CPT in the network which keeps the current classi-
fier unchanged. We believe this conversion from naive
Bayes classifiers to a tractable logical representation
are quite promising and helpful in practice, and plan
on extending to general Bayesian network classifiers.

Acknowledgments

This work has been partially supported by NSF grant
IIS-9988543 and MURI grant N00014-00-1-0617.

9Of course, x needs to be bounded because otherwise
we will get an exponential branching factor.

References

[1] Randal E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8):677–691, 1986.

[2] Hei Chan and Adnan Darwiche. A distance mea-
sure for bounding probabilistic belief change. In
Proceedings of the Eighteenth National Conference
on Artificial Intelligence (AAAI), pages 539–545,
Menlo Park, California, 2002. AAAI Press.

[3] R. O. Duda and P. E. Hart. Pattern Classification
and Scene Analysis. John Wiley & Sons, New York,
1973.

[4] Nir Friedman, Dan Geiger, and Moises Gold-
szmidt. Bayesian network classifiers. Machine
Learning, 29(2-3):131–163, 1997.

[5] Ashutosh Garg and Dan Roth. Understanding
probabilistic classifiers. In Proceedings of the
Twelfth European Conference on Machine Learn-
ing (ECML), pages 179–191, Berlin, Germany,
2001. Springer-Verlag.

[6] Finn Verner Jensen. Bayesian Networks and Deci-
sion Graphs. Springer-Verlag, New York, 2001.

[7] P. Langley, W. Iba, and K. Thompson. An anal-
ysis of Bayesian classifiers. In Proceedings of the
1992 National Conference on Artificial Intelligence
(AAAI), pages 223–228, Menlo Park, California,
1992. AAAI Press.

[8] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann Publishers, San Mateo, California,
1988.

A Proofs

Proof of Theorem 2.1 From Equation 2, we have
log O′(c | e) = log O(c | e) + δ, where δ = log O′(c) −
log O(c). We investigate both cases of δ being negative
and positive:

• If δ is negative, for every e such that F ρ
N (e) = 0,

we must have F ρ
N ′(e) = 0. On the other hand,

for every e such that F ρ
N (e) = 1, we still have

F ρ
N ′(e) = 1 iff log O(c | e) ≥ ρ − δ. Therefore,

the classifiers F ρ
N and F ρ

N ′ are the same iff α =
mine: F ρ

N (e)=1 log O(c | e) ≥ ρ− δ.

• If δ is positive, for every e such that FN (e) = 1,
we must have F ρ

N ′(e) = 1. On the other hand,
for every e such that F ρ

N (e) = 0, we still have
F ρ
N ′(e) = 0 iff log O(c | e) < ρ − δ. Therefore,

the classifiers F ρ
N and F ρ

N ′ are the same iff β =
maxe: F ρ

N (e)=0 log O(c | e) < ρ− δ.

Therefore, the classifiers F ρ
N and F ρ

N ′ are the same iff
δ ∈ [ρ − α, ρ − β), which is equivalent to log O′(c) ∈
I (F ρ

N) = [log O(c) + ρ− α, log O(c) + ρ− β).

Proof of Theorem 2.2 When we change the prior
log–odds of a naive Bayes network, we induce a differ-
ent classifier only when log O(c | e) for some instance e
passes ρ, thereby changing the classification of e from
0 to 1 or from 1 to 0. Therefore, the number of dis-
tinct classifiers (including the current classifier) that
can be induced by changing the prior log–odds is at
most ‖E‖ + 1, and is exactly ‖E‖ + 1 if there does
not exist two different instances e and e∗ such that
log O(c | e) = log O(c | e∗).

Proof of Theorem 2.3 The proof is similar to that
of Theorem 2.1, with log O′(c | e) = log O(c | e) + δei

,
where δei = w′ei

− wei if ei ∈ e.

Proof of Theorem 2.4 The number of distinct clas-
sifiers (including the current classifier) that can be in-
duced by changing all weights of evidence of attribute
Ei appears to be (‖E − Ei‖ + 1)‖Ei‖ at first glance,
because from Theorem 2.2, we know that ‖E−Ei‖+1
distinct classifiers can be induced by changing the prior
log–odds of the new network Nei , which is obtained by
removing attribute Ei fromN , and for every value ei of
Ei, the classifier F ρ

Nei
can be equivalent to any of these

distinct classifiers if its prior log–odds log O(c | ei)
can take on any value. However, this is true only
if we can also change log O(c). This is not true if
log O(c) cannot be changed, because of the restriction
that among all weights of evidence wei , at least one
must be positive and at least one must be negative
(unless all are zero), due to the fact that when going
from one probability distribution to another, at least
one probability must increase and at least one must de-
crease (unless all probabilities are the same). To find
the actual maximum number of distinct classifiers, we
have to solve the following analogous problem with
k = ‖E − Ei‖ and b = ‖Ei‖: given S = {0, 1, . . . , k},
and a ∈ S, what is the number of permutations of
(a1, . . . , ab) ∈ Sb, if (

∨b
i=1 ai ≥ a) ∧ (

∨b
i=1 ai ≤ a)?

The answer is (k + 1)b − ab − (k − a)b, and the max-
imum is (k + 1)b − bk/2cb − dk/2eb, attained when
a = bk/2c.

Proof of Theorem 3.1 Given instantiations φ and
ψ of attributes E1, . . . , Ek, the following statements
are equivalent:

1. Classifiers F ρ
Nφ

and F ρ
Nψ

are the same.

2. log O(c | ψ) ∈ I (F ρ
Nφ

).

3. For every ek+1 value of Ek+1, the classifiers
F ρ
Nφ,ek+1

and F ρ
Nψ,ek+1

are the same.

4. For every ek+1 value of Ek+1, log O(c | ψ, ek+1) ∈
I (F ρ

Nφ,ek+1
).

Moreover, due to the probability relation from Equa-
tion 1, we have:

log O(c | ψ, ek+1) = log O(c | ψ) + wek+1 . (7)

Therefore, the equivalence interval I (F ρ
Nφ

) can be com-
puted if we know the equivalence interval I (F ρ

Nφ,ek+1
)

for every value ek+1 of Ek+1, by finding the set of val-
ues that satisfy Equation 7 for every ek+1, and we have
I (F ρ

Nφ
) =

⋂
ek+1

{
x : x + wek+1 ∈ I (F ρ

Nφ,ek+1
)
}

.

Proof of Theorem 3.2 Because a node in the k-th
cache is reached by some path e1, . . . , ek, the num-
ber of nodes in the k-th cache can be no more than
‖E1, . . . , Ek‖. We also know that a node in the k-th
cache is the root of a sub–ODD that represents a naive
Bayes classifier with attributes Ek+1, . . . , En. Theo-
rem 2.2 shows that at most ‖Ek+1, . . . , En‖ + 1 dis-
tinct classifiers can be induced by changing the prior
log–odds, and this number also bounds the number of
nodes in the k-th cache, since we do not create du-
plicate nodes corresponding to isomorphic sub–ODDs.
Therefore, the number of nodes in the k-th cache is
at most min{‖E1, . . . , Ek‖, ‖Ek+1, . . . , En‖+ 1}. This
proves that the number of nodes in the ODD is at most∑n

k=0 min{‖E1, . . . , Ek‖, ‖Ek+1, . . . , En‖+ 1}, since
there are n + 1 caches, with k = 0, . . . , n. We can also
easily see that if all attributes have at most b values,
the space complexity is O(bn/2). Moreover, because
the nodes in each cache are indexed by their equiv-
alence intervals, we can find and store the nodes in
each cache using binary search. Therefore, the time
complexity of Algorithm 1 is O(nbn/2).

