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Abstract

Our goal is to develop general-purpose techniques
for probabilistic reasoning and learning in structured
spaces. These spaces are characterized by complex logi-
cal constraints on what constitutes a possible world. We
propose a tractable formalism, called probabilistic sen-
tential decision diagrams, and show it effectively learns
structured probability distributions in two applications:
product configuration and preference learning.

1 Introduction
One of the long-standing goals of AI is to combine logic
and probability in a coherent framework, and to enable high-
level probabilistic reasoning. The bulk of the work with this
goal has been towards first-order representations of uncer-
tainty, and their reasoning and learning algorithms (Getoor
and Taskar 2007; Kersting 2012; Milch et al. 2005). In
this paper, we argue for a different, yet compatible direc-
tion of integration that has received much less attention: to-
wards probability distributions over structured spaces. In
traditional graphical models, the probability space is the
Cartesian product of assignments to individual random vari-
ables, corresponding to the rows of a joint probability ta-
ble. A structured probability space instead consists of com-
plex objects, such as total and partial orders, trees, DAGs,
molecules, pedigrees, product configurations, maps, plans,
game traces, etc. Our goal is to develop a general-purpose
framework for representing, reasoning with, and learning
probability distributions over structured spaces. Performing
these tasks in structured spaces has so far required special-
purpose algorithms and techniques. For example, no single
system is capable of learning distributions over both rank-
ings and product configurations. This is in stark contrast
with the state of general-purpose techniques for unstructured
probability spaces, such as Bayesian networks.

As in the unstructured case, structured objects are con-
veniently represented by assignments to a set of variables.
However, in a structured space, not every assignment rep-
resents a valid object. For example, not every sequence of
actions represents a plan (the same truck cannot be loaded
twice), and not every adjacency matrix represents a tree.
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Hence, probability distributions over such objects are not
easily captured by the rows of a joint probability table. To
effectively represent distributions over such objects, reason
and learn, we believe it is important to explicitly deal with
the structure of the probability space. This requires a formal
description of the structure. For some of the above examples,
a description language is already in widespread use, such
as PDDL (McDermott et al. 1998) for planning problems,
and GDL (Love et al. 2008) for games. For others, one can
easily construct a theory in propositional logic that encodes
the structure of the probability space. Section 2 details the
encoding of our two running examples: student enrollment
configurations and movie preferences.

Given a formal description of the structured space, the
next challenge is to represent and reason with probability
distributions over that space. There is work on facilitating
logical constraints in probabilistic representations (Richard-
son and Domingos 2006; Mateescu and Dechter 2008), and
within these representations, there has been considerable
interest in probabilistic reasoning in the presence of log-
ical constraints (Poon and Domingos 2006; Gogate and
Dechter 2007). Despite these efforts, reasoning with con-
straints quickly becomes intractable, and many approxima-
tion algorithms fail when faced with the abundant determin-
ism that is found in structured spaces. Therefore, we recently
proposed a novel tractable representation of probability dis-
tributions over structured spaces, called probabilistic sen-
tential decision diagrams (PSDDs) (Kisa et al. 2014). This
representation is rooted in a long tradition of tractable rep-
resentations of logical knowledge bases (Darwiche 2011).
Section 3 describes PSDDs and their inference algorithms.

Finally, we are interested in learning distributions over
structured spaces from data. Machine learning in structured
spaces is investigated in structured prediction (Bakır et al.
2007). Again, different spaces often require special-purpose
learning algorithms, and the structure of the probability
space is rarely taken into account explicitly. Moreover, the
probabilistic representations that support logical constraints
do not support the learning of such constraints, with the
exception of Chang et al. (2008). We believe that learn-
ing probabilistic models over structured spaces is an impor-
tant and challenging open problem. As a first step, we de-
veloped an algorithm for learning PSDD parameters from
complex data, given a formal description of the structured



L K P A Students

0 0 1 0 6
0 0 1 1 54
0 1 1 1 10
1 0 0 0 5
1 0 1 0 1

L K P A Students

1 0 1 1 0
1 1 0 0 13
1 1 1 0 8
1 1 1 1 3

Table 1: Student enrollment data.

space (Choi, Van den Broeck, and Darwiche 2015). Sec-
tion 4 describes our learning algorithm and its application
to our running examples.

2 Structured Spaces
Consider a set of Boolean variables X1, . . . , Xn. The term
unstructured space refers to the 2n instantiations of these
variables. The term structured space refers to a subset of
these instantiations, which is determined by some complex,
application-specific criteria. We will encode these criteria as
a theory in propositional logic.

Configuration To provide a concrete example of a struc-
tured space, consider the following configuration problem.
A computer science department organizes four courses:
Logic (L), Knowledge Representation (K), Probability (P ),
and Artificial Intelligence (A). Students are asked to enroll
for these courses under the following restrictions:
– A student must take at least one of Probability or Logic.
– Probability is a prerequisite for AI.
– The prerequisite for KR is either AI or Logic.
The department may have data on student enrollments, as in
Table 1, and may wish to learn a probabilistic model for rea-
soning about student preferences. For example, the depart-
ment may need to know whether students are more likely to
satisfy the prerequisite of KR using AI or using Logic. In
this example, we can encode the states of this domain (i.e.,
valid combinations of courses), as the following structured
space, expressed in CNF:

(P ∨ L) ∧ (A⇒ P ) ∧ (K ⇒ A ∨ L) (1)

Even though there are 16 combinations of courses, only 9 of
them represent are valid. This task is an example of a prob-
lem with known, and possibly complex, domain constraints
in propositional logic that induce our structured space.

Ranking As a second example, consider a preference
learning domain, where we want to represent distributions
over rankings (i.e., permutations). Say we want to rank n
different items. Consider then the Boolean variables Aij for
i, j ∈ {1, . . . , n}. Here, the index i represents an item and
the index j represents its position in a total ranking of n
items. The unstructured space consists of the 2n
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instantia-
tions of our n2 Boolean variables. A structured space of in-
terest consists of the subset of instantiations that correspond
to total rankings over n items. The size of this structured
space is only n! as the remaining instantiations do not corre-
spond to valid, total rankings (e.g., an instantiation with two
items in the same position, or one item in two positions).

One can define the structured space of rankings using a
Boolean formula, whose models induce the space. Assum-
ing that we want to rank n = 3 items, we can define the
structured space using two types of Boolean constraints:
• Each item i is assigned to exactly one position, leading to

three constraints for i ∈ {1, 2, 3}: (Ai1∧¬Ai2∧¬Ai3)∨
(¬Ai1 ∧Ai2 ∧ ¬Ai3) ∨ (¬Ai1 ∧ ¬Ai2 ∧Ai3).

• Each position j is assigned exactly one item, leading to
three constraints for j ∈ {1, 2, 3}: (A1j∧¬A2j∧¬A3j)∨
(¬A1j ∧A2j ∧ ¬A3j) ∨ (¬A1j ∧ ¬A2j ∧A3j).

The Boolean formula defining the structured space will then
correspond to a conjunction of these six constraints (more
generally, 2n constraints).

Partial Ranking To consider an even more complex ex-
ample, let us consider the structured space of partial rank-
ings. For defining this space, we will use Boolean variables
Aij with i ∈ {1, . . . , n} and j ∈ {1, . . . , t}. Here, the index
i represents an item, and the index j represents the tier it is
assigned to. The semantics is that we would prefer an item
that appears in a higher tier (smaller j) over one appearing
in a lower tier (larger j), but we will not distinguish between
items within a tier. The sizes of tiers can vary as well. For
example, the first tier can represent a single best item, the
first and second tiers can represent the top-2, the first three
tiers can represent the top-4, and so on. This type of partial
ranking is analogous to one that would be obtained from a
single-elimination tournament, where a 1st and 2nd place
team is determined (in the finals), but where the 3rd and
4th place teams may not be distinguished (the two losers of
the semi-finals). We can also define this structured space us-
ing a Boolean formula, which is a conjunction of two types
of constraints. The first type of constraint ensures that each
item i is assigned to exactly one tier. The second type of
constraint ensures that each tier j has exactly mj items.

3 Structured Representations and Reasoning
We will now describe our representations for structured
spaces and their probability distributions.

Tractable Structured Spaces To enable efficient infer-
ence and learning, our approach requires that the Boolean
formula for the structured space is in a tractable form, known
as a sentential decision diagram (SDD) (Darwiche 2011).
Figure 1 depicts an SDD for the Boolean formula given in
Equation 1, for our student enrollment problem.

A circle in an SDD is called a decision node and its chil-
dren (paired boxes) are called elements. Literals and con-
stants (> and ⊥) are called terminal nodes. For element
(p, s), p is called a prime and s is called a sub. A deci-
sion node n with elements (p1, s1), . . . , (pn, sn) is inter-
preted as (p1 ∧ s1) ∨ · · · ∨ (pn ∧ sn). SDDs satisfy some
strong properties that make them tractable for certain tasks,
such as probabilistic reasoning. For example, the prime
and sub of an element do not share variables. Moreover, if
(p1, s1), . . . , (pn, sn) are the elements of a decision node,
then primes p1, . . . , pn must form a partition (pi 6= false,
pi ∧ pj = false for i 6= j, and p1 ∨ · · · ∨ pn = true).
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(b) SDD

Figure 1: A vtree and SDD for the student enrollment problem. Numbers in circles correspond to vtree nodes.

Each SDD is normalized for some vtree: a binary tree
whose leaves are in one-to-one correspondence with the for-
mula variables. The SDD of a Boolean formula is unique
once a vtree is fixed. Figure 1 depicts an SDD and the vtree
it is normalized for. More specifically, each SDD node is
normalized for some vtree node. The root SDD node is nor-
malized for the root vtree node. If a decision SDD node is
normalized for a vtree node v, then its primes are normal-
ized for the left child of v, and its subs are normalized for
the right child of v. As a result, terminal SDD nodes are nor-
malized for leaf vtree nodes. Figure 1 labels decision SDD
nodes with the vtree nodes they are normalized for.

For partial ranking spaces, we report below the SDD sizes
for n = 64 items and t = 4 tiers, where each tier grows by
a factor k, i.e., top-1, top-k, top-k2 and top-k3 items. The
SDD size counts the sizes of all decision nodes.

Size

n k SDD Structured Space Unstructured Space

8 2 443 840 1.84 · 1019
27 3 4,114 1.18 · 109 2.82 · 10219
64 4 23,497 3.56 · 1018 1.04 · 101233

125 5 94,616 3.45 · 1031 3.92 · 104703
216 6 297,295 1.57 · 1048 7.16 · 1014044
343 7 781,918 4.57 · 1068 7.55 · 1035415

As we shall see next, this size corresponds roughly to the
number of parameters needed to induce a distribution over
the structured space. For example, for n = 64 items, and
k = 4, one needs about 23, 497 parameters to induce a dis-
tribution over a structured space of size 3.56 · 1018.

Tractable Distributions over Structured Spaces To rep-
resent distributions over a structured space, we proposed
probabilistic sentential decision diagrams (PSDDs) (Kisa et
al. 2014). The Boolean formula defining the structured space
is first compiled into an SDD, and then parameterized to in-
duce a probability distribution. Figure 2 depicts a PSDD,
that was found by parameterizing the SDD of Figure 1.

An SDD is parameterized by providing distributions for
its decision nodes and its terminal nodes,>. A decision SDD
node n = (p1, s1), . . . , (pk, sk) is parametrized using a dis-
tribution (θ1, . . . , θk), which leads to a decision PSDD node
(p1, s1, θ1), . . . , (pk, sk, θk). The parameters θi are notated
on the edges outgoing from a decision node; see Figure 2. A
terminal SDD node n = > is parameterized by a distribution
(θ, 1− θ), leading to terminal PSDD node X :θ. Here, X is

the leaf vtree node that n is normalized for; see Figure 2.
The semantics of PSDDs is based on the notion of

a context, γn, for PSDD node n. Intuitively, this is a
Boolean formula which captures all variable instantiations
under which the decision diagram will branch to node
n. We will not describe the distribution Prr induced by
a PSDD r, but will stress the following local semantics
of PSDD parameters. For a decision PSDD node n =
(p1, s1, θ1), . . . , (pk, sk, θk), we have Prr(pi|γn) = θi.
Moreover, for a terminal SDD node n = X :θ, we have
Prr(X|γn) = θ. This local semantics of PSDD parameters
is the key reason behind their many well-behaved properties
(e.g., the existence of a closed form for learning maximum
likelihood parameters under complete data). We defer the
reader to Kisa et al. (2014) for a more thorough exposition
of PSDD syntax, semantics and properties.

PSDDs admit a variety of queries. For example, in pref-
erence learning tasks, we can compute the most likely to-
tal ranking σ? = argmaxσ Pr(σ), which corresponds to
the most probable explanation (MPE) in Bayesian networks.
We can also compute the expected rank of each item i:
E[j] =

∑
j j · Pr(Aij). As a tractable representation, such

algorithms typically require a time complexity that is only
linear in the size of the PSDD.

4 Learning in Structured Spaces
Kisa et al. (2014) provide an algorithm for learning the pa-
rameters of a PSDD given a complete dataset. This algorithm
identified the (unique) maximum likelihood parameters, and
further, in closed-form. It is used to estimate the parame-
ters in Figure 2 from the dataset in Table 1. Choi, Van den
Broeck, and Darwiche (2015) provide an EM algorithm for
learning PSDD parameters from an incomplete dataset. This
algorithm applies to a general type of incomplete dataset,
allowing one to learn distributions from datasets based on
arbitrary constraints, such as pairwise preferences in prefer-
ence learning tasks; cf. (Lu and Boutilier 2011).

Ranking The standard approaches for dealing with distri-
butions over rankings employ specialized distributions, such
as the Mallows (1957) model. In a Mallows model, we as-
sume a central total ranking σ, with probabilities of other
rankings σ′ decreasing as their distance from σ increases.
The PSDD approach we utilize, however, is quite different
as it allows one to induce any distribution over rankings, or
any other structured space. For an empirical evaluation of
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Figure 2: A PSDD for the student enrollment problem, learned from the dataset in Table 1, and SDD in Figure 1.

PSDDs in the preference learning task, see Choi, Van den
Broeck, and Darwiche (2015), where PSDDs were shown to
compare favorably to Mallows mixture models, and where
more complex queries were highlighted.

Here, we highlight some of the qualitative empiri-
cal results for partial rankings, which considered the
movielens dataset, consisting of over 1 million ratings
of roughly 3,900 movies and 6,040 users. We took the top
64 most frequently rated movies, and used the ratings of the
5,891 users who rated at least one of these movies. Ratings
are integers from 1 to 5, and for each user, we compiled an
SDD representing their pairwise preferences: if a user gives
movie i a higher rating than another movie j, we assert a
constraint that the movie is at least as highly ranked as the
other (or appears in at least as high a tier).1 We thus obtain
an SDD for each user by conjoining together all such pair-
wise preferences, which, over all users, gives us an incom-
plete dataset of partial rankings. We compile the SDD for
the structured space itself, and learn the resulting PSDD’s
parameters from our dataset of SDDs, using EM.

We consider in particular queries that are based on diver-
sified recommendations—a type of conditional query that is
permitted by the proposed framework. To our knowledge,
no current framework for preference distributions can han-
dle such queries (at least not exactly and efficiently). First,
we may ask for the top-5 movies (by expected tier), given the
constraint α that “the highest ranked movie is Star Wars V”:

1 Star Wars: Episode V - The Empire Strikes Back (1980)
2 Star Wars: Episode IV - A New Hope (1977)
3 Godfather, The (1972)
4 Shawshank Redemption, The (1994)
5 Usual Suspects, The (1995)

We see that another Star Wars movie is also highly ranked.
However, if we wanted to use this ranking to recommend a
movie, suggesting Star Wars IV is not very helpful, as some-
one who likes Star Wars V is likely to have already seen Star
Wars IV. Say we condition on another constraint β, that “no
other Star Wars movie appears in the top-5,” and further, a
third constraint γ, that “at least one comedy appears in the
top-5.” Conditioning on these three constraints α, β and γ,
we obtain the new ranking, where Star Wars IV is replaced
by the comedy/drama American Beauty:

1For partial rankings of 64 movies, we assumed four tiers rep-
resenting the top-1, top-5, top-25 and top-64 movies.

1 Star Wars: Episode V - The Empire Strikes Back (1980)
2 American Beauty (1999)
3 Godfather, The (1972)
4 Usual Suspects, The (1995)
5 Shawshank Redemption, The (1994)

This example illustrates the powerful and open-ended types
of queries allowed by the proposed framework.
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