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Abstract
Probabilistic sentential decision diagrams (PSDDs)
are a tractable representation of structured proba-
bility spaces, which are characterized by complex
logical constraints on what constitutes a possible
world. We develop general-purpose techniques for
probabilistic reasoning and learning with PSDDs,
allowing one to compute the probabilities of arbi-
trary logical formulas and to learn PSDDs from in-
complete data. We illustrate the effectiveness of
these techniques in the context of learning pref-
erence distributions, to which considerable work
has been devoted in the past. We show, analyti-
cally and empirically, that our proposed framework
is general enough to support diverse and complex
data and query types. In particular, we show that it
can learn maximum-likelihood models from partial
rankings, pairwise preferences, and arbitrary pref-
erence constraints. Moreover, we show that it can
efficiently answer many queries exactly, from ex-
pected and most likely rankings, to the probability
of pairwise preferences, and diversified recommen-
dations. This case study illustrates the effectiveness
and flexibility of the developed PSDD framework
as a domain-independent tool for learning and rea-
soning with structured probability spaces.

1 Introduction
One of the long-standing goals of AI is to combine logic
and probability in a coherent framework. A recent direc-
tion of integration is towards probability distributions over
structured spaces. In graphical models, the probability space
is the Cartesian product of assignments to individual ran-
dom variables, corresponding to the rows of a joint proba-
bility table. A structured probability space instead consists
of complex objects, such as total and partial orders, trees,
DAGs, molecules, pedigrees, product configurations, maps,
plans, etc. Our goal is to develop a general-purpose frame-
work for representing, reasoning with, and learning probabil-
ity distributions over structured spaces. These tasks so far
required special-purpose algorithms. This is in stark contrast
with general-purpose techniques for unstructured probability
spaces, such as Bayesian networks.

We leverage a recently proposed tractable representation of
structured probability distributions, called probabilistic sen-
tential decision diagrams (PSDDs) [Kisa et al., 2014]. As
in the unstructured case, structured objects are conveniently
represented by assignments to a set of variables. However,
in a structured space, not every assignment represents a valid
object. Hence, probability distributions over such objects are
not easily captured by the rows of a joint probability table.
Instead, we encode the structure explicitly in propositional
logic. Given this formal description, the next challenge is to
represent and reason with probability distributions over that
space. In PSDDs, such a distribution is captured by a set
of local probability distribution over the decisions in the dia-
gram. Finally, we seek to learn these distributions from data.

We develop our ideas in the context of a specific struc-
tured space: preference distributions. Preference learning is
studied in a broad range of fields, from recommender sys-
tems [Karatzoglou et al., 2013], web search [Dwork et al.,
2001] and information retrieval [Liu, 2009; Burges, 2010],
to supervised learning [Hüllermeier et al., 2008; Vembu and
Gärtner, 2011], natural language [Collins and Koo, 2005],
social choice [Young, 1995], statistics [Marden, 1996], and
psychology [Doignon et al., 2004]. It has given rise to a mul-
titude of different techniques. We follow the probabilistic
approach, where preferences are generated from a distribu-
tion over the set of all rankings, which can express complex
correlations and noise. Despite the simplifying assumptions
that underly existing representations, learning preference dis-
tributions remains computationally hard [Meila et al., 2007].
Moreover, ranking data can be very heterogeneous [Busse et
al., 2007], consisting of partial and total rankings, ranking
with ties, top/bottom items, and pairwise preferences. Dif-
ferent data types and model assumptions often require a new,
special-purpose learning and approximation algorithm (e.g,
Hunter [2004], Lebanon and Mao [2007], Guiver and Snel-
son [2009], and Liu [2009]). Finally, once a model is learned,
inference is typically limited to sampling, which can only be
effective for certain types of basic queries.

In this paper, we employ PSDDs for inducing distributions
over the space of all total rankings, and the space of all partial
rankings (rankings with ties). We extend the PSDD frame-
work to answer arbitrary queries specified using propositional
logic. Our proposed approach represents such queries using
a structured logical object, called a sentential decision dia-



gram (SDD) [Darwiche, 2011]. In particular, given a PSDD
model and an SDD query, we propose an algorithm for effi-
ciently and exactly computing the query probability or most-
likely explanations (MPE). In the case of preference distri-
butions, this allows one on to pose arbitrary ranking queries,
involving pairwise preferences, partial orders, or any other
constraint on the ranking. We can handle queries for diver-
sified recommendations, which are not within the scope of
most existing models. These queries seek most-likely or ex-
pected rankings subject to constraints that enforce diversity,
interestingness, or remove redundancy. Our final contribution
is in showing that PSDDs can be learned, efficiently, from in-
complete data using the EM algorithm [Dempster et al., 1977;
Lauritzen, 1995]. Our proposed algorithm applies to a gen-
eral type of incomplete datasets, allowing one to learn distri-
butions from datasets based on arbitrary constraints.

We start by giving the necessary background on structured
spaces and their distributions. We then introduce the basic al-
gorithms for inference and learning. We next show an exper-
imental evaluation on two standard datasets, where we also
illustrate diversified recommendations. We finally conclude
by discussing some more related work.

2 Representing Structured Spaces

Consider a set of Boolean variables X1, . . . , Xn. We will use
the term unstructured space to refer to the 2n instantiations of
these variables. We will also use the term structured space to
refer to a subset of these instantiations, which is determined
by some complex, application-specific criteria.

To provide a concrete example of a structured space, con-
sider the Boolean variables Aij for i, j ∈ {1, . . . , n}. Here,
the index i represents an item and the index j represents its
position in a total ranking of n items. The unstructured space
consists of the 2n
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instantiations of our n2 Boolean variables.
A structured space of interest consists of the subset of instan-
tiations that correspond to total rankings over n items. The
size of this structured space is only n! as the remaining in-
stantiations do not correspond to valid, total rankings (e.g.,
an instantiation that places two items in the same position, or
one item in two different positions).

Many applications require probability distributions over
structured spaces, and our interest in this paper is in one such
application: reasoning about user preferences. The standard
approach for dealing with this application alludes to special-
ized distributions, such as the Mallows [1957] model, which
assumes a central total ranking σ, with probabilities of other
rankings σ′ decreasing as their distance from σ increases.

The approach we shall utilize, however, is quite different as
it allows one to induce distributions over arbitrary structured
spaces (e.g., total rankings, partial rankings, graph structures,
etc.). According to this approach, one defines the structured
space using a Boolean formula, whose models induce the
space. Considering our running example, and assuming that
n = 3, we can define the structured space using two types of
Boolean constraints:

– Each item i is assigned to exactly one position, leading

to three constraints for i ∈ {1, 2, 3}:
(Ai1 ∧ ¬Ai2 ∧ ¬Ai3)
∨(¬Ai1 ∧Ai2 ∧ ¬Ai3)
∨(¬Ai1 ∧ ¬Ai2 ∧Ai3).

– Each position j is assigned exactly one item, leading to
three constraints for j ∈ {1, 2, 3}:

(A1j ∧ ¬A2j ∧ ¬A3j)

∨(¬A1j ∧A2j ∧ ¬A3j)

∨(¬A1j ∧ ¬A2j ∧A3j).

The Boolean formula defining the structured space will then
correspond to a conjunction of these six constraints (more
generally, 2n constraints).

To consider an even more complex example, let us consider
the structured space of partial rankings. For defining this
space, we will use Boolean variables Aij with i ∈ {1, . . . , n}
and j ∈ {1, . . . , t}. Here, the index i represents an item, and
the index j represents the tier it is assigned to. The seman-
tics is that we would prefer an item that appears in a higher
tier (smaller j) over one appearing in a lower tier (larger j),
but we will not distinguish between items within a tier. The
sizes of tiers can vary as well. For example, the first tier can
represent a single best item, the first and second tiers can rep-
resent the top-2, the first three tiers can represent the top-4,
and so on. This type of partial ranking is analogous to one
that would be obtained from a single-elimination tournament,
where a 1st and 2nd place team is determined (the finals), but
where the 3rd and 4th places teams may not be distinguished
(losers of the semi-finals). We can also define this structured
space using a Boolean formula, which is a conjunction of two
types of constraints. The first type of constraints ensures that
each item i is assigned to exactly one tier. The second type of
constraints ensures that each tier j has exactly mj items.

3 Compiling Structured Spaces
We will describe in the next section the approach we shall use
for inducing probability distributions over structured spaces.
This approach requires the Boolean formula defining the
structured space to be in a tractable form, known as a sen-
tential decision diagram (SDD) [Darwiche, 2011].1 Figure 1
depicts an example SDD for the Boolean formula

(A⇔ B) ∨ ((A⇔ ¬B) ∧ C).
A circle in an SDD is called a decision node and its children

(paired boxes) are called elements. Literals and constants (>
and ⊥) are called terminal nodes. For element (p, s), p is
called a prime and s is called a sub. A decision node n with
elements (p1, s1), . . . , (pn, sn) is interpreted as (p1 ∧ s1) ∨
. . . ∨ (pn ∧ sn). SDDs satisfy some strong properties that
make them tractable for certain tasks, such as probabilistic
reasoning. For example, the prime and sub of an element do
not share variables. Moreover, if (p1, s1), . . . , (pn, sn) are
the elements of a decision node, then primes p1, . . . , pn must

1SDDs generalize OBDDs [Bryant, 1986] by branching on arbi-
trary sentences instead of literals.
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Figure 1: An SDD, a vtree, and a PSDD for the Boolean formula (A⇔ B) ∨ ((A⇔ ¬B) ∧ C).

form a partition (pi 6= false, pi ∧ pj = false for i 6= j, and
p1 ∨ . . . ∨ pn = true).

Each SDD is normalized for some vtree: a binary tree
whose leaves are in one-to-one correspondence with the for-
mula variables. The SDD of a Boolean formula is unique
once a vtree is fixed. Figure 1 depicts an SDD and the vtree
it is normalized for. More specifically, each SDD node is
normalized for some vtree node. The root SDD node is nor-
malized for the root vtree node. If a decision SDD node is
normalized for a vtree node v, then its primes are normalized
for the left child of v, and its subs are normalized for the right
child of v. As a result, terminal SDD nodes are normalized
for leaf vtree nodes. Figure 1 labels decision SDD nodes with
the vtree nodes they are normalized for.

In our experiments, we used the SDD package2 to compile
Boolean formulas, corresponding to total and partial ranking
spaces, into SDDs.3 For partial ranking spaces, we report
results on n = 64 items and t = 4 tiers, where each tier
grows in size by a factor of k, i.e., top-1, top-k, top-k2 and
top-k3 items. To give a more comprehensive sense of space
sizes, the following table shows the sizes of spaces and those
of their SDD compilations, for various n and k, fixing t = 4.

Size
n k SDD Structured Space Unstructured Space
8 2 443 840 1.84 · 1019

27 3 4,114 1.18 · 109 2.82 · 10219
64 4 23,497 3.56 · 1018 1.04 · 101233

125 5 94,616 3.45 · 1031 3.92 · 104703
216 6 297,295 1.57 · 1048 7.16 · 1014044
343 7 781,918 4.57 · 1068 7.55 · 1035415

The size of an SDD is obtained by summing the sizes of its
decision nodes [Darwiche, 2011]. As we shall see in the next
section, this size corresponds roughly to the number of pa-

2Available at http://reasoning.cs.ucla.edu/sdd/
3We did not use dynamic vtree search as provided by the SDD

package. Instead, we used a static vtree, based on preliminary exper-
imentation. Basically, for each position j, we created a right-linear
vtree over the variables Aij . We then composed these right-linear
vtrees together, also using a right-linear structure.

rameters needed to induce a distribution over the SDD mod-
els. For example, for n = 64 items, and tier growth rate
k = 4, one needs about 23, 497 parameters to induce a distri-
bution over a structured space of size 3.56 · 1018.

The SDDs for total rankings did not scale as well as they
have a number of nodes that grows exponentially in the num-
ber of items n (yet grows more slowly than the factorial func-
tion). Hence, we were able to represent spaces for only a
moderate number of items (about 20), which is enough for
certain datasets, such as the commonly used sushi dataset
(consisting of 10 items). We will evaluate encodings for both
total rankings and partial rankings (which scale better than
total rankings), in our experiments.

4 Distributions over Structured Spaces
To induce a distribution over a structured space, we use prob-
abilistic sentential decision diagrams (PSDDs) [Kisa et al.,
2014]. According to this approach, the Boolean formula
defining the structured space is first compiled into a normal-
ized SDD. The SDD is then parameterized to induce a prob-
ability distribution over its models. Figure 1 depicts an SDD
and one of its parameterizations (PSDD).

An SDD is parameterized by providing distributions for its
decision nodes and its terminal nodes, >. A decision SDD
node n = (p1, s1), . . . , (pk, sk) is parametrized using a dis-
tribution (θ1, . . . , θk), which leads to a decision PSDD node
(p1, s1, θ1), . . . , (pk, sk, θk). The parameters θi are notated
on the edges outgoing from a decision node; see Figure 1. A
terminal SDD node n = > is parameterized by a distribution
(θ, 1 − θ), leading to terminal PSDD node X :θ. Here, X is
the leaf vtree node that n is normalized for; see Figure 1.

We will identify an SDD/PSDD with its root node r. More-
over, if n is a PSDD node, then [n] will denote the SDD that
n parameterizes. That is, while n represents a probability
distribution, [n] represents a Boolean formula. According to
PSDD semantics, every PSDD node n, not just the root r,
induces a distribution Prn over the models of SDD [n].

The semantics of PSDDs is based on the notion of a con-
text, γn, for PSDD node n. Intuitively, this is a Boolean for-
mula that captures all variable instantiations under which the



decision diagram will branch to node n. We will not describe
the distribution Prr induced by a PSDD r, but will stress
the following local semantics of PSDD parameters. For a
decision PSDD node n = ((p1, s1, θ1), . . . , (pk, sk, θk), we
have Prr(pi|γn) = θi. Moreover, for a terminal SDD node
n = X :θ, we have Prr(X|γn) = θ. This local seman-
tics of PSDD parameters is the key reason behind their many
well-behaved properties (e.g., the existence of closed-form
maximum-likelihood parameter estimates for complete data).
We defer the reader to Kisa et al. [2014] for a thorough expo-
sition of PSDD syntax, semantics and properties.

5 Querying with Constraints
Suppose now that we have a probability distribution Pr and
we want to compute the probability of a Boolean formula
α. For example, Pr can be a distribution over preferences
in movies, and α could represent “a comedy appears as one
of the top-10 highest ranked movies.” We may also be inter-
ested in Pr(. | α), which is the conditional distribution over
rankings, assuming that a comedy appears in the top-10.

The ability to reason about arbitrary constraints is a pow-
erful one. For example, it allows one to diversify recommen-
dations in preference-based reasoning, as we discuss later.
In most representations, this ability is either not present,
or it is intractable. For example, in a Bayesian network,
one can use the method of virtual evidence [Pearl, 1988;
Mateescu and Dechter, 2008], to represent a logical con-
straint. However, this will in general lead to a highly-
connected network, making inference intractable.

A key technical contribution of this paper is an observation
that the probability of a Boolean formula can be computed
efficiently, in a distribution induced by a PSDD, given that
the formula is represented by an SDD with the same vtree as
the PSDD.4

Theorem 1. Suppose we have a PSDD n with distribution
Prn and size sn, and a Boolean formula α represented by an
SDD m of size sm. If SDD m has the same vtree as PSDD n,
then Prn(α) can be computed in time O(snsm).5

Suppose that PSDD n has elements (pi, si, θi) and SDD α
has elements (qj , rj). Our approach for computing the prob-
ability of α is based on the following recurrence, which is
implemented by Algorithm 1:

Prn(α) =
∑
j

Prn(qj ∧ rj)

=
∑
i

∑
j

Prpi(qj) · Prsi(rj) · θi

4This assumption, that the SDD and PSDD share the same vtree,
is key to the efficiency of computing the probability of a Boolean
constraint. Otherwise, the problem becomes NP-hard, which fol-
lows from the hardness of conjoining two OBDDs that respect two
different orders [Meinel and Theobald, 1998; Darwiche and Mar-
quis, 2002].

5This is a loose upper bound. A more accurate bound is∑
v sv,nsv,m, where v is a non-leaf vtree node, sv,m is the size

of decision PSDD nodes normalized for v, and sv,m is the size of
decision SDD nodes normalized for v.

Algorithm 1 pr-constraint(n,m)

input: A PSDD n inducing distribution Prn and an SDD m
representing Boolean formula α. The PSDD and SDD respect
the same vtree.
output: Prn(α).
main:

1: if (n,m) ∈ cache then
2: return cache[(n,m)]
3: else if n is a decision node then
4: ρ← 0
5: for each element (pi, si, θi) in PSDD n do
6: for each element (qj , rj) in SDD m do
7: ρleft ← pr-constraint(pi, qj)
8: ρright ← pr-constraint(si, rj)
9: ρ← ρ+ ρleft · ρright · θi

10: cache[(n,m)] = ρ
11: return ρ
12: else {// n and m are terminals}
13: if [n] ∧m is false then
14: return 0
15: else if [n] ∧m is true then
16: return 1
17: else if [n] is a literal then
18: return 0 if [n] ∧m is false, otherwise 1
19: else if n is a terminal X :θX , and m is a literal then
20: return θX if m is X , or 1− θX if m is ¬X

In a second pass on the PSDD and SDD, we can compute
the marginals Pr(X | α) for each variable X , as well as the
probabilities of non-root SDD nodes. This is analogous to the
two-pass algorithm given in Kisa et al. [2014]. This ability
to compute marginals enables an EM algorithm for PSDDs,
which we discuss next.

6 Learning from Constraints
Kisa et al. [2014] provided an algorithm for learning the pa-
rameters of a PSDD given a complete dataset. This algorithm
identified the (unique) maximum likelihood parameters, and
further, in closed-form. We will now present our second,
main technical contribution: An efficient algorithm for learn-
ing the parameters of a PSDD given an incomplete dataset.

We start first with some basic definitions. An instantiation
of all variables is a complete example, while an instantiation
of some variables is an example. There are 2n distinct com-
plete examples over n variables, and 3n distinct examples. A
complete dataset is a multi-set of complete examples (i.e., a
complete example may appear multiple times in a dataset).
Moreover, traditionally, an incomplete dataset is defined as
a multi-set of examples. One can view an example as a set
of complete examples (those consistent with the example).
Hence, we will use a more general definition of an incomplete
dataset, defined as a multi-set of Boolean formulas, with each
formula corresponding to a set of complete examples (those
consistent with the formula). This definition is too general to
appear practical. However, as we shall show, if we represent
these Boolean formulas (i.e., examples) as SDDs, then The-



orem 1 allows us to efficiently learn parameters from such
datasets. We will next provide an EM algorithm for this pur-
pose, which has a polytime complexity per iteration.

Given a PSDD structure, and an incomplete dataset spec-
ified as a set of SDDs, our goal is to learn the value of each
PSDD parameter. More precisely, we wish to learn maximum
likelihood parameters: ones that maximize the probability of
examples in the dataset. Let Prθ denote the distribution in-
duced by the PSDD structure and parameters θ. The log like-
lihood of these parameters given a dataset D is defined as

LL(θ|D) =
N∑
i=1

logPrθ(Di),

where Di ranges over all N examples of our dataset D.
Again, each Di is an SDD, whose probability Prθ(Di) can
be computed using Algorithm 1. Our goal is then to find the
maximum likelihood parameters

θ? = argmax
θ

LL(θ|D).

For an incomplete dataset, finding the globally optimal pa-
rameter estimates may not be tractable. Instead, we can more
simply search for stationary points of the log likelihood, i.e.,
points where the gradient is zero (any global optimum is a
stationary point, but not vice-versa). Such points are charac-
terized by the following theorem.

Theorem 2. Let D be an incomplete dataset, and let θ be
the parameters of a corresponding PSDD with distribution
Prθ. Parameters θ are a stationary point of the log likelihood
LL(θ|D) (subject to normalization constraints on θ) iff for
each PSDD node n with context γn:

– If n is a decision node with elements (pi, si, θi), then:

θi =

∑N
i=1 Prθ(pi, γn | Di)∑N
i=1 Prθ(γn | Di)

– If n is a terminal node X :θX , then:

θX =

∑N
i=1 Prθ(X, γn | Di)∑N
i=1 Prθ(γn | Di)

.

This theorem suggests an iterative EM algorithm for find-
ing stationary points of the log likelihood. First, we start with
some initial parameter estimates θ0 at iteration t = 0. For
iteration t > 0, we use the above update to compute parame-
ters θt given the parameters θt−1 from the previous iteration.
When the parameters of one iteration do not change in the
next (in practice, up to some threshold), we say that the itera-
tions have converged to a fixed point.

An iteration of the proposed algorithm is implemented by
traversing the dataset, while applying Algorithm 1 to each
example (i.e., SDD) and the current PSDD. This is sufficient
to obtain the quantities needed by the update equations. For a
dataset withm distinct examples, the proposed algorithm will
therefore apply Algorithm 1 a total of m times per iteration,
leading to a polytime complexity per iteration. We can show
that the proposed algorithm is indeed an EM algorithm by
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Figure 2: Mallows Mixture Model vs PSDDs

showing that it obtains the same updates obtained by the fol-
lowing algorithm. First, we “complete” the dataset by replac-
ing each SDD example by the complete examples consistent
with it. Second, we compute the probability of each complete
example using the current PSDD. Finally, we use the closed
forms in [Kisa et al., 2014] to obtain the next parameter esti-
mates based on the completed data. The same proof technique
is used in Darwiche [2009] and Koller and Friedman [2009]
for justifying the EM algorithm for Bayesian networks.

7 Experiments
We now empirically evaluate the PSDD as a model for pref-
erence distributions. We first evaluate the encoding for total
rankings, where we highlight (a) the quality of learned mod-
els and (b) the utility of PSDDs in terms of its query capabil-
ities. We also evaluate the more scalable encoding for partial
rankings and further demonstrate (c) the capabilities that PS-
DDs provide, in particular for diversified recommendations.

7.1 Total Rankings
Consider the sushi dataset, which consists of 5, 000 total
rankings of 10 different types of sushi [Kamishima, 2003].
We learned a PSDD from the full dataset, using the encod-
ing for total rankings, and analyzed the resulting model. A
dataset composed of total rankings is a complete dataset, so
we use the closed forms of Kisa et al., 2014 to estimate the
maximum likelihood parameters of a PSDD. The correspond-
ing PSDD required 4, 097 (independent) parameters. We fur-
ther assumed a Dirichlet prior with exponents 2, which corre-
sponds to Laplace smoothing.

Quality of Learned Model. We compared the learned PSDD
model for the sushi dataset with a learned Mallows mix-
ture model. As performed by Lu and Boutilier [2011], we
first split the dataset into a training set of 3,500 instances,
and a test set of 1,500 instances. From the training set, we
learned a single PSDD model and 10 Mallows mixture mod-
els using EM.6 In Figure 2, we compare the PSDD and Mal-

6For the Mallows mixture model, we used the implementation of
Lu and Boutilier [2011] with default settings.



lows mixture models in terms of (average) log likelihood of
the test set, for an increasing number of mixture components
(for the Mallows model). We see that the PSDD dominates
the Mallows model for all numbers of mixture components
that were evaluated (up to 20, as in Lu and Boutilier [2011]).
This suggests that PSDDs are expressive, and better capable
of representing distributions such as the one underlying the
sushi dataset. This is in contrast to the popular Mallows
models (and their mixtures), whose underlying assumptions
are relatively strong (i.e., that there exists a central ranking).

Query Capabilities. Once a model is learned, PSDDs ad-
mit a variety of queries. For example, we can compute the
most likely total ranking σ? = argmaxσ Pr(σ),which corre-
sponds to the most probable explanation (MPE) in Bayesian
networks. We can also compute the expected rank of each
item i:

E[j] =
∑
j

j · Pr(Aij).

Moreover, using Theorem 1, it is possible to predict a pair-
wise preference i > j, given a pairwise preference k > l.
In particular, we are interested in Pr(i > j | k > l), which
is the probability of a preference i > j given the preference
k > l. We enumerated all such combinations of i, j, k and l,
where i, j, k, l are pairwise distinct, and examined in particu-
lar the log odds change, i.e.,

logF (i > j | k > l) = logO(i > j | k > l)− logO(i > j)

where we have the odds

O(α) =
Pr(α)

1− Pr(α)
,

for an event α; for more on log-odds change, see, e.g., Chan
and Darwiche [2005]. A large log-odds change indicates a
large increase in a pairwise preference i > j given the pref-
erence k > l. In our PSDD, the greatest log-odds change
was:

logF (egg > fatty tuna | cucumber roll > tuna) = 1.295

where the odds of preferring egg to fatty tuna increased from
0.238 to 0.868 when cucumber rolls are preferred to tuna.

7.2 Partial Rankings
Consider now the movielens dataset,7 which consists of
over 1 million ratings of approximately 3,900 movies and
6,040 users. Here, each rating is an integer from 1 to 5, in
contrast to the total orderings given in the sushi dataset.
Following Lu and Boutilier [2011], we extracted from these
ratings a set of pairwise preferences for each user. In this
case, our dataset is incomplete, and we utilized the EM algo-
rithm for PSDDs that we proposed in this paper.

We employ our encoding of partial rankings for this eval-
uation. In particular, we extract the top 64 most frequently
rated movies from the movielens dataset, and use the rat-
ings of the resulting 5,891 of 6,040 users who rated at least
one of these movies.8 For each user, we construct an SDD

7Available at http://grouplens.org/
8Lu and Boutilier [2011] extract the 200 most frequently rated

movies. We retain only 64 movies due to time considerations.

representing their pairwise preferences, based on their rat-
ings. In particular, if a user gives movie i a higher rating
than another movie j, we assert a constraint that the movie is
at least as highly ranked as the other (or appears in at least as
high a tier), i.e., i ≥ j. We obtain an SDD for each user by
conjoining together all such pairwise preferences (the average
size of a user SDD was in the tens of thousands). For partial
rankings of 64 movies, we assume four tiers representing the
top-1, top-5, top-25 and top-64 movies. The corresponding
PSDD has 18, 711 (independent) parameters. We finally run
EM on the PSDD for 5 iterations. We also use the system
of Lu and Boutilier [2011] to learn the Mallows model from
pairwise constraints.

Total versus Partial Ranking Models. A comparison with a
Mallows models in terms of likelihoods is not possible here as
the two models are quite different in scope: one is modeling a
distribution over total rankings, while the other is modeling a
distribution over partial rankings. We were curious, however,
to see the extent to which these models agreed on recommen-
dations. Our general observation has been that they come out
close. For example, the central ranking obtained by a Mal-
lows model, and the sorted list of expected rankings given by
the PSDD model, agreed on the top 10 movies (but disagreed
somewhat on their order). We omit the details of this and
other examples here, however, due to space limitations.

Query Capabilities. We will now illustrate some further
queries that are permitted by the proposed framework. Most
current frameworks for preference distributions cannot han-
dle such queries exactly and efficiently.

First, we may ask for the top-5 movies (by expected tier),
given the constraint α: “the highest ranked movie is Star Wars
V” (which we encode as an SDD and use as evidence):

1 Star Wars: Episode V - The Empire Strikes Back (1980)
2 Star Wars: Episode IV - A New Hope (1977)
3 Godfather, The (1972)
4 Shawshank Redemption, The (1994)
5 Usual Suspects, The (1995)

We see that another Star Wars movie is also highly ranked.
However, if we wanted to use this information to recommend
a movie to a user, whose favorite movie was Star Wars V, a
recommendation of Star Wars IV would not be particularly
useful (as having seen Star Wars V likely implies that one has
seen the prequel Star Wars IV as well). We could condition
on an additional constraint β, that “no other Star Wars movie
appears in the top-5.” Going further still, we could assert a
third constraint γ, that “at least one comedy appears in the
top-5.” Conditioning on these three constraints α, β and γ,
we obtain the new ranking:

1 Star Wars: Episode V - The Empire Strikes Back (1980)
2 American Beauty (1999)
3 Godfather, The (1972)
4 Usual Suspects, The (1995)
5 Shawshank Redemption, The (1994)

Here, the movie Star Wars IV was replaced by the com-
edy/drama American Beauty. This provides an illustration of
the powerful, and open ended, type of queries permitted by
the proposed framework.



8 Conclusion and Related Work
We have introduced a general framework for probabilistic
preference learning. Our aim was to provide a different per-
spective on preference learning, rooted in the recent devel-
opments on learning structured probability spaces [Kisa et
al., 2014] and the tractable learning paradigm [Domingos and
Lowd, 2014]. To support the preference learning application,
we extended PSDDs to reason with structured queries and
to learn from incomplete structured data. We were particu-
larly motivated by the need to support heterogeneous data,
and complex queries, such as diversified recommendations.

Existing work on preference distributions has focused
on two representations of historical significance, namely
the Plackett-Luce [Plackett, 1975; Luce, 1959] and Mal-
lows [1957] model, and extensions thereof [Fligner and Ver-
ducci, 1986; Murphy and Martin, 2003; Meila and Chen,
2010]. Although these models were successfully applied in
several applications, they can also be restrictive. As a repre-
sentation, for example, the Mallows model and its extensions
encode the distance from a (small) number of consensus rank-
ings, limiting the number of modes in the distribution. Com-
pact representations of preferences distributions are also pur-
sued by Huang et al. [2009] and Huang and Guestrin [2009].
These are sophisticated and dedicated representation of per-
mutations. Moreover, they either do not support tractable ex-
act inference, or all the types of rank data considered here.

The PSDD representation is founded on a long tradition
of tractable representations of logical knowledge bases in
knowledge compilation [Darwiche and Marquis, 2002]. It
is also related to other tractable probabilistic representations,
such as sum-product networks, which exploit similar proper-
ties for efficient learning [Peharz et al., 2014].

We finally note that the need for diversity (as in diversified
recommendations) has been recognized before [McNee et al.,
2006; Sanner et al., 2011; He et al., 2012]. Similar observa-
tions have also been stated for recommender systems [Rashid
et al., 2002] and matching problems [Charlin et al., 2012].
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