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Abstract

We propose a principled approach for learning parameters in Bayesian networks from
incomplete datasets, where the examples of a dataset are subject to equivalence con-
straints. These equivalence constraints arise from datasets where examples are tied
together, in that we may not know the value of a particular variable, but whatever
that value is, we know it must be the same across different examples. We formal-
ize the problem by defining the notion of a constrained dataset and a corresponding
constrained likelihood that we seek to optimize. We further propose a new learning
algorithm that can effectively learn more accurate Bayesian networks using equiva-
lence constraints, which we demonstrate empirically. Moreover, we highlight how our
general approach can be brought to bear on more specialized learning tasks, such as
those in semi-supervised clustering and topic modeling, where more domain-specific
approaches were previously developed.

1. Introduction

In machine learning tasks, the examples of a dataset are generally assumed to be
independent and identically distributed (i.i.d.). There are numerous situations, how-
ever, where this assumption does not hold, and there may be additional information
available that ties together the examples of a dataset. We can then, in turn, exploit this
background knowledge to learn more accurate models.

Consider, as a motivating example, the following scenarios that arise in medical
diagnosis, where we would like to learn a model that could be used to diagnose diseases
from symptoms. Typically, we would have data consisting of patient records, which we
assume to be independent. However, we may obtain further information that ties some
of these records together. For example, we may learn that two patients are identical
twins, and hence may both be subject to increased risk of certain genetic diseases, i.e.,
they share the same genetic variants that may cause certain genetic disorders. We may
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also, for example, learn that two patients were both exposed to a third patient, who was
diagnosed with a contagious disease. When learning a model from data, we would like
to be able to take advantage of this type of additional information, when it is available.

We can view this type of additional information more generally as equivalence
constraints that bear on an incomplete dataset, where we may not know the particular
value of a variable, but whatever that value is, we know that it must be the same across
different examples in our dataset. In this paper, we introduce a simple but principled
way to deal with such additional information. In particular, we introduce and formalize
the problem of learning under equivalence constraints. We first introduce the notion
of a constrained dataset, which implies a corresponding constrained log likelihood.
We then define the problem of learning the parameters of a Bayesian network from a
constrained dataset, by maximizing the constrained log likelihood.

There are a variety of applications, across a variety of different domains, that can
be viewed as learning from a constrained dataset. For example, in the information
extraction task of named-entity recognition, we seek to label the elements of a text by
the type of entity that they refer to (e.g., in an abstract for a talk, we would want to
identify those elements that refer to the speaker). Hence, if we see a name that appears
multiple times in the same text, we may presume that they all refer to an entity of the
same type [1] (an equivalence constraint). As another example, in the task of (vision-
based) activity recognition [2], our goal is to annotate each frame of a video by the
activity that a human subject is involved in. In this case, a video could be partially
annotated by a human labeler, specifying that different frames of a video that depict
the same activity (again, an equivalence constraint).

Indeed, the notion of an equivalence constraint, for the purposes of learning, has ap-
peared before in a variety of different domains (either implicitly or explicitly), where
a variety of domain-specific approaches have been developed for disparate and spe-
cialized tasks. One notable domain, is that of semi-supervised clustering [3]. Here,
the notion of a must-link constraint was proposed for k-means clustering, to constrain
those examples that are known to belong to the same cluster;2 see, e.g., [4, 5]. For ex-
ample, when clustering different movies, a user may find that the clusters they learned
assigned two different movies to two different clusters, when they should have been
assigned to the same cluster (say, based on their personal preferences). In the topic
modeling domain, a significantly different approach was proposed to accommodate
must-link constraints (based on Dirichlet forest priors), to assert that different words
should appear in the same topic (with high probability) [6].

In this paper, we show how the different tasks described above can be viewed uni-
formly as learning a Bayesian network from a dataset that is subject to equivalence
constraints. We further propose a simple but principled way of learning a Bayesian
network from such a dataset, which is competitive with, and sometimes outperform-
ing, more specialized approaches that were developed in their own domains. Given
the simplicity and generality of our approach, we further relieve the need to (a) derive
new and tailored solutions for applications in new domains, or otherwise (b) adapt or
generalize existing solutions from another domain (both non-trivial tasks).

2Similarly, must-not-link constraints were also considered, for examples that belong to different clusters.
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Our paper is organized as follows. In Section 2, we review the task of learning
Bayesian networks from incomplete datasets. In Section 3, we introduce the notion
of a constrained dataset, and in Section 4 we introduce the corresponding notion of a
constrained log likelihood. In Section 5, we consider the problem of evaluating the
constrained log likelihood, and in Section 6, we discuss an iterative algorithm for opti-
mizing it. In Section 7, we evaluate our approach for learning Bayesian networks from
constrained datasets, further comparing it with more specialized approaches from two
different domains: semi-supervised clustering and topic modeling. Finally, we review
related work in Section 8, and conclude in Section 9.

2. Technical Preliminaries

We use upper case letters (X) to denote variables and lower case letters (x) to de-
note their values. Sets of variables are denoted by bold-face upper case letters (X), and
their instantiations by bold-face lower case letters (x). Generally, we will use X to de-
note a variable in a Bayesian network and U to denote its parents. A network parameter
will further have the general form θx|u, representing the probability Pr(X=x|U=u).
We will further use θ to denote the set of all network parameters.

Given a network structure G, our goal is to learn the parameters of the correspond-
ing Bayesian network, from an incomplete dataset. We use D to denote a dataset, and
di to denote an example. Typically, one seeks parameter estimates θ that maximize the
log likelihood, defined as:

LL(θ |D) =

N∑
i=1

logPrθ(di), (1)

where Prθ is the distribution induced by network structure G and parameters θ. In the
case of complete data, the maximum likelihood (ML) parameters are unique and easily
obtainable. In the case of incomplete data, obtaining the ML parameter estimates is
more difficult, and iterative algorithms, such as Expectation-Maximization (EM) [7, 8],
are typically employed.

In this paper, we are interested in estimating the parameters of a Bayesian network
from a similar perspective, but subject to certain equivalence constraints, which we
introduce in the next section. Our approach is largely motivated by the use of meta-
networks, which are more commonly used for Bayesian parameter estimation [9, 10].
In a meta-network, the parameters θ that we want to learn are represented explicitly
as nodes in the network. Moreover, the dataset D is represented by replicating the
original Bayesian network, now called a base network, as many times as there are
examples di in the data. Each example di of the dataset D is then asserted as evidence
in its corresponding base network. Such a meta-network explicitly encodes an i.i.d.
assumption on the dataset D, where data examples are conditionally independent given
the parameters θ (which follows from d-separation).

Example 1. Consider a Bayesian network A → B with Boolean variables A and B,
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Figure 1: A meta-network for a Bayesian networkA→ B, and the dataset D given in Example 1 (left), and
the corresponding plate representation (right).

and the following incomplete dataset D:

example A B
1 ? true
2 ? false
3 ? true
4 ? true

Here we have four examples, each row representing a different example di. The sym-
bol ? denotes a missing value. In this example, variable B is fully observed (its value
is never missing), whereas variable A is fully unobserved (its value is always missing).
The corresponding meta-network for this dataset is depicted in Figure 1, along with the
corresponding plate representation, which is also commonly used [10]. In the meta-
network, each example di has a corresponding base network Ai → Bi where instance
di is asserted as evidence (observed nodes are shaded). Moreover, the network param-
eters θA and θB|A are represented explicitly as random variables. Here, the probability
of variable A depends on the parameters θA, and the probability of variable B depends
on its parent B and the parameters θB|A.

In Bayesian parameter estimation, one typically estimates the network parameters
by considering the posterior distribution obtained from conditioning the meta-network
on the given dataset D. For our purposes, we want to condition instead on the pa-
rameter variables, asserting a given parameterization θ (as in maximum likelihood es-
timation). In this case, one induces a meta-distribution P(. | θ) over the variables
of the base networks. If our dataset D is specified over variables X, then let Xi de-
note the variables of the base-network corresponding to example i in the meta-network.
Moreover, let X1:N = ∪Ni=1Xi denote the set of all base-network variables in the meta-
network, and let x1:N denote a corresponding instantiation. Our meta-distribution is
then:

P(x1:N | θ) =
N∏
i=1

P(xi | θ) =
N∏
i=1

Prθ(xi)

where, again, Prθ(X) = P(Xi | θ) is the distribution induced by a network with
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structure G and parameters θ. The likelihood of a set of parameters θ is then:

P(D | θ) =
∑

x1:N∼D

P(x1:N | θ) =
N∏
i=1

Prθ(di) (2)

where x1:N ∼D denotes compatibility between a complete instantiation x1:N and the
(incomplete) dataset D, i.e., each x1:N is a valid completion of dataset D. The corre-
sponding log likelihood, of the meta-network, is thus equivalent to the log likelihood
of Equation 1:

logP(D | θ) = LL(θ |D).

Again, when estimating the parameters of a Bayesian network from data, we typically
seek those parameters that maximize the log likelihood. In this paper, we take advan-
tage of this meta-network perspective on this parameter estimation task, as it facilitates
the learning of Bayesian networks from constrained datasets, which we discuss next.

3. Constrained Datasets

As a motivating example, consider the following problem that we may encounter
in the domain of medical diagnosis.

Example 2. Consider an incomplete dataset D composed of four medical records:

record V D H T
1 true ? false true
2 ? ? true true
3 false ? ? true
4 ? ? false ?

where each row represents a medical record di over four binary features:

• “has genetic variant” (V ), which can be true or false,

• “has diabetes” (D), which can be true or false,

• “has increased hunger” (H), which can be true or false,

• “has increased thirst” (T ), which can be true or false.

Here, we consider a genetic variant, whose presence increases the risk of diabetes in
a patient, and two symptoms of diabetes, increased hunger and thirst. Suppose that
we obtain information that record 2 and record 4 correspond to two patients, who are
identical twins, and hence share the same genetic variants. Suppose, however, that we
do not know whether the genetic variant is present or absent in the twins: we know that
either they both possess the variant or both do not possess the variant. Even if both
twins possess the variant (V ), they may not both develop diabetes (D), nor may they
exhibit the same symptoms (H and T ).
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Our goal is to take advantage of the type of background information available in
Example 2 (in this case, that two records correspond to identical twins), in order to learn
more accurate models. In particular, we view this type of background information as
an equivalence constraint, which constraints the values of a variable to be the same
across different examples in a dataset, although not necessarily to a specific value.

More formally, consider the following definition of an equivalence constraint.

Definition 1 (Equivalence Constraint). An equivalence constraint on a variable X, in
a dataset D = {d1, . . . ,dN}, is an index set CX ⊆ {1, . . . , N}, which constrains the
corresponding instances of X to have the same value, i.e., we have that Xi ≡ Xj in
examples di and dj , for all pairs of indices i, j ∈ CX .

We further define a trivial equivalence constraintCX to be one that contains a single
index i, i.e., variableXi must be equivalent to itself, which is vacuous. We denote a set
of equivalence constraints on a variable X by CX . Typically, we consider sets CX of
equivalence constraints that partition the examples {1, . . . , N}. Such a partition may
also include trivial constraints CX over a single index. We further assume, without
loss of generality, that the equivalence constraints CX of a set CX are pairwise disjoint
(otherwise, we could merge them into a single equivalence constraint).

Example 3. Consider again the medical dataset of Example 2. In this example, we had
an equivalence constraint CV = {2, 4} that asserts that the state of a genetic variant
in examples 2 and 4 must be the same (either both true, and the variant is present, or
both false, and the variant is absent). We can also partition the examples into a set
of equivalence constraints CG = {{2, 4}, {1}, {3}}, which includes two equivalence
constraints which are trivial: {1} and {3}. This dataset also respects the equivalence
constraint CT = {1, 2, 3}, as all three examples observe the same value true on the
variable T .

In general, we may constrain multiple variables X in a dataset. We thus introduce
the notion of a constrained dataset.

Definition 2 (Constrained Dataset). A constrained dataset over variables X, is com-
posed of two components: (1) a traditional dataset D = {d1, . . . ,dN} over variables
X, where each example di is a partial instantiation of the variables; and (2) a set of
equivalence constraints C = {CX | X ∈ X} over dataset D, where each CX ∈ C is a
set of equivalence constraints on variable X ∈ X.

Finally, we will in general assume that the values of variables involved in equiv-
alence constraints have hidden values in the data. Constraints on fixed values are not
useful here, when they are already equivalent (otherwise, it is not meaningful to assert
an equivalence constraint on two variables that are fixed to two different values).

4. Learning with Constrained Datasets

Now that we have introduced the notion of a constrained dataset, we can consider
the problem of learning from one. Given a traditional dataset D, we would typically
want to seek parameter estimates θ that maximize the likelihood of Equation 2. When
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Figure 2: A meta-network for a Bayesian network A→ B, and the constrained dataset given in Example 4.

we subject the dataset D to equivalence constraints C, we propose instead to maxi-
mize the likelihood, but conditional on the equivalence constraints C. That is, we seek
parameters θ that maximize the constrained likelihood:

P(D | C, θ) =
∑

x1:N∼D

P(x1:N | C, θ)

Next, we show how to represent and evaluate this conditional distribution.

4.1. Encoding Equivalence Constraints

We can encode each individual equivalence constraintCX ∈ CX for each set CX ∈
C, locally in the meta-network. In particular, we introduce an observed variable CX ,
fixed to the value cx, where CX has parents XC = {Xi | i ∈ CX}. The CPT of CX is
then:

P(CX=cx | XC=xC)

=

{
1 if xC sets all Xi ∈ XC to the same value;
0 otherwise.

Example 4. Consider again the simple Bayesian network A → B, and the traditional
dataset D, of Example 1. Suppose that we obtain a constrained dataset from D by
asserting the constraint that variable A is equivalent in examples 1 and 2, and variable
A is equivalent in examples 3 and 4, i.e. A1 ≡ A2 and A3 ≡ A4. That is, we have the
set of equivalence constraints C = {CA} where CA = {C1, C2} = {{1, 2}, {3, 4}}.
In the corresponding meta-network, depicted in Figure 2, we introduce additional vari-
ables C1 and C2 for each equivalence constraint. Variable C1 has parents A1 and
A2, and variable C2 has parents A3 and A4. By conditioning on the instantiation
C = (C1=c1, C

2=c2), we enforce the above equivalence constraints in the meta-
distribution P(X1:4 | C, θ).
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Note that a given equivalence constraint CX is independent of all other equivalence
constraints (and further, the network parameters θ), given the variables XC , which
follows from d-separation.

4.2. The Constrained Log Likelihood
As a meta-network induces a log likelihood, a constrained meta-network induces a

constrained log likelihood (CLL):

CLL(θ |D,C) = logP(D | C, θ). (3)

To learn the parameters of a Bayesian network, subject to equivalence constraints, we
seek to obtain those estimates θ maximizing Equation 3. Consider first the following
theorem, that decomposes the constrained log likelihood, into two components.

Theorem 4.1. Given a Bayesian network with structure G, parameters θ, and a con-
strained dataset (D,C), the constrained log likelihood is:

CLL(θ |D,C) = LL(θ |D) + PMI(D,C | θ).

where PMI(D,C | θ) = log P(D,C|θ)
P(D|θ)P(C|θ) is the pointwise mutual information be-

tween the dataset D and the equivalence constraints C.

Proof. Starting from Equation 3, we have:

CLL(θ |D,C) = logPr(D | C, θ)

= logPr(D | θ) + log
P(D,C | θ)

P(D | θ)P(C | θ)
= LL(θ |D) + PMI(D,C | θ)

as desired.

Maximizing the constrained log likelihood is thus balancing between maximiz-
ing the traditional log likelihood and the pointwise mutual information [11] between
the data and the constraints (i.e., maximizing the likelihood that the data and con-
straints appear together, as opposed to appearing independently). Moreover, when
there are no equivalence constraints (i.e., C = ∅), the constrained log likelihood re-
duces to the traditional log likelihood LL(θ | D), i.e., the pointwise mutual informa-
tion PMI(D,C | θ) is equal to zero.

4.3. Computing The Constrained Log Likelihood
To evaluate the traditional log likelihood LL(θ | D) = P(D | θ), as in Equa-

tions 1 & 2, it suffices to compute the factors Prθ(di) (in the meta-network, the exam-
ples di are independent given the parameters θ). Hence, to compute the log likelihood,
we only require inference in the base network (and not in the meta-network), which we
assume is tractable, using a jointree algorithm (for example). In general, computing
the constrained log likelihood is intractable, as it does not factorize like the traditional
log likelihood. In particular, the terms P(D,C | θ) and P(C | θ) do not necessarily
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factorize, as the equivalence constraints create dependencies across different examples
di in the meta-network.

In the following section, we consider exact and approximate inference in the con-
strained meta-network. In order to evaluate the constrained log likelihood, and further
to optimize it, we will need to compute (or approximate) the relevant quantities, which
are in general intractable to compute. Primarily, we will be concerned with approx-
imate inference, although we will consider some special cases where exact inference
in the constrained meta-network is feasible (which are applicable to certain tasks in
semi-supervised clustering and topic modeling).

5. Inference in the Constrained Meta-Network

For inference in the constrained meta-network, several alternatives are available.
This choice further impacts the subsequent algorithm that we propose for estimating
the parameters of a Bayesian network from a constrained dataset.

As we just discussed, exact inference is in general intractable in the constrained
meta-network, so we must appeal to approximate inference algorithms. Popular ap-
proaches include stochastic sampling, (loopy) belief propagation and variational infer-
ence. Further, all are commonly used in lieu of exact inference, in EM and in other
algorithms, for the purposes of parameter learning [12, 13, 14, 15]. Gibbs sampling
and importance sampling, however, are known to be inefficient in the presence of deter-
ministic constraints (such as the equivalence constraints used in our constrained meta-
network), requiring exponentially many samples, or slow convergence to the stationary
distribution [16, 17, 18].3 Variational approximations and variational EM offer a num-
ber of attractive properties, such as lower bounds on the log likelihood [22]. On the
other hand, mean-field approximations also suffer from other problems, such as many
local optima, and may lead to coarser approximations, compared to (for example) be-
lief propagation [23], although belief propagation does not provide any bounds, and is
not guaranteed to converge [24, 25].

For inference in the constrained meta-network, we shall in fact appeal to a class of
belief propagation approximations, which are based on the Relax-Compensate-Recover
(RCR) framework for approximate inference in probabilistic graphical models; for an
overview, see [26]. This choice is particularly suitable for our purposes as RCR is ex-
pressly based on relaxing equivalence constraints in a probabilistic graphical model, in
order to obtain a tractable approximation (and it is precisely the equivalence constraints
that we introduce in a constrained meta-network, that makes inference intractable).

More specifically, RCR is an approach to approximate inference that is based on
performing exact inference in a model that has been simplified enough to make infer-

3Another approach to inference, that we remark further on, is blocked Gibbs sampling [19]. Using
single-site updating, Gibbs sampling may get stuck in parts of the search space, when variables are highly
correlated. When variables are further subject to equivalence constraints, some parts of the search space
may even become unreachable (i.e., the Markov chain is not ergodic); see, e.g., [20, 21]. Although the
particular method for approximate inference is not the focus of our later empirical evaluations, we remark
that a blocked approach to Gibbs sampling may become viable, if we update the variables of an equivalence
constraint as a block.
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Figure 3: A meta-network for a Bayesian network G → A ← S, for a traditional dataset (top) and for a
constrained dataset (bottom).

ence tractable. Here, we apply the Relax and Compensation steps of RCR, without Re-
covery, which yields an approximation that corresponds to an iterative joingraph propa-
gation (IJGP) approximation [27, 28]. In the extreme case, where a fully-disconnected
approximation is assumed, RCR corresponds to the influential iterative belief propaga-
tion algorithm (and also the Bethe free energy approximation) [29, 30].

For inference in the constrained meta-network, we shall only relax the equivalence
constraints C, while performing exact inference in each base-network (which, again,
we assume is tractable using, for example, a jointree algorithm). This corresponds to
an iterative joingraph propagation algorithm, with a corresponding free energy approx-
imation of the likelihood [27, 28]. Later, we shall also consider some interesting cases
where this RCR approximation will be exact.

5.1. An Approximation: Relax and Compensate

By asserting the equivalence constraints C in our meta-network, we introduce com-
plexity to its topology, which can make evaluating the constrained likelihood an in-
tractable inference problem. Consider the following example.

Example 5. Consider a Bayesian network structure G → A ← S, and the following
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Figure 4: (Left) A meta-network fragment which depicts a variable X that is subject to an equivalence
constraint. (Right) The corresponding fragment after relaxing the equivalence constraint CX , and then
compensating for the relaxation using soft evidence (using the technique of virtual evidence).

dataset:
record G A S

1 male true ?
2 ? true false
3 female ? ?
4 ? false true

Figure 3 depicts two meta-networks for this example, one without equivalence con-
straints, and one with equivalence constraints. In the meta-network without equiv-
alence constraints (top), one can verify by inspection that each example di is inde-
pendent of the other examples (by d-separation), when the values of the parameters θ
are clamped. Hence, to compute the log likelihood, it suffices to compute the proba-
bility of each di, for a given parameterization θ, independently. However, when we
assert equivalence constraints in a meta-network (bottom), this independence (and d-
separation) no longer holds. In our example, the base networks of examples 1 and 3 are
tied due to the constraint C1

S . Similarly, the base networks of examples 2 and 4 are tied
due to the constraint C1

G. In general, as we introduce more constraints, we increase the
connectivity among the base networks, which correspondingly makes inference (and
evaluating the constrained log likelihood) more challenging. In the extreme case, in-
ference would be exponential in the number of unobserved values in the dataset (which,
at worst, would entail summing over all completions of the dataset).

Computing the constrained log likelihood is challenging because of the equivalence
constraints C that we assert in our meta-network, which may make the topology of the
meta-network too complex for exact inference algorithms. Hence, we shall temporarily
relax these equivalence constraints, which will make the constrained log likelihood as
easy to compute as the traditional log likelihood again. However, just relaxing these
constraints may result in a coarse approximation. Hence, we compensate for these
relaxations, which shall restore a weaker notion of equivalence, but in a way that does
not increase the complexity of performing inference in the meta-network. The RCR
framework specifies a particular way to perform this “compensation” step, which we
analyze in more depth here, in the context of the CLL. In particular, the “weaker notion
of equivalence” is based on a special case where we assert an equivalence constraint on
a set of independent variables. We consider this special case, in the following example.
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Example 6. Let X1, . . . , Xk be a set of k variables in a Bayesian network, over the
same domain of values. In particular, let xi,s and xi,t denote the s-th and the t-th
state of variable Xi. We shall refer to these states by x.,s and x.,t, when the index
of the variable is not relevant. Suppose now that variables X1, . . . , Xk are marginally
independent, i.e., Pr(X1, . . . , Xk) =

∏
i Pr(Xi). To characterize this distribution, it

suffices for us to consider the odds:

O(xi,s, xi,t) =
Pr(xi,s)

Pr(xi,t)

for each variable i, and for each pair of states s and t.4 Suppose that we assert an
equivalence constraint CX over the variables X1, . . . , Xk. The resulting marginals,
and hence the odds, for each variable Xi must also be equivalent. We shall refer to
these consensus odds byO(x.,s, x.,t | CX). These consensus odds can be characterized
by the original odds O(xi,s, xi,t), prior to conditioning on the equivalence constraint:5

O(x.,s, x.,t | CX) =
∏
i

O(xi,s, xi,t).

In other words, when we assert an equivalence constraint on a set of independent vari-
ables, the resulting consensus odds is found by simply accumulating the odds of the
variables being constrained.

Consider an equivalence constraintCX over the variablesX1, . . . , Xk; see Figure 4
(left). By relaxing, or deleting, each edge Xi → CX in the meta-network (as in RCR),
we ignore the dependencies that exist between different examples di, due to the equiv-
alence constraint CX . We can compensate for this relaxation by asserting soft evidence
on each variable Xi, which can be used to restore a weaker notion of equivalence; see
Figure 4 (right). In lieu of the equivalence constraint, we use the soft evidence to en-
force that the variables X1, . . . , Xk have at least equivalent marginals. In particular,
we will enforce that these marginals correspond to the ones that they would have, as
if we asserted an equivalence constraint on independent variables (as in our example
above). If the variables X1, . . . , Xk are indeed independent in the meta-network, then
these marginals would be correct.

In the special case where there is a single equivalence constraint CX in the meta-
network, then the variables X1, . . . , Xk would indeed be independent (after relaxing
the equivalence constraint). Hence, the compensation would yield exact marginals
for variables X1, . . . , Xk.6 However, in general, these examples may interact through

4For k variables and u states, there are only k · (u− 1) independent parameters.
5Since instantiations x1,s, . . . , xk,s and x1,t, . . . , xk,t satisfy the equivalence constraint CX (i.e., they

are all set to the s-th or t-th value):

O(x.,s, x.,t | CX) =
Pr(x1,s, . . . , xk,s | CX)

Pr(x1,t, . . . , xk,t | CX)
=
Pr(x1,s, . . . , xk,s)

Pr(x1,t, . . . , xk,t)
=

∏
i

Pr(xi,s)

Pr(xi,t)

which is
∏

iO(xi,s, xi,t).
6In fact, any query α over the variables in example i would be exact [29].
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other equivalence constraints on example i. Hence, when we compensate for the relax-
ation of one equivalence constraint, we may violate the “weaker notion of equivalence”
that we restored for a previous equivalence constraint (i.e., the equivalent marginals).
In general, however, we can iterate over each equivalence constraint that we relax, and
compensate for them until convergence. At convergence, each equivalence constraint
that we relaxed will indeed satisfy their respective “weaker notion of equivalence.”
This iterative procedure basically corresponds to the iterative algorithm proposed for
RCR, for probabilistic graphical models in general [26].

Consider again Figure 4 (right), where we have asserted soft evidence on each
variable Xi, where soft evidence, more specifically, is an observation that increases or
decreases the belief in an event, but not to the point of certainty [24, 31]. To assert
soft evidence on a variable Xi, which was subject to a constraint CX that we relaxed,
we need to specify a vector over the values of variables X . This vector, which we
denote by λCX

(Xi), specifies the strength of our soft evidence. We can implement
soft evidence by the method of virtual evidence [24, 31], which introduces a variable
Vi as a child of the variable Xi, which is clamped to the value vi, and whose CPT is
set according to Pr(vi | xi) = λCX

(xi). We further note that a given example i may
be involved in multiple equivalence constraints. Let Vi denote the virtual evidence
variables introduced to example i by relaxing its equivalence constraints, and let vi
denote the corresponding instantiation.

We thus want to enforce that each variable Xi, that was constrained by an equiva-
lence constraint CX , to have the consensus odds:

Oθ,λ(xi,s, xi,t | di,vi) =
Prθ,λ(xi,s | di,vi)
Prθ,λ(xi,t | di,vi)

=
∏
j∈CX

Oθ,λ(xj,s, xj,t | dj ,vj \ Vj).

Here, Prθ,λ denotes the distribution of the base network parameterized by the CPT
parameters θ, but also by the soft evidence parameters λ that we introduced after relax-
ation. Similarly, Oθ,λ denotes the corresponding odds.

Consider again Figure 4 (right). The odds Oθ,λ(xi,s, xi,t | di,vi) corresponds to
the odds ofXi, given example di and all soft observations vi introduced for example i.
In contrast, the odds Oθ,λ(xi,s, xi,t | di,vi \ Vi) corresponds to the same odds of Xi,
except that we retract the soft observations Vi for the constraint CX . Hence, to obtain
the desired consensus odds, we need to set the soft evidence vector λCx(Xi) to obtain
the corresponding odds change (i.e., Bayes factor):

F (xi,s, xi,t) =
Oθ,λ(xi,s, xi,t | di,vi)
Oθ,λ(xi,s, xi,t | di,vi \ Vi)

(the required strengths of soft evidence satisfy F (xi,s, xi,t) =
λCX

(xi,s)

λCX
(xi,t)

; see, e.g.,
[31]). As we described before, updating the soft evidence for one equivalence con-
straint may disturb the consensus odds that were obtained for a previous equivalence
constraint. Hence, one typically performs these updates in an iterative fashion, until all
updates converge.

Once we have relaxed all equivalence constraints, and compensated for them, the
resulting meta-network induces a distribution that approximates the original one. In
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particular, it corresponds to an iterative joingraph propagation (IJGP) approximation
[29, 27, 28]. The resulting meta-distribution now factorizes according to its examples,
and thus inference in the meta-network requires only inference in the respective base
networks, which we assume is tractable using, e.g., a jointree algorithm. In some
(restricted) cases, however, the resulting computations may still be exact, allowing us
to evaluate the CLL exactly (as well as certain marginals).

5.2. On Computing the CLL Exactly

In some relevant cases, the RCR approximation of the meta-network that we just
described, can still be used to compute the CLL exactly. Consider again the CLL:

CLL(θ |D,C) = logP(D,C | θ)− logP(C | θ).

We can approximate the terms P(D,C | θ) and P(C | θ) in the RCR approximation
of the meta-network, which corresponds to (corrected) partition functions in the RCR
framework [30]. However, these approximations are known to be exact in some known
cases [30]. The following proposition characterizes a class of constrained datasets
where the above approximation of the CLL will also be exact.

Proposition 5.1. Say we are given a Bayesian network with structure G, parameters
θ, and a constrained dataset (D,C), where each example di of the dataset D is con-
strained by at most one equivalence constraint in C. For such a constrained dataset,
the RCR approximation of the constrained log likelihood is exact. Moreover, the RCR
approximations for marginals over families XU are also exact.

This special case is interesting because it captures a variety of learning tasks in
different domains, which can be reduced to the problem of learning the parameters of
a Bayesian network from a constrained dataset.

Example 7. In semi-supervised clustering, we can learn naive Bayes models and Gaus-
sian mixture models with “must-link” constraints, where it suffices to assert at most
one constraint on each example. In particular, for each maximal set of examples that
are known to belong to the same cluster, we assert a single equivalence constraint. In
this case, we can seek to optimize the constrained log likelihood, which we can now
evaluate exactly.

We remark that Proposition 5.1 follows from the RCR framework. In particu-
lar, if we relax (delete) an edge Y → X that splits a network into two independent
sub-networks, then we can compensate for the relaxation exactly, and recover the true
probability of evidence [30]. This is a generalization of the correctness of the Bethe
free energy approximation in polytree Bayesian networks [32], since deleting any edge
Y → X in a polytree splits the network into two.

6. Optimizing the CLL
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Algorithm 1 Optimize CLL′

input:
G: A Bayesian network structure
D: An incomplete dataset d1, . . . ,dN
C: A set of equivalence constraints
θ: An initial parameterization of structure G
1: while not converged do
2: Update soft evidence parameters λ1, λ2 and compute the marginals for each

instantiation xu of each family XU:

Prθ,λ1(xu | di,vi) Prθ,λ1(u | di,vi)
Prθ,λ2

(xu | vi) Prθ,λ2
(u | vi)

3: Update network parameters θ, for each instantiation xu of each family XU:

θx|u =

∑
i Prθ,λ1(xu | di,vi) + θx|u

∑
i Prθ,λ2(u | vi)∑

i Prθ,λ2
(xu | vi) + θx|u

∑
i Prθ,λ1

(u | di,vi)
θx|u

4: return parameterization θ

Our task is now to learn the parameters θ of a Bayesian network, from a dataset D
that is subject to the constraints C.We propose to seek those parameter estimates θ that
maximize the constrained log likelihood, as given in Equation 3

CLL(θ |D,C) = logP(D | C, θ) = logP(D,C | θ)− logP(C | θ).

However, due to the constraints C, it may be intractable to even evaluate the CLL,
for a given candidate set of estimates θ. Hence, we will propose to optimize instead
an approximation of the CLL found by relaxing the equivalence constraints C, and
then compensating for the relaxations, as dictated by the RCR framework (which we
further described in the previous section). This approach to parameter estimation is
akin to approaches that use a tractable approximation of the log likelihood, such as one
obtained by loopy belief propagation; see, e.g., [14, 15].

First, when we relax all equivalence constraints C, we compensate by asserting soft
evidence vi on each example i. Moreover, the meta-distribution factorizes according
to the examples i. This leads to the following approximation of the constrained log
likelihood, that also factorizes according to the examples i:

CLL′(θ, λ1, λ2 |D,C) =
∑
i

logPrθ,λ1
(di,vi)︸ ︷︷ ︸

≈ logP(D,C | θ)

−
∑
i

logPrθ,λ2
(vi)︸ ︷︷ ︸

≈ logP(C | θ)

(4)

Here, Prθ,λ denotes the distribution of the base network, which is now determined
by two sets of parameters: (1) the parameter estimates θ of the Bayesian network that
we seek to learn, and (2) the parameters λ of the soft observations vi that are used to
compensate for the relaxed equivalence constraints C. Note that we use two sets of
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compensations λ1 and λ2, to approximate P(D,C | θ) (with the dataset observed in
the meta-network) and P(C | θ) (with the dataset unobserved in the meta-network).

We are now interested in optimizing our approximation CLL′ of the constrained
log likelihood, which is done with respect to the network parameters θ, but also with re-
spect to the soft evidence parameters λ1, λ2. We propose a simple fixed-point iterative
algorithm, for doing so, which is summarized in Algorithm 1.

Our fixed-point algorithm alternates between updating the soft evidence parameters
λ1, λ2, and updating the parameter estimates θ. We first fix the parameter estimates θ
and then update the soft evidence parameters λ1, λ2. This corresponds to performing
relax-and-compensate in the meta-network, as described in the previous section. We
next fix the soft evidence parameters λ1, λ2, and update the parameter estimates θ,
which we shall discuss further next. These two steps are repeated, until all parameters
converge to a fixed-point.

Proposition 6.1. Fixed-points of Algorithm 1 are stationary points of the approxima-
tion to the constrained log likelihood of Equation 4.

Note that optimal parameter estimates, with respect to the (approximate) CLL, must
be stationary points of the (approximate) CLL, but not necessarily vice versa.

Consider the first partial derivative of the CLL, with respect to a parameter θx|u,
for the instantiation xu of family XU (keeping the soft evidence parameters λ1, λ2
fixed):

∂CLL′

∂θx|u
=

∑
i

Prθ,λ1(xu | di,vi)− Prθ,λ2(xu | vi)
θx|u

(5)

We are interested in the stationary points of the CLL, but subject to sum-to-one con-
straints on the parameters θx|u. Hence, we construct the corresponding Lagrangian,
and set the gradient to zero. We can then obtain the following stationary conditions
which we can use in an iterative fixed-point algorithm:

θx|u =

∑
i Prθ,λ1

(xu | di,vi) + θx|u
∑
i Prθ,λ2

(u | vi)∑
i Prθ,λ2

(xu | vi) + θx|u
∑
i Prθ,λ1

(u | di,vi)
θx|u. (6)

We remark further that the above stationary condition for the constrained log likelihood
reduces to a stationary condition for the traditional log likelihood, when no equivalence
constraints are used:

θx|u =

∑
i Prθ(xu | di)∑
i Prθ(u | di)

. (7)

The above stationary conditions further correspond to the EM algorithm for traditional
datasets, when used as an update equation in an iterative fixed-point algorithm.

In general, however, Algorithm 1 seeks the stationary points of an approximation
of the CLL (Equation 4), which is based on an RCR approximation. RCR is in turn a
generalization of loopy belief propagation [26], and hence inherits some of its draw-
backs (i.e., it is not guarantee to converge in general, and does not provide bounds).
Our learning algorithm, is thus more akin to approaches to parameter estimation that
use loopy belief propagation in lieu of exact inference, for example, to approximate
the expectations in EM, when such computations are otherwise intractable [14, 15].
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Figure 5: From left-to-right, we generally see improved parameter estimates (y-axis), as we increase the
number of constrained variables (x-axis). We also vary the proportion of the missing values that are subject
to constraints (0.2,0.4,0.6,0.8), for each variable.

Other alternatives, in terms of inference and learning paradigms, could similarly be
employed to optimize the CLL. However, as we shall see in the next section, our pro-
posed algorithm performed well, for the purposes of empirically evaluating the CLL,
as an approach to learning from constrained datasets.

7. Experiments

In our first set of experiments, we study the CLL as an objective function for learn-
ing Bayesian networks, showing how it can learn more accurate models as more side
information, in the form of equivalence constraints, is provided. Subsequently, we
consider two different learning tasks in two different domains, that we can reduce
to the problem of learning a Bayesian network from a constrained dataset: (1) semi-
supervised clustering with naive Bayes models, and (2) topic modeling with domain-
specific knowledge.

7.1. Synthetic Data

We consider first the constrained log likelihood, as an objective function for learn-
ing Bayesian networks. In particular, we evaluate our ability to learn more accurate
models, as more side information is given. We consider two classical networks, alarm
and win95pts, with 37 variables and 69 variables, respectively. We simulated com-
plete datasets from each network, then obtained an incomplete dataset for each by
hiding values at random, with some probability. We further simulated equivalence
constraints, for each incomplete dataset, by randomly constraining pairs of missing
values (which were known to have the same value in the original complete dataset).
Our baseline, in this set of experiments, is the standard EM algorithm for traditional
(unconstrained) datasets. EM does not incorporate side information in the form of
equivalence constraints, and our main goal first is to illustrate the benefits of doing so.
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Figure 6: From right-to-left, we generally see equivalence constraints are more effective (y-axis), as we
decrease the size of the dataset (x-axis). We also vary the proportion of the missing values (0.2,0.4,0.6).

Since we are simulating datasets, we measure the quality of an algorithm’s esti-
mates using the KL-divergence between (1) the distribution Prθ? induced by the pa-
rameters θ? that generated the dataset originally, and (2) the distribution Prθ induced
by the parameters θ estimated by the corresponding learning algorithm:7

KL(Prθ? ,Prθ) =
∑
w

Prθ?(w) log
Prθ?(w)

Prθ(w)

=
∑
XU

∑
u

Prθ?(u)KL(θ
?
X|u, θX|u)

where we iterate over all families XU of our Bayesian network, and all parent in-
stantiations u, i.e., we iterate over all CPT columns of the network. Note that the
KL-divergence is non-negative, and equal to zero iff the two distributions are equiv-
alent. We also assume pseudo-counts of one, i.e., Laplace smoothing, for both the
EM and CLL optimization algorithms. Both algorithms were also initialized with the
same random seeds. Further, each algorithm was given 5 initial seeds, and the one that
obtained their best respective likelihood was chosen for evaluation.

Figure 5 highlights our first set of experiments where we observe the increase in
quality of our parameter estimates (on the y-axis), as we assert equivalence constraints
on more variables (on the x-axis). Here, each plot point represents an average of 30
simulated datasets of size 29, where values were hidden at random with probability
0.4. On the x-axis, from left-to-right, we progressively selected a larger number of
variables to subject to constraints. For each constrained variable, we randomly sampled
a proportion of the hidden values under constraints; the proportions that we constrained
were also varied, using separate curves.

7Since our training data is simulated from Bayesian networks that we have access to, our evaluation
is based on the KL-divergence, rather than the log likelihood of simulated testing data, which would be
equivalent in expectation; see, e.g., [10, Section 16.2.1].
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At one extreme, when no variables are constrained, our CLL optimization algo-
rithm performs the same as EM, as expected. As we move right on the plot, where we
select more variables to constrain, we see that our CLL optimization algorithm does,
generally speaking, produce more accurate parameter estimates, as compared to EM
(which does not exploit equivalence constraints). Based on the individual curves, from
top-to-bottom, where we increase the proportion of missing values that are subject to
constraints, we see the quality of the estimates generally improve further. We also ob-
serve that, as we approach an overly large number of constraints, the quality of our
estimates appear to degrade. This is also expected, as the optimization algorithm that
we proposed assumes an approximation of the CLL, based on relaxing (and then com-
pensating for) all equivalence constraints, which we expect to be coarse when many
equivalence constraints must be relaxed.

Figure 6 highlights our second set of experiments, where we measure now the rel-
ative improvement of our CLL optimization algorithm compared to EM, on the y-axis.
Here, each point is an average over 120 simulated datasets of a fixed dataset size where
values were hidden with probabilities 0.2, 0.4, and 0.6. Further, 20 variables were con-
strained and half the missing values were covered by equivalence constraints. As we
move right-to-left on the x axis, where we decrease the size of the dataset, we find that
our CLL optimization algorithm is increasingly effective compared to EM, as less data
is available, at least up to a point (at dataset size N = 128, which is a relatively small
amount of data, the effectiveness starts to diminish again). This highlights how impor-
tant additional side-information becomes as less data is available. We also observe the
increased effectiveness as more values are missing in the data (going from the bottom
curve to the top one).

7.2. Application: Semi-Supervised Clustering
In our first illustrative application, we are interested in clustering tasks where we

have must-link constraints that are used to constrain examples that are known to be-
long in the same cluster; see, e.g., [4]. We consider semi-supervised clustering here
with naive Bayes models in particular, where the constrained variable is the class vari-
able. Unlike our previous set of experiments, we are able in this case to evaluate the
constrained log likelihood exactly. We compare our method with the EM algorithm
proposed by [33] (originally proposed for Gaussian mixture models, but adapted here
for naive Bayes models), which we refer to by em-sbhw. Note that em-sbhw was
specifically proposed for the task of semi-supervised clustering, under the presence of
must-link constraints. We also compare with the traditional EM algorithm, as a base-
line, which again does not take advantage of any equivalence constraints.

We use datasets from the UCI Machine Learning repository, and in some cases,
used Weka to discretize data with continuous values, and to fill-in missing values by
mean/mode, as is commonly done in such evaluations. We start with complete datasets
where the true clusterings are known, and then generate equivalence constraints based
on these known labels. We then hide these labels to yield an incomplete dataset. We
follow the approach of [33], where we first partition the dataset intoK partitions (K =
5) and then randomly select a fixed number m of examples from each. In each of these
m selected examples, we asserted an equivalence constraint across those examples that
had the same labels. Note that this yields equivalence constraints of varying sizes.
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Figure 7: In GMMs, we observe the increase in clustering performance (y-axis), via F -measure, as the
amount of side-information is increased (x-axis).

Effectively, K · m controls the amount of side-information available. When K · m
equals the number of examples N , then every example in the dataset is subject to an
equivalence constraint. Given a constrained dataset, we evaluate the results of each
algorithm based on their performance in clustering, using the F -measure, which is
computed using f = 2PR

P+R , where P and R are the precision and recall, respectively.
Here, we steadily increase the amount of side-information available, from no side-

information to perfect side-information (in the latter case, all examples that were as-
signed to the same cluster in the original complete dataset, were constrained to be in
the same cluster in the incomplete dataset that we evaluated). In Figure 7, we ob-
serve the increase in F -measure as we increase the number of equivalence constraints
made available. With no equivalence constraints given, all algorithms evaluated were
equivalent to vanilla EM. As we increase the number of constraints, we see that both
cem and em-sbhw exhibit smoothly increasing performance, and in some cases ob-
taining perfect clusterings when all known equivalences were provided. In datasets
lymph and tumor, we see that our CLL optimization algorithm is superior. In dataset
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Figure 8: A Bayesian network representation of the LDA model, as employed in [34]; for simplicity, we have
omitted the nodes representing LDA’s parameters (which are now CPTs of this Bayesian network), which are
typically explicated in plate representations. Here, variable T represents the topic assignment, and variable
W represents the word observed. Further, the document index has been explicated using the variable D.

credit, we see that em-sbhw is mildly favorable. In most of the datasets, how-
ever, we see that both algorithms perform similarly. Hence, this suggests that our
general approach, based on optimizing the CLL, is comparable (and sometimes out-
performing) a domain-specific algorithm developed for the relatively specialized task
of semi-supervised clustering.

7.3. Application: Topic Modeling

We consider another application in topic modeling [35], where we want to assert
some domain knowledge, in the form of equivalence constraints, in order to learn im-
proved topics. In particular, one could use equivalence constraints to interactively re-
fine the topics learned by a topic model. For example, a practitioner may inspect the
topics assigned to the individual words of a document, and may observe that some
words are associated with topics that are not reasonable, based on their background
knowledge. In particular, they may find words that are associated with different topics,
that they judge should be in the same topic. In this case, the practitioner can assert an
equivalence constraint between the topics of these words, to encourage the topic model
to associate the same topic with them. In this way, a practitioner can “debug”, or oth-
erwise have some refined mechanism to control, the topics that are learned by a topic
model.

We next present some experiments, illustrating another example of how equiva-
lence constraints can be used to refine the topics of a topic model. In particular, we
propose to introduce equivalence constraints, in order to encourage the formation of
new topics, whose words are otherwise scattered across disparate topics. The dataset
that we consider here consists of 539 abstracts from the Journal of Artificial Intelli-
gence Research (JAIR). The corpus covers a broad range of different topics related
to AI, for example, agent-based systems, heuristic search and logical reasoning (as
analyzed by the annual reports, produced by the editors of JAIR).

We first learn from this corpus a standard LDA model, over 10 topics (where the
number of topics here is based roughly on the number of topics manually identified in
the annual reports of JAIR).8 A Bayesian network representation of the LDA model
is provided in Figure 8. The top words of each topic are illustrated in Table 2. For
example, topic 7 can clearly be interpreted as a planning topic.

Suppose now that a practitioner decides that they want other topics, based on back-
ground knowledge, to emerge from the model. Take for example, a possible “complex-

8We used the lda-c package, which is based on variational EM. The lda-c package is available at
http://www.cs.columbia.edu/˜blei/lda-c/index.html.
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Table 1: Topics learned from JAIR abstracts. Each row is a constrained keyword, with a • indi-
cates that a word is among the most 50 probable words within a topic.

LDA LDA-DF LDA-CLL
topic 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

bayesian • • • •
network • • • •
inference • • •

complexity • • • •
polynomial • • •

np • • •

ity” topic (which is not purely an AI topic, per se, but a topic frequently discussed in
AI papers). Words, such as “complexity”, or “NP”, or “polynomial”, when appearing
together in the same abstract, may plausibly come from the same topic, about “com-
plexity.” Hence, we propose to impose an equivalence constraint among the topics of
these words, if they appear in the same abstract. Such an equivalence constraint would
encourage the topic model to include these set of words in the same topic, and perhaps
encourage the formation of a new topic, around these words.

Consider Table 3, where we have learned an LDA model while optimizing the CLL,
based on the above constraints. We see that in topic 0, a new topic has formed, which
contain the above words “complexity”, “NP”, and “polynomial” (in boxes). Moreover,
we see that the other words in the topic are also strongly reminiscent of a “complexity”
topic. In addition to the above constraints, we also constrained the topics of the words
“Bayesian” and “inference” and “network”, when they appeared together in the same
abstract. We see also in topic 6, another topic has appeared around these words (in
boxes), reminiscent of a “Bayesian network modeling and inference” topic.

We also compared with a more specialized method, which incorporates analogous
(must-link) constraints via a Dirichlet forest prior (LDA-DF) [6], learned using the
same constraints described above. First, we consider another visualization of the topics,
as in [6], in Table 1. Here, we want to visualize whether our constrained words appear
in the same topic, as desired, or whether they are dispersed across different topics.
More specifically, we sorted the words of each learned topic by probability, and then
selected the 50 most probable words for each topic. We then observed whether or not
our selected keywords appeared as one of the most probable words, for each topic (if
so, we denote it by a dot in Table 1).

In vanilla LDA, we found that our selected keywords were indeed dispersed across
multiple topics. For example, the word “complexity” appears strongly in multiple top-
ics (topics 5 and 6). By asserting the background knowledge in the form of constraints
(CLL), we see that we are indeed able to learn a more specialized “complexity” topic,
whose words are strongly associated to it (and none other). We observe similarly for
LDA-DF. In Table 4, we visualize the topics learned by LDA-DF, more directly. We
can see, in topic 0, a topic where all of our “complexity” keywords appear strongly.
However, in contrast to topic 0 learned in Table 3 for LDA-CLL, we see that this topic
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is much less reminiscent of “complexity” (it appears to be a topic much broader than
“complexity”), and did not encourage as focused a topic, as suggested by the con-
strained keywords, to the extent that LDA-CLL did.

8. Related Work

As we discussed in our experiments, there are learning tasks in a variety of do-
mains, where specialized methods were developed, that can be formulated as learning a
Bayesian network under a constrained dataset. For example, the work of [33] proposed
to learn Gaussian mixture models (GMMs) under equivalence constraints to improve
clustering. Moreover, [6] considered the use of equivalence constraints in topic models,
albeit less directly, to constrain words that should have similar importance in different
topics. Here, a Dirichlet forest prior was used to accommodate such constraints, with a
corresponding Gibbs sampling method for learning the parameters of the topic model.

The works of [33, 36] are more closely related to our proposal. Rather than connect
two meta-network variables Xi and Xj to a common child, which constrained them to
take the same value, these proposals effectively assumed a direct edge Xi → Xj ,
where the CPT of Xj was set so that variable Xj assumes the value of variable Xi,
i.e., Pr(xj | zi) = 1 iff xi = xj . This induces a meta-network with a different type
of structure and likelihood, where equivalent variables were merged into a single node.
However, the type of equivalence constraint implied by “merging” equivalent variables
Xi → Xj , does not generalize obviously when variable X is not a root node.

9. Conclusion

In this paper, we proposed a general framework for learning Bayesian network
parameters under equivalence constraints. These constraints assert that the values of
unobserved variables in certain examples of a dataset must be the same, even if that
particular value is not known. We proposed a notion of a constrained dataset, and a
corresponding constrained log likelihood. We proposed a fixed-point iterative algo-
rithm for optimizing the constrained log likelihood, and showed empirically that it can
be effective at learning more accurate models given more background knowledge in the
form of equivalence constraints. We further highlighted how our framework naturally
models tasks in a variety of domains, where often domain-specific and (sometimes)
less principled approaches have been previously proposed.

Acknowledgments

We thank the anonymous reviewers for valuable comments that improved the paper.
This work has been partially supported by ONR grant #N00014-12-1-0423 and NSF
grant #IIS-1118122.

23



Ta
bl

e
2:

To
pi

cs
L

ea
rn

ed
by

L
D

A
0

1
2

3
4

5
6

7
8

9
ag

en
ts

al
go

ri
th

m
de

ci
si

on
se

ar
ch

da
ta

le
ar

ni
ng

re
as

on
in

g
pl

an
ni

ng
in

st
an

ce
s

ac
tio

n
ag

en
t

sy
st

em
th

eo
ry

al
go

ri
th

m
in

fo
rm

at
io

n
m

od
el

lo
gi

c
pl

an
pr

ob
le

m
ag

en
t

pr
ob

le
m

s
co

ns
tr

ai
nt

ag
en

ts
al

go
ri

th
m

s
sy

st
em

ba
se

d
kn

ow
le

dg
e

do
m

ai
ns

in
fe

re
nc

e
m

od
el

pr
ob

le
m

ba
se

d
do

m
ai

n
pr

ob
le

m
ap

pr
oa

ch
m

od
el

s
se

t
st

at
e

sa
t

co
nt

ro
l

op
tim

al
in

fo
rm

at
io

n
ga

m
e

pr
ob

le
m

s
m

od
el

ap
pr

oa
ch

co
m

pl
ex

ity
do

m
ai

n
pe

rf
or

m
an

ce
ag

en
ts

m
on

ito
ri

ng
co

ns
is

te
nc

y
pa

pe
r

sp
ac

e
pa

pe
r

pa
pe

r
pr

op
er

tie
s

pl
an

s
cl

au
se

s
sh

ow
ef

fic
ie

nt
se

m
an

tic
m

od
el

s
op

tim
al

qu
er

y
fr

am
ew

or
k

cl
as

s
pl

an
ne

rs
ra

nd
om

sy
st

em
s

in
fo

rm
at

io
n

pa
pe

r
re

su
lts

fu
nc

tio
n

ba
se

d
se

le
ct

io
n

sh
ow

pr
ob

le
m

s
sh

ow
pr

og
ra

m
s

st
ra

te
gy

le
ve

l
al

go
ri

th
m

s
he

ur
is

tic
re

so
lu

tio
n

da
ta

de
sc

ri
pt

io
n

pl
an

ne
r

pa
pe

r
le

ar
ni

ng
sh

ow
te

m
po

ra
l

gr
ap

hi
ca

l
tim

e
ex

am
pl

es
re

pr
es

en
ta

tio
n

pa
pe

r
ac

tio
ns

pr
ob

le
m

s
lo

gi
c

m
ul

ti
sh

ow
se

t
so

lu
tio

n
se

t
m

ac
hi

ne
pr

op
os

iti
on

al
co

m
pe

tit
io

n
st

ru
ct

ur
e

ru
le

s
co

st
pr

ob
le

m
le

ar
ni

ng
so

lu
tio

ns
ta

sk
m

et
ho

ds
co

m
pl

et
e

te
ch

ni
qu

es
re

su
lts

pr
ef

er
en

ce
s

pr
es

en
t

pr
es

en
t

m
ak

in
g

st
at

e
tim

e
ap

pl
ic

at
io

n
be

lie
f

re
su

lts
al

go
ri

th
m

ac
tio

ns
di

st
ri

bu
te

d
te

ch
ni

qu
es

ag
en

t
lo

ca
l

so
ur

ce
s

al
go

ri
th

m
s

re
pr

es
en

ta
tio

n
ba

se
d

ne
tw

or
k

be
ha

vi
or

al
go

ri
th

m
ap

pr
oa

ch
fr

am
ew

or
k

sh
ow

re
su

lts
te

ch
ni

qu
e

lo
gi

cs
pe

rf
or

m
an

ce
ev

id
en

ce
pr

es
en

t
tim

e
m

et
ho

d
pr

ev
io

us
po

lic
y

sh
ow

ta
sk

s
ba

se
d

gr
ap

h
cl

as
s

pa
pe

r
re

so
ur

ce
pe

rf
or

m
an

ce
fu

nc
tio

ns
m

et
ho

ds
m

et
ho

ds
re

in
fo

rc
em

en
t

co
ns

tr
ai

nt
s

pr
ob

ab
ili

st
ic

ne
tw

or
ks

or
de

r
m

ec
ha

ni
sm

s
kn

ow
le

dg
e

ga
m

es
po

m
dp

s
la

ng
ua

ge
ro

le
ge

ne
ra

l
ip

c
ha

rd
se

m
an

tic
s

en
vi

ro
nm

en
t

di
al

og
ue

ne
tw

or
ks

m
ar

ko
v

pr
ob

le
m

ge
ne

ra
l

co
m

pu
ta

tio
na

l
he

ur
is

tic
sa

tis
fia

bi
lit

y
m

od
el

s
ap

pr
oa

ch
us

er
eq

ui
lib

ri
um

la
rg

e
re

al
w

or
k

pr
og

ra
m

s
co

nt
ro

l
pr

ov
id

e
re

su
lts

so
ci

al
bi

na
ry

ap
pr

oa
ch

pa
pe

r
w

eb
re

su
lts

no
tio

n
pr

es
en

t
so

lv
er

s
w

or
k

ca
se

sa
tis

fa
ct

io
n

cl
as

si
fic

at
io

n
so

lv
in

g
m

et
ho

d
se

t
la

ng
ua

ge
s

de
te

rm
in

is
tic

al
go

ri
th

m
s

pr
ef

er
en

ce
au

ct
io

ns
m

ea
su

re
m

ul
ti

nu
m

be
r

ap
pr

oa
ch

es
em

pi
ri

ca
l

se
m

an
tic

s
de

sc
ri

be
co

st
ex

ec
ut

io
n

co
m

m
un

ic
at

io
n

co
ns

tr
ai

nt
s

w
or

k
si

ze
ev

al
ua

tio
n

pr
op

os
ed

re
vi

si
on

or
de

r
sa

m
pl

in
g

lim
ita

tio
ns

sy
st

em
s

sy
st

em
s

at
tr

ib
ut

es
pr

oc
es

se
s

ex
pe

ri
m

en
ts

pr
ob

le
m

te
m

po
ra

l
tim

e
m

ax
pr

og
ra

m
m

in
g

so
lu

tio
ns

al
go

ri
th

m
s

ut
ili

ty
st

at
es

ca
se

s
ta

sk
op

er
at

or
in

te
rn

at
io

na
l

fo
rm

ul
as

na
tu

ra
l

m
ec

ha
ni

sm
re

su
lts

co
nc

ep
t

de
ci

si
on

ap
pl

ic
at

io
ns

cu
rr

en
t

ch
an

ge
la

ng
ua

ge
ph

as
e

m
et

ho
d

ta
sk

te
xt

kn
ow

le
dg

e
fin

d
pe

rf
or

m
er

ro
r

up
da

te
va

ri
ab

le
s

co
m

pl
ex

ity
nu

m
be

r
te

ch
ni

qu
es

tr
ee

ac
cu

ra
cy

po
lic

ie
s

al
go

ri
th

m
an

al
ys

is
pr

ob
le

m
m

od
el

nu
m

be
r

la
ng

ua
ge

so
lv

in
g

se
nt

en
ce

ba
se

d
m

et
ho

d
na

tu
ra

l
se

ts
st

ud
y

ca
us

al
pr

ob
ab

ili
ty

si
ng

le

24



Ta
bl

e
3:

To
pi

cs
L

ea
rn

ed
by

L
D

A
-C

L
L

0
1

2
3

4
5

6
7

8
9

co
m

pl
ex

ity
ag

en
ts

pl
an

ni
ng

sa
t

in
fo

rm
at

io
n

do
m

ai
n

m
od

el
pr

og
ra

m
s

le
ar

ni
ng

sy
st

em

pr
ob

le
m

s
al

go
ri

th
m

se
ar

ch
th

eo
ry

da
ta

kn
ow

le
dg

e
in

fe
re

nc
e

lo
gi

c
de

ci
si

on
pr

ob
le

m
np

pr
ob

le
m

s
do

m
ai

ns
ra

nd
om

sy
st

em
pl

an
ni

ng
ne

tw
or

k
se

ar
ch

po
lic

y
pa

pe
r

al
go

ri
th

m
s

se
ar

ch
he

ur
is

tic
pa

pe
r

pa
pe

r
se

ar
ch

m
od

el
s

al
go

ri
th

m
s

al
go

ri
th

m
in

st
an

ce
s

pr
ob

le
m

ag
en

t
ba

se
d

m
on

ito
ri

ng
re

as
on

in
g

sh
ow

ba
se

d
co

ns
tr

ai
nt

s
pa

pe
r

ba
se

d
sh

ow
pr

ob
le

m
al

go
ri

th
m

sh
ow

se
t

pr
ob

le
m

ne
tw

or
ks

pr
ob

le
m

m
ar

ko
v

le
ar

ni
ng

po
ly

no
m

ia
l

ga
m

e
pr

ob
le

m
s

cl
au

se
s

ba
se

d
ag

en
t

th
eo

ry
al

go
ri

th
m

al
go

ri
th

m
s

co
nt

ro
l

op
tim

al
al

go
ri

th
m

s
pr

ob
le

m
pr

ob
le

m
ru

le
s

pl
an

ba
ye

si
an

se
t

ba
se

d
sh

ow
de

ci
si

on
pa

pe
r

pl
an

al
go

ri
th

m
se

m
an

tic
ag

en
ts

al
go

ri
th

m
co

ns
tr

ai
nt

pr
ob

le
m

pr
ob

le
m

s
cl

as
s

so
lu

tio
ns

st
at

e
re

su
lts

ap
pr

oa
ch

co
nt

ro
l

m
et

ho
d

se
m

an
tic

s
da

ta
re

su
lts

co
m

pl
et

e
sh

ow
te

ch
ni

qu
es

de
sc

ri
pt

io
n

pr
ef

er
en

ce
s

pl
an

s
pa

pe
r

bo
un

ds
m

od
el

sy
st

em
s

tim
e

tim
e

ac
tio

ns
fo

rm
ul

a
at

tr
ib

ut
es

ap
pr

oa
ch

sh
ow

sh
ow

re
in

fo
rc

em
en

t
m

od
el

pr
ov

id
e

pe
rf

or
m

an
ce

pl
an

ne
r

m
ax

sh
ow

ba
se

d
da

ta
co

ns
is

te
nc

y
st

at
e

se
ar

ch
m

od
el

s
so

lu
tio

n
pl

an
s

au
ct

io
ns

so
ur

ce
s

or
de

r
re

su
lts

pr
og

ra
m

m
in

g
pr

ob
le

m
s

di
al

og
ue

ha
rd

re
su

lts
pl

an
ne

rs
ba

se
d

or
de

r
le

ar
ni

ng
le

ar
ni

ng
ba

se
d

sp
ac

e
co

st
ge

ne
ra

l
nu

m
be

r
co

m
pe

tit
io

n
in

st
an

ce
s

w
eb

pa
pe

r
se

m
an

tic
re

su
lts

fu
nc

tio
n

da
ta

pa
pe

r
sy

st
em

s
pr

es
en

t
se

t
re

so
lu

tio
n

te
am

st
ru

ct
ur

e
pa

pe
r

fr
am

ew
or

k
re

cu
rs

iv
e

al
go

ri
th

m
be

ha
vi

or
do

m
ai

n
fo

rm
ul

as
tim

e
sy

st
em

re
pr

es
en

ta
tio

n
ag

en
t

re
su

lts
nu

m
be

r
re

as
on

in
g

op
tim

al
he

ur
is

tic
s

pr
ev

io
us

te
xt

pl
an

ne
rs

te
rm

s
pr

ob
le

m
s

po
m

dp
s

ba
ck

bo
ne

pr
op

os
iti

on
al

st
ru

ct
ur

e
gr

ap
h

ap
pr

oa
ch

kn
ow

le
dg

e
pe

rf
or

m
an

ce
pr

op
os

ed
m

od
el

s
po

lic
ie

s
up

da
te

co
m

pu
ta

tio
na

l
ga

m
es

ac
tio

n
m

od
el

qu
er

ie
s

al
go

ri
th

m
se

t
pr

op
er

tie
s

op
tim

al
re

pr
es

en
ta

tio
n

cl
as

se
s

re
al

pa
pe

r
da

ta
pr

ef
er

en
ce

fe
at

ur
es

pr
ob

ab
ili

st
ic

sp
ac

e
tr

ai
ni

ng
cl

as
s

ag
en

ts
m

et
ho

d
sp

ac
e

st
at

e
lo

gi
cs

ex
ec

ut
io

n
kn

ow
le

dg
e

pr
es

en
t

pe
rf

or
m

an
ce

al
go

ri
th

m
tr

ac
ta

bl
e

ap
pr

oa
ch

re
su

lts
lo

gi
cs

qu
er

y
ap

pr
oa

ch
es

in
fo

rm
at

io
n

la
ng

ua
ge

s
ro

bo
t

se
t

lo
gi

c
ge

ne
ra

l
pe

rf
or

m
an

ce
kn

ow
le

dg
e

m
od

el
do

m
ai

ns
pr

ob
le

m
bi

na
ry

ag
en

t
m

et
ho

ds
ca

se
lim

ita
tio

ns
tim

e
pr

op
er

tie
s

w
or

d
re

as
on

in
g

do
m

ai
n

an
sw

er
pr

oc
es

se
s

fu
nc

tio
n

fin
di

ng
so

ci
al

ip
c

ho
rn

qu
al

ita
tiv

e
re

su
lts

al
go

ri
th

m
s

kn
ow

le
dg

e
ap

pr
oa

ch
kn

ow
le

dg
e

gr
ap

hi
ca

l
re

vi
si

on
sy

st
em

nu
m

be
r

te
m

po
ra

l
pr

es
en

t
be

lie
f

nu
m

be
r

po
m

dp
cl

au
se

m
od

el
m

et
ho

ds
sh

ow
co

nt
ex

t
pe

er
lo

ca
l

ap
pr

oa
ch

ca
lle

d
ex

am
pl

es
st

ra
te

gy
te

m
po

ra
l

be
lie

f
re

pr
es

en
ta

tio
n

ac
tio

n
nu

m
be

r
la

ng
ua

ge
co

nd
iti

on
al

at
om

s
pr

es
en

t
co

pe
la

nd

25



Ta
bl

e
4:

To
pi

cs
L

ea
rn

ed
by

L
D

A
-D

F
0

1
2

3
4

5
6

7
8

9
al

go
ri

th
m

s
al

go
ri

th
m

pl
an

ni
ng

se
ar

ch
pr

ob
le

m
s

ap
pr

oa
ch

ag
en

ts
m

od
el

sy
st

em
le

ar
ni

ng
sh

ow
pa

pe
r

tim
e

pr
ob

le
m

pa
pe

r
de

ci
si

on
do

m
ai

n
ag

en
t

ag
en

t
da

ta
nu

m
be

r
in

fe
re

nc
e

co
nt

ro
l

sp
ac

e
re

pr
es

en
ta

tio
n

pr
ob

le
m

th
eo

ry
an

al
ys

is
ba

se
d

kn
ow

le
dg

e
re

su
lts

m
et

ho
d

ac
tio

ns
in

fo
rm

at
io

n
re

as
on

in
g

sy
st

em
s

te
m

po
ra

l
sh

ow
sa

t
lo

gi
c

pr
es

en
t

st
ru

ct
ur

e
op

tim
al

co
st

ba
se

d
ef

fic
ie

nt
st

ra
te

gy
in

fo
rm

at
io

n
m

et
ho

d
ba

se
d

cl
as

s
so

lu
tio

ns
do

m
ai

ns
so

lu
tio

n
pl

an
ac

tio
n

fr
am

ew
or

k
te

ch
ni

qu
es

re
so

lu
tio

n
m

od
el

s
co

m
pl

ex
ity

lo
ca

l
ca

se
m

od
el

s
pr

op
er

tie
s

pr
ov

id
e

pe
rf

or
m

an
ce

fe
at

ur
es

ca
se

s
la

ng
ua

ge

co
ns

tr
ai

nt
s

ne
tw

or
k

st
at

e
st

at
e

co
m

pl
et

e
te

rm
s

do
m

ai
ns

se
ts

hu
m

an
pr

og
ra

m
s

se
t

de
sc

ri
be

si
ze

be
lie

f
pe

rf
or

m
an

ce
ba

se
d

co
ns

is
te

nc
y

w
or

ld
re

su
lt

se
m

an
tic

ge
ne

ra
l

ne
tw

or
ks

po
lic

y
so

lv
in

g
re

su
lts

pr
og

ra
m

m
in

g
ap

pr
oa

ch
es

co
nt

ex
t

st
ru

ct
ur

e
pr

es
en

t
va

ri
ab

le
s

sy
st

em
he

ur
is

tic
pr

ob
ab

ili
st

ic
se

m
an

tic
s

pr
ob

le
m

s
sh

ow
co

m
pl

ex
op

tim
al

se
t

ha
rd

ru
le

s
pl

an
s

re
su

lts
pl

an
ne

rs
ra

nd
om

m
et

ho
ds

se
t

re
al

ca
lle

d
np

ba
ye

si
an

te
ch

ni
qu

e
ex

pe
ri

m
en

ta
l

co
m

pu
ta

tio
na

l
w

or
k

sp
ec

ifi
c

se
le

ct
io

n
sy

st
em

s
tr

ee
co

ns
tr

ai
nt

st
an

da
rd

pr
ov

e
pr

es
en

ts
de

sc
ri

pt
io

n
m

ar
ko

v
cl

as
si

fic
at

io
n

ta
sk

fo
rm

ul
a

la
ng

ua
ge

s
ex

pe
ri

m
en

ts
lin

ea
r

pr
oc

es
s

pe
rf

or
m

cl
as

se
s

co
nd

iti
on

al
ap

pr
oa

ch
gr

ap
h

im
pl

em
en

te
d

m
ac

hi
ne

bo
un

ds
ex

ec
ut

io
n

pl
an

ne
r

st
at

es
pr

ef
er

en
ce

s
fu

nc
tio

ns
ef

fic
ie

nc
y

im
pl

em
en

ta
tio

n
go

al
na

tu
ra

l
po

ly
no

m
ia

l
op

tim
iz

at
io

n
fu

nc
tio

n
or

de
r

fin
di

ng
pr

oc
es

se
s

or
de

r
op

er
at

or
up

da
te

em
pi

ri
ca

l
ob

ta
in

ed
pa

rt
ia

l
va

lu
es

ar
t

te
ch

ni
qu

es
m

ak
in

g
op

er
at

or
s

pr
op

os
e

pr
oc

es
si

ng
fo

rm
cl

au
se

s
di

st
ri

bu
tio

n
co

m
pe

tit
io

n
re

in
fo

rc
em

en
t

pr
op

os
iti

on
al

pr
es

en
te

d
in

di
vi

du
al

re
sp

ec
t

qu
er

y
fr

am
ew

or
k

sh
ow

n
qu

er
ie

s
in

de
pe

nd
en

t
cu

rr
en

t
be

ha
vi

or
de

te
rm

in
is

tic
co

m
m

on
ty

pe
s

de
m

on
st

ra
te

tr
ee

s
si

m
pl

e
or

de
r

m
on

ito
ri

ng
po

m
dp

s
m

ul
tip

le
ta

sk
s

de
si

gn
ru

le
pa

rt
tr

ai
ni

ng
in

st
an

ce
s

ve
rs

io
n

dy
na

m
ic

ar
tic

le
ga

m
e

si
gn

ifi
ca

nt
ly

in
ve

st
ig

at
e

w
or

k
in

cl
ud

in
g

le
ar

n
st

ud
y

ex
ac

t
di

sc
us

s
ta

sk
co

nc
ep

t
ge

ne
ra

l
st

ra
te

gi
es

us
er

co
m

m
un

ic
at

io
n

ex
am

pl
es

pr
ov

id
e

im
pr

ov
e

gr
ap

hi
ca

l
en

vi
ro

nm
en

t
de

m
on

st
ra

te
po

in
t

co
m

pa
re

se
nt

en
ce

pr
ev

io
us

re
la

te
d

he
ur

is
tic

re
so

ur
ce

he
ur

is
tic

s
re

qu
ir

ed
th

eo
re

tic
al

cl
as

si
ca

l
ex

is
tin

g
gl

ob
al

de
fin

iti
on

co
nc

ep
ts

re
al

co
m

pa
re

d
po

lic
ie

s
in

st
an

ce
s

lo
gi

cs
st

ru
ct

ur
es

va
ri

et
y

re
la

tiv
e

ex
te

ns
io

ns
te

xt
la

rg
e

im
pr

ov
ed

ke
y

sh
ow

s
de

ve
lo

pe
d

pr
ob

ab
ili

ty
ip

c
re

la
tio

ns
m

et
ho

ds
ba

se
sa

tis
fia

bi
lit

y
m

et
ho

ds
as

su
m

pt
io

ns
ro

bo
t

m
ak

e
co

m
pu

tin
g

le
ve

l
or

de
ri

ng
w

or
d

fo
rm

al
is

m
s

ap
pl

ic
at

io
ns

qu
al

ity
bo

un
d

so
ur

ce
s

im
po

rt
an

t
pr

oc
ed

ur
e

so
ci

al
ch

an
ge

po
te

nt
ia

l
ac

cu
ra

te
em

pi
ri

ca
l

in
iti

al
ph

as
e

ef
fic

ie
nt

ly
la

rg
e

pr
ev

io
us

pr
ef

er
en

ce
st

ud
ie

s
m

ax
ac

cu
ra

cy

26



References

[1] C. A. Sutton, A. McCallum, An introduction to conditional random fields, Foun-
dations and Trends in Machine Learning 4 (2012) 267–373.

[2] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed., Springer-
Verlag New York, Inc., New York, NY, USA, 2010.

[3] I. Davidson, Clustering with constraints, in: L. Liu, M. T. Özsu (Eds.), Encyclo-
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