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Abstract

The sentential decision diagram (SDD) has been re-
cently proposed as a new tractable representation
of Boolean functions that generalizes the influen-
tial ordered binary decision diagram (OBDD). Em-
pirically, compiling CNFs into SDDs has yielded
significant improvements in both time and space
over compiling them into OBDDs, using a bottom-
up compilation approach. In this work, we present
a top-down CNF to SDD compiler that is based on
techniques from the SAT literature. We compare
the presented compiler empirically to the state-of-
the-art, bottom-up SDD compiler, showing orders-
of-magnitude improvements in compilation time.

1 Introduction

The area of knowledge compilation has a long tradition in
AI (see, e.g., Marquis [1995], Selman and Kautz [1996],
Cadoli and Donini [1997]). Since Darwiche and Marquis
[2002], this area has settled on three major research direc-
tions: (1) identifying new tractable representations that are
characterized by their succinctness and polytime support for
certain queries and transformations; (2) developing efficient
knowledge compilers; and (3) using those representations and
compilers in various applications, such as diagnosis [Barrett,
2005; Elliott and Williams, 2006], planning [Barrett, 2004;
Palacios et al., 2005; Huang, 2006], and probabilistic infer-
ence [Chavira and Darwiche, 2008]. For a recent survey on
knowledge compilation, see Darwiche [2014].

This work focuses on developing efficient compilers. In
particular, our emphasis is on the compilation of the sen-
tential decision diagram (SDD) [Darwiche, 2011] that was
recently discovered as a tractable representation of Boolean
functions. SDDs are a strict superset of ordered binary de-
cision diagrams (OBDDs) [Bryant, 1986], which are one of
the most popular, tractable representations of Boolean func-
tions. Despite their generality, SDDs still maintain some key
properties behind the success of OBDDs in practice. This in-
cludes canonicity, which leads to unique representations of
Boolean functions. It also includes the support of an effi-
cient Apply operation that combines SDDs using Boolean

operators.1 SDDs also come with tighter size upper bounds
than OBDDs [Darwiche, 2011; Oztok and Darwiche, 2014;
Razgon, 2014b]. Moreover, SDDs have been used in differ-
ent applications, such as probabilistic planning [Herrmann
and de Barros, 2013], probabilistic logic programs [Vlas-
selaer et al., 2014; 2015], probabilistic inference [Choi et
al., 2013; Renkens et al., 2014], verification of multi-agent
systems [Lomuscio and Paquet, 2015], and tractable learn-
ing [Kisa et al., 2014; Choi et al., 2015].

Almost all of these applications are based on the bottom-
up SDD compiler developed by Choi and Darwiche [2013a],
which was also used to compile CNFs into SDDs [Choi and
Darwiche, 2013b]. This compiler constructs SDDs by com-
piling small pieces of a knowledge base (KB) (e.g., clauses
of a CNF). It then combines these compilations using the
Apply operation to build a compilation for the full KB.

An alternative to bottom-up compilation is top-down com-
pilation. This approach starts the compilation process with a
full KB. It then recursively compiles the fragments of the KB
that are obtained through conditioning. The resulting com-
pilations are then combined to obtain the compilation of the
full KB. All existing top-down compilers assume CNFs as
input, while bottom-up compilers can work on any input due
to the Apply operation. Yet, compared to bottom-up com-
pilation, top-down compilation has been previously shown to
yield significant improvements in compilation time and space
when compiling CNFs into OBDDs [Huang and Darwiche,
2004]. Thus, it has a potential to further improve the results
on CNF to SDD compilations. Motivated by this, we study
the compilation of CNFs into SDDs by a top-down approach.

This paper is based on the following contributions. We
first identify a subset of SDDs, called Decision-SDDs, which
facilitates the top-down compilation of SDDs. We then
introduce a top-down algorithm for compiling CNFs into
Decision-SDDs, which is harnessed with techniques used
in modern SAT solvers, and a new component caching
scheme. We finally present empirical results, showing orders-
of-magnitude improvement in compilation time, compared to
the state-of-the-art, bottom-up SDD compiler.

This paper is organized as follows. Section 2 provides tech-
nical background. Section 3 introduces the new representa-

1The Apply operation combines two SDDs using any Boolean
operator, and has its origins in the OBDD literature [Bryant, 1986].



3

D C ¬D⊥

1

 ⊤  C ¬B  

2

B ¬A¬B ⊥

2

B A

(a) An SDD

1

2

B A

3

D C

(b) A vtree

Figure 1: An SDD and a vtree for (A∧B)∨(B∧C)∨(C∧D).

tion Decision-SDD. Section 4 provides a formal framework
for the compiler, which is then presented in Section 5. Ex-
perimental results are given in Section 6 and related work in
Section 7. Due to space limitations, proofs of theorems are
delegated to the full version of the paper.2

2 Technical Background
Upper case letters (e.g., X) denote variables and bold upper
case letters (e.g., X) denote sets of variables. A literal is a
variable or its negation. A Boolean function f(Z) maps each
instantiation z of variables Z to true (>) or false (⊥).

CNF: A conjunctive normal form (CNF) is a set of clauses,
where each clause is a disjunction of literals. Conditioning
a CNF ∆ on a literal `, denoted ∆|`, amounts to removing
literal ¬` from all clauses and then dropping all clauses that
contain literal `. Given two CNFs ∆ and Γ, we will write
∆ |= Γ to mean that ∆ entails Γ.

SDD: A Boolean function f(X,Y), with disjoint sets of
variables X and Y, can always be decomposed into

f(X,Y) =
(
p1(X) ∧ s1(Y)

)
∨ . . . ∨

(
pn(X) ∧ sn(Y)

)
,

such that pi 6= ⊥ for all i; pi ∧ pj = ⊥ for i 6= j; and∨
i pi = >. A decomposition satisfying the above properties

is known as an (X,Y)-partition [Darwiche, 2011]. More-
over, each pi is called a prime, each si is called a sub, and the
(X,Y)-partition is said to be compressed when its subs are
distinct, i.e., si 6= sj for i 6= j.

SDDs result from the recursive decomposition of a
Boolean function using (X,Y)-partitions. To determine the
X/Y variables of each partition, we use a vtree, which is a
full binary tree whose leaves are labeled with variables; see
Figure 1(b). Consider now the vtree in Figure1(b), and also
the Boolean function f = (A∧B)∨(B∧C)∨(C∧D). Node
v = 1 is the vtree root. Its left subtree contains variables
X = {A,B} and its right subtree contains Y = {C,D}. De-
composing function f at node v = 1 amounts to generating
an (X,Y)-partition:

{(A ∧B︸ ︷︷ ︸
prime

, >︸︷︷︸
sub

), (¬A ∧B︸ ︷︷ ︸
prime

, C︸︷︷︸
sub

), (¬B︸︷︷︸
prime

, D ∧ C︸ ︷︷ ︸
sub

)}.

This partition is represented by the root node of Figure 1(a).
This node, which is a circle, represents a decision node with
three branches, where each branch is called an element. Each

2Available at http://reasoning.cs.ucla.edu.
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Figure 2: A Decision-SDD and its corresponding vtree.

element is depicted by a paired box p s . The left box corre-
sponds to a prime p and the right box corresponds to its sub s.
A prime p or sub s are either a constant, literal, or pointer to a
decision node. In this case, the three primes are decomposed
recursively, but using the vtree rooted at v = 2. Similarly, the
subs are decomposed recursively, using the vtree rooted at
v = 3. This decomposition process moves down one level in
the vtree with each recursion, terminating at leaf vtree nodes.

SDDs constructed as above are said to respect the used
vtree. These SDDs may contain trivial decision nodes which
correspond to (X,Y)-partitions of the form {(>, α)} or
{(α,>), (¬α,⊥)}. When these decision nodes are removed
(by directing their parents to α), the resulting SDD is called
trimmed. Moreover, an SDD is called compressed when each
of its partitions is compressed. Compressed and trimmed
SDDs are canonical for a given vtree [Darwiche, 2011].
Here, we restrict our attention to compressed and trimmed
SDDs. Figure 1(a) depicts a compressed and trimmed SDD
for the above example. Finally, an SDD node representing
an (X,Y)-partition is normalized for the vtree node v with
variables X in its left subtree vl and variables Y in its right
subtree vr. In Figure 1(a), SDD nodes are labeled with vtree
nodes they are normalized for.

3 Decision-SDDs
We will next define the language of Decision-SDDs, which is
a strict subset of SDDs and a strict superset of OBDDs. Our
new top-down compiler will construct Decision-SDDs.

To define Decision-SDDs, we first need to distinguish be-
tween internal vtree nodes as follows. An internal vtree node
is a Shannon node if its left child is a leaf, otherwise it is a
decomposition node. The variable labeling the left child of
a Shannon node is called the Shannon variable of the node.
Vtree nodes 1 and 3 in Figure 2(b) are Shannon nodes, withX
and Y as their Shannon variables. Vtree node 5 is a decompo-
sition node. An SDD node that is normalized for a Shannon
(decomposition) vtree node is called a Shannon (decomposi-
tion) decision node. A Shannon decision node has the form
{(X,α), (¬X,β)}, where X is a Shannon variable.

Definition 1 (Decision-SDD) A Decision-SDD is an SDD
in which each decomposition decision node has the form
{(p, s1), (¬p, s2)} where s1 = >, s1 = ⊥, or s1 = ¬s2.



Figure 2 shows a Decision-SDD and a corresponding vtree
for the CNF {Y ∨¬Z,¬X∨Z,X∨¬Y,X∨Q}. The language
of Decision-SDDs is complete: every Boolean function can
be represented by a Decision-SDD using an appropriate vtree.

For further insights into Decision-SDDs, note that
a decomposition decision node must have the form
{(f, g), (¬f,⊥)}, {(f,>), (¬f, g)}, or {(f,¬g), (¬f, g)}.
Moreover, these forms represent the Boolean functions f ∧ g,
f ∨ g, and f⊕g, respectively, where f and g are over disjoint
sets of variables.

If an SDD is based on a general vtree, it may or may
not be a Decision-SDD. However, the following class of
vtrees, identified by Oztok and Darwiche [2014], guarantees
a Decision-SDD.

Definition 2 (Decision Vtree) A clause is compatible with
an internal vtree node v iff the clause mentions some vari-
ables inside vl and some variables inside vr. A vtree for CNF
∆ is said to be a decision vtree for ∆ iff every clause in ∆ is
compatible with only Shannon vtree nodes.3

Figure 2(b) depicts a decision vtree for the CNF {Y ∨
¬Z, ¬X ∨ Z, X ∨ ¬Y, X ∨Q}.
Proposition 1 Let v be a decision vtree for CNF ∆. An SDD
for ∆ that respects vtree v must be a Decision-SDD.

As such, the input to our compiler will be a CNF and a cor-
responding decision vtree, and the result will be a Decision-
SDD for the CNF. Note that one can always construct a deci-
sion vtree for any CNF [Oztok and Darwiche, 2014].

When every internal vtree node is a Shannon vtree node
(i.e., the vtree is right-linear), the Decision-SDD corresponds
to an OBDD. A quasipolynomial separation between SDDs
and OBDDs was given by Razgon [2014b]. As it turns out,
the SDDs used to show this separation are actually Decision-
SDDs. We now complement this result by showing that
Decision-SDDs can be simulated by OBDDs with at most a
quasipolynomial increase in size (it is currently unknown if
this holds for general SDDs).

Theorem 1 Every Decision-SDD with n variables and size
N has an equivalent OBDD with size ≤ N1+logn.

The above result is based on [Razgon, 2014a], which simu-
lates decomposable AND-OBDDs with OBDDs.4

Xue et al. [2012] have identified a class of Boolean func-
tions fi, with corresponding variable orders πi, such that
the OBDDs based on orders πi have exponential size, yet
the SDDs based on vtrees that dissect orders πi have linear
size.5 Interestingly, the SDDs used in this result turn out to
be Decision-SDDs as well. Hence, a variable order that blows
up an OBDD can sometimes be dissected to obtain a vtree that
leads to a compact Decision-SDD. This reveals the practical
significance of Decision-SDDs despite the quasipolynomial
simulation of Theorem 1. We finally note that there is no
known separation result between Decision-SDDs and SDDs.

3Without loss of generality, ∆ has no empty or unit clauses.
4A decomposable AND-OBDD can be turned into a Decision-

SDD in polytime, but it is not clear whether the converse is true.
5A vtree dissects a variable order if the order is generated by a

left-right traversal of the vtree.

Algorithm 1: SAT(∆)
Input: ∆ : a CNF
Output: > if ∆ is satisfiable;⊥ otherwise

1 Γ← {} // learned clauses
2 D ← 〈〉 // decision sequence
3 while true do
4 if unit resolution detects a contradiction in ∆ ∧ Γ ∧D then
5 ifD = 〈〉 then return⊥
6 α← asserting clause for (∆,Γ, D)
7 m← the assertion level of α
8 D ← the firstm decisions ofD
9 Γ← Γ ∪ {α} // learning clause α

10 else
11 if ` is a literal where neither ` nor ¬` are implied by unit resolution

from ∆ ∧ Γ ∧D then D ← D; `
12 else return>

We will next provide a top-down algorithm for compiling
CNFs into Decision-SDDs, which is based on state-of-the-
art techniques from SAT solving. Our intention is to provide
a formal description of the algorithm, which is precise and
detailed enough to be reproducible by the community. We
will start by providing a formal description of our framework
in Section 4, and then present our algorithm in Section 5.

4 A Formal Framework for the Compiler
Modern SAT solvers utilize two powerful and complemen-
tary techniques: unit resolution and clause learning. Unit
resolution is an efficient, but incomplete, inference rule which
identifies some of the literals implied by a CNF. Clause learn-
ing is a process which identifies clauses that are implied by a
CNF, then adds them to the CNF so as to empower unit res-
olution (i.e., allows it to derive more literals). These clauses,
also called asserting clauses, are learned when unit resolution
detects a contradiction in the given CNF. We will neither jus-
tify asserting clauses, nor delve into the details of computing
them, since these clauses have been well justified and exten-
sively studied in the SAT literature (see, e.g., Moskewicz et
al. [2001]). We will, however, employ asserting clauses in
our SDD compiler (we employ first-UIP asserting clauses as
implemented by RSat [Pipatsrisawat and Darwiche, 2007]).

As a first step towards introducing our compiler, we present
in Algorithm 1 a modern SAT solver that is based on unit res-
olution and clause learning. This algorithm repeatedly per-
forms the following process. A literal ` is chosen and added
to the decision sequence D (we say that ` has been decided at
level |D|). After deciding the literal `, unit resolution is per-
formed on ∆ ∧ Γ ∧D. If no contradiction is found, another
literal is decided. Otherwise, an asserting clause α is identi-
fied. A number of decisions are then erased until we reach the
decision level corresponding to the assertion level of clause
α, at which point α is added to Γ.6 The solver terminates
under one of two conditions: either a contradiction is found
under an empty decision sequence D (Line 5), or all literals
are successfully decided (Line 12). In the first case, the input
CNF must be unsatisfiable. In the second case, the CNF is

6The assertion level is computed when the clause is learned. It
corresponds to the lowest decision level at which unit resolution is
guaranteed to derive a new literal using the learned clause.



Macro : decide literal(`, S = (∆,Γ, D, I))
D ← D; ` // add a new decision to D
if unit resolution detects a contradiction in ∆ ∧ Γ ∧D then

return an asserting clause for (∆,Γ, D)

I ← literals implied by unit resolution from ∆ ∧ Γ ∧D
return success

Macro : undo decide literal(`, S = (∆,Γ, D, I))
erase the last decision ` fromD
I ← literals implied by unit resolution from ∆ ∧ Γ ∧D

Macro : at assertion level(α, S = (∆,Γ, D, I))
m← assertion level ofα
if there arem literals inD then return true
else return false

Macro : assert clause(α, S = (∆,Γ, D, I))
Γ← Γ ∪ {α} // add learned clause to Γ
if unit resolution detects a contradiction in ∆ ∧ Γ ∧D then

return an asserting clause for (∆,Γ, D)

I ← literals implied by unit resolution from ∆ ∧ Γ ∧D
return success

Figure 3: Macros for some SAT-solver primitives.

satisfiable with D as a satisfying assignment.
Algorithm 1 is iterative. Our SDD compiler, however, will

be recursive. To further prepare for this recursive algorithm,
we will take two extra steps. The first step is to abstract the
primitives used in SAT solvers (Figure 3), viewing them as
operations on what we shall call a SAT state.

Definition 3 A SAT state is a tuple S = (∆,Γ, D, I) where
∆ and Γ are sets of clauses, D is a sequence of literals, and
I is a set of literals. The number of literals in D is called the
decision level of S. Moreover, S is said to be satisfiable iff
∆ ∧D is satisfiable.7

Here, ∆ is the input CNF, Γ is the set of learned clauses, D
is the decision sequence, and I are the literals implied by unit
resolution from ∆ ∧ Γ ∧D. Hence, ∆ |= Γ and D ⊆ I .

The second step towards presenting our compilation algo-
rithm is a recursive algorithm for counting the models of a
CNF, which utilizes the above abstractions (i.e., the SAT state
and its associated primitives in Figure 3). To simplify the pre-
sentation, we will assume a variable order π of the CNF. If X
is the first variable in order π, then one recursively counts the
models of ∆∧X , recursively counts the models of ∆∧¬X ,
and then add these results to obtain the model count of ∆.
This is given in Algorithm 2, which is called initially with
the SAT state (∆, {}, 〈〉, {}) to count the models of ∆. What
makes this algorithm additionally useful for our presentation
purposes is that it is exhaustive in nature. That is, when con-
sidering variable X , it must process both its phases, X and
¬X . This is similar to our SDD compilation algorithm —
but in contrast to SAT solvers which only consider one phase
of the variable. Moreover, Algorithm 2 employs the primi-
tives of Figure 3 in the same way that our SDD compiler will
employ them later.

The following is a key observation about Algorithm 2 (and
the SDD compilation algorithm). When a recursive call re-
turns a learned clause, instead of a model count, this only
means that while counting the models of the CNF ∆ ∧ D

7Without loss of generality, ∆ has no empty or unit clauses.

Algorithm 2: #SAT(π, S)

Input: π : a variable order, S : a SAT state (∆,Γ, D, I)
Output: Model count of ∆ ∧D over variables in π, or a clause

1 if there is no variable in π then return 1
2 X ← first variable in π
3 ifX or ¬X belongs to I then return #SAT(π\{X}, S)
4 h← decide literal(X,S)
5 if h is success then h← #SAT(π\{X}, S)
6 undo decide literal(X,S)
7 if h is a learned clause then
8 if at assertion level(h, S) then
9 h← assert clause(h, S)

10 if h is success then return #SAT(π, S)
11 else return h

12 else return h

13 l← decide literal(¬X,S)
14 if l is success then l← #SAT(π\{X}, S)
15 undo decide literal(¬X,S)
16 if l is a learned clause then
17 if at assertion level(l, S) then
18 l← assert clause(l, S)
19 if l is success then return #SAT(π, S)
20 else return l

21 else return l

22 return h+ l

targeted by the call, unit resolution has discovered an oppor-
tunity to learn a clause (and learned one). Hence, we must
backtrack to the assertion level, add the clause, and then try
again (Lines 10 and 19). In particular, returning a learned
clause does not necessarily mean that the CNF targeted by
the recursive call is unsatisfiable. The only exception is the
root call, for which the return of a learned clause implies an
unsatisfiable CNF (and, hence, a zero model count) since the
learned clause must be empty in this case.8

5 A Top-Down SDD Compiler
We are now ready to present our SDD compilation algorithm,
whose overall structure is similar to Algorithm 2, but with
a few exceptions. First, the SDD compilation algorithm is
driven by a vtree instead of a variable order. Second, it uses
the vtree structure to identify disconnected CNF components
and compiles these components independently. Third, it em-
ploys a component caching scheme to avoid compiling the
same component multiple times.

This is given in Algorithm 3, which is called initially with
the SAT state S = (∆, {}, 〈〉, {}) and a decision vtree v for
∆, to compile an SDD for CNF ∆.9 When the algorithm
is applied to a Shannon vtree node, its behavior is similar
to Algorithm 2 (Lines 15–44). That is, it basically uses the
Shannon variable X and considers its two phases, X and
¬X . However, when applied to a decomposition vtree node v
(Lines 5–14), one is guaranteed that the CNF associated with
v is decomposed into two components, one associated with

8When the decision sequence D is empty, and unit resolution
detects a contradiction in ∆∧Γ, the only learned clause is the empty
clause, which implies that ∆ is unsatisfiable (since ∆ |= Γ).

9Algorithm 3 assumes that certain negations are freely available
(e.g., ¬p on Line 14). One can easily modify the algorithm so it re-
turns both an SDD and its negation, making all such negations freely
available. We skip this refinement here for clarity of exposition, but
it can be found in the longer version of the paper.



Algorithm 3: c2s(v, S)
unique(α) removes an element fromα if its prime is⊥. It then returns s ifα =

{(p1, s), (p2, s)} or α = {(>, s)}; returns p1 if α = {(p1,>), (p2,⊥)};
else returns the unique SDD node with elements α.

Input: v : a vtree node, S : a SAT state (∆,Γ, D, I)
Output: A Decision-SDD or a clause

1 if v is a leaf node then
2 X ← variable of v
3 ifX or ¬X belongs to I then return the literal ofX that belongs to I
4 else return>
5 else if v is a decomposition vtree node then
6 p← c2s(vl, S)
7 if p is a learned clause then
8 clean cache(vl)
9 return p

10 s← c2s(vr, S)
11 if s is a learned clause then
12 clean cache(v)
13 return s

14 return unique({(p, s), (¬p,⊥)})
15 else
16 key ← Key(v, S)
17 if cache(key) 6= nil then return cache(key)
18 X ← Shannon variable of v
19 if eitherX or ¬X belongs to I then
20 p← the literal ofX that belongs to I
21 s← c2s(vr, S)
22 if s is a learned clause then return s
23 return unique({(p, s), (¬p,⊥)})
24 s1 ← decide literal(X,S)
25 if s1 is success then s1 ← c2s(vr, S)
26 undo decide literal(X,S)
27 if s1 is a learned clause then
28 if at assertion level(s1, S) then
29 s1 ← assert clause(s1, S)
30 if s1 is success then return c2s(v, S)
31 else return s1
32 else return s1
33 s2 ← decide literal(¬X,S)
34 if s2 is success then s2 ← c2s(vr, S)
35 undo decide literal(¬X,S)
36 if s2 is a learned clause then
37 if at assertion level(s2, S) then
38 s2 ← assert clause(s2, S)
39 if s2 is success then return c2s(v, S)
40 else return s2
41 else return s2
42 α ← unique({(X, s1), (¬X, s2)})
43 cache(key)← α
44 return α

the left child vl and another with the right child vr (since v is
a decision vtree for ∆). In this case, the algorithm compiles
each component independently and combines the results.

We will next show the soundness of the algorithm, which
requires some additional definitions. Let ∆ be the input CNF.
Each vtree node v is then associated with:

– CNF (v): The clauses of ∆ mentioning only variables
inside the vtree rooted at v (clauses of v).

– ContextC(v): The clauses of ∆ mentioning some vari-
ables inside v and some outside v (context clauses of v).

– ContextV (v): The Shannon variables of all vtree nodes
that are ancestors of v (context variables of v).

We start with the following invariant of Algorithm 3.

Theorem 2 Every call c2s(v, S) with S = (∆,Γ, D, I) sat-
isfies ∆ |= Γ and V ars(D) ⊆ ContextV (v) ⊆ V ars(I).
Hence, when calling vtree node v, all its context variables
must be either decided or implied. We can now define the
CNF component associated with a vtree node v at state S.
Definition 4 The component of vtree node v and state S =

(., ., ., I) is CNF (v, S) = CNF (v) ∧ ContextC(v)|γ,
where γ are the literals of ContextV (v) appearing in I .
Hence, the component CNF (v, S) will only mention vari-
ables in vtree v. Moreover, the root component (CNF (v, S)
with v being the root vtree node) is equal to ∆.

Following is the soundness result assuming no component
caching (i.e., while omitting Lines 8, 12, 16, 17 and 43).

Theorem 3 A call c2s(v, S) with a satisfiable state S will
return either an SDD for componentCNF (v, S) or a learned
clause. Moreover, if v is the root vtree node, then a learned
clause will not be returned.

Theorem 4 A call c2s(v, S) with an unsatisfiable state S
will return a learned clause, or one of its ancestral calls
c2s(v′, S′) will return a learned clause, where v′ is a de-
composition vtree node.

We now have our soundness result (without caching).
Corollary 1 If v is the root vtree node, then call
c2s(v, (∆, {}, 〈〉, {})) returns an SDD for ∆ if ∆ is satis-
fiable, and returns an empty clause if ∆ is unsatisfiable.

We are now ready to discuss the soundness of our caching
scheme (Lines 8, 12, 16, 17 and 43). This requires an ex-
planation of the difference in behavior between satisfiable
and unsatisfiable states (based on Theorem 1 of Sang et al.
[2004]). Consider the component CNFs ∆X and ∆Y over
disjoint variables X and Y, and let Γ be another CNF such
that ∆X ∧ ∆Y |= Γ (think of Γ as some learned clauses).
Suppose that IX is the set of literals over variables X im-
plied by unit resolution from ∆X ∧ Γ. One would expect
that ∆X ≡ ∆X ∧ IX (and similarly for ∆Y). In this case,
one would prefer to compile ∆X ∧ IX instead of ∆X as
the former can make unit resolution more complete, lead-
ing to a more efficient compilation. In fact, this is exactly
what Algorithm 3 does, as it includes the learned clauses Γ
in unit resolution when compiling a component. However,
∆X ≡ ∆X∧IX is not guaranteed to hold unless ∆X∧∆Y is
satisfiable. When this is not the case, compiling ∆X∧IX will
yield an SDD that implies ∆X but is not necessarily equiva-
lent to it. However, this is not problematic for our algorithm,
for the following reason. If ∆X∧∆Y is unsatisfiable, then ei-
ther ∆X or ∆Y is unsatisfiable and, hence, either ∆X∧IX or
∆Y ∧ IY will be unsatisfiable, and their conjunction will be
unsatisfiable. Hence, even though one of the components was
compiled incorrectly, the conjunction remains a valid result.
Without component caching, the incorrect compilation will
be discarded. However, with component caching, one also
needs to ensure that incorrect compilations are not cached (as
observed by Sang et al. [2004]).

By Theorem 4, if we reach Line 8 or 12, then state S may
be unsatisfiable and we can no longer trust the results cached
below v. Hence, clean cache(v) on Line 8 and 12 removes



all cache entries that are indexed by Key(v′, .), where v′ is a
descendant of v. We now discuss Lines 16, 17 and 43.

Definition 5 A functionKey(v, S) is called a component key
iff Key(v, S) = Key(v, S′) implies that components
CNF (v, S) and CNF (v, S′) are equivalent.

Hence, as long as Line 16 uses a component key according to
this definition, then caching is sound. The following theorem
describes the component key we used in our algorithm.

Theorem 5 Consider a vtree node v and a corresponding
state S = (., ., ., I). Define Key(v, S) as the following bit
vector: (1) each clause δ in ContextC(v) is mapped into
one bit that captures whether I |= δ, and (2) each variableX
that appears in vtree v and ContextC(v) is mapped into two
bits that capture whether X ∈ I , ¬X ∈ I , or neither. Then
function Key(v, S) is a component key.

6 Experimental Results
We now present an empirical evaluation of the new top-
down compiler. In our experiments, we used two sets
of benchmarks. First, we used some CNFs from the
iscas85, iscas89, and LGSynth89 suites, which cor-
respond to sequential and combinatorial circuits used in
the CAD community. We also used some CNFs available
at http://www.cril.univ-artois.fr/PMC/pmc.html, which corre-
spond to different applications such as planning and prod-
uct configuration. We compiled those CNFs into SDDs and
Decision-SDDs. To compile SDDs, we used the SDD pack-
age [Choi and Darwiche, 2013a]. All experiments were per-
formed on a 2.6GHz Intel Xeon E5-2670 CPU under 1 hour
of time limit and with access to 50GB RAM. We next explain
our results shown in Table 1.

The first experiment compares the top-down compiler
against the bottom-up SDD compiler. Here, we first gener-
ate a decision vtree10 for the input CNF, and then compile
the CNF into an SDD using (1) the bottom-up compiler with-
out dynamic minimization (denoted BU), (2) the bottom-up
compiler with dynamic minimization (denoted BU+), and (3)
the top-down compiler (denoted TD), using the same vtree.11

Note that BU+ uses a minimization method, which dynam-
ically searches for better vtrees during the compilation pro-
cess, leading to general SDDs, whereas both BU and TD
do not modify the input decision vtree, hence generating
Decision-SDDs with the same sizes. We report the corre-
sponding compilation times and sizes in Columns 2–4 and
6–7, respectively. The top-down Decision-SDD compiler was
consistently faster than the bottom-up SDD compiler, regard-
less of the use of dynamic minimization. In fact, in Column
5 we report the speed-ups obtained by using the top-down
compiler against the best result of the bottom-up compiler
(i.e., either BU or BU+, whichever was faster). There are
40 cases (out of 61) where we observe at least an order-of-
magnitude improvement in time. Also, there are 15 cases

10We obtained decision vtrees as in Oztok and Darwiche [2014].
11Choi and Darwiche [2013b] used balanced vtrees constructed

from the natural variable order, and manual minimization. We chose
to use decision vtrees as they performed better than balanced vtrees.

where top-down compilation succeeded and both bottom-up
compilations failed. However, the situation is different for
the sizes, when the bottom-up SDD compiler employs dy-
namic minimization. In almost all of those cases, BU+ con-
structed smaller representations. As reported in Column 8,
which shows the relative sizes of SDDs generated by TD
and BU+, there are 21 cases where BU+ produced an order-
of-magnitude smaller SDDs. This is not a surprising result
though, given that BU+ produces general SDDs and our top-
down compiler produces Decision-SDDs, and that SDDs are
a strict superset of Decision-SDDs.

Since Decision-SDDs are a subset of SDDs, any mini-
mization algorithm designed for SDDs can also be applied to
Decision-SDDs. In this case, however, the results may not be
necessarily Decision-SDDs, but general SDDs. In our second
experiment, we applied the minimization method provided by
the bottom-up SDD compiler to our compiled Decision-SDDs
(as a post-processing step). We then added the top-down
compilation times to the post-processing minimization times
and reported those in Column 9, with the resulting SDD sizes
in Column 10. As is clear, the post-processing minimization
step significantly reduces the sizes of SDDs generated by our
top-down compiler. In fact, the sizes are almost equal to the
sizes generated by BU+ (Column 7). The top-down compiler
gets slower due to the cost of the post-processing minimiza-
tion step, but its total time still dominates the bottom-up com-
piler. Indeed, it can still be an order-of-magnitude faster than
the bottom-up compiler (18 cases). This shows that one can
also use Decision-SDDs as a representation that facilitates the
compilation of CNFs into general SDDs.

7 Related Work
Our algorithm for compiling CNFs into SDDs is based on a
similar algorithm, introduced recently [Oztok and Darwiche,
2014]. The latter algorithm was proposed to improve a size
upper bound on SDDs. However, it did not identify Decision-
SDDs, nor did it suggest a practical implementation. The cur-
rent work makes the previously introduced algorithm practi-
cal by adding powerful techniques from the SAT literature
and defining a practical caching scheme, resulting in an effi-
cient compiler that advances the state-of-the-art.

Combining clause learning and component caching was al-
ready used in the context of knowledge compilation [Dar-
wiche, 2004] and model counting [Sang et al., 2004]. Yet,
neither of these works described the corresponding algo-
rithms and their properties at the level of detail and precision
that we did here. A key difference between the presented top-
down compiler and the one introduced in Darwiche [2004],
called c2d, is that we compile CNFs into SDDs, while c2d
compiles CNFs into d-DNNFs. These two languages differ
in their succinctness and tractability (SDDs are a strict subset
of d-DNNFs, and are less succinct but more tractable). For
example, SDDs can be negated in linear time. Hence, the
CNF-to-SDD compiler we introduced can easily be used as
a DNF-to-SDD compiler. For that, we first negate the DNF
into a CNF by flipping the literals and treating each term as
a clause. After compiling the resulting CNF into an SDD,
we can negate the resulting SDD efficiently, which would be-



Without post-processing With post-processing
Compilation time SDD size Compilation time SDD size

CNF BU TD BU+ Speed-up TD BU+ Ratio TD+ TD+
c1355 3423.95 189.0 1292.87 6.84 71,642,606 2,430,882 0.03 — —
c432 1.59 0.14 5.62 11.36 66,004 13,660 0.21 1.95 14,388
c499 1360.05 31.48 — 43.20 29,791,654 — — 1800.14 3,356,190
c880 3372.87 896.47 — 3.76 214,504,174 — — — —
s1196 763.39 1.86 709.93 381.68 2,381,672 245,549 0.10 131.53 97,641
s1238 1039.39 2.19 2114.01 474.61 1,539,440 139,475 0.09 74.42 76,690
s1423 1860.56 5.67 354.62 62.54 11,363,370 454,711 0.04 588.23 782,464
s1488 564.25 0.57 206.41 362.12 457,420 111,671 0.24 19.47 88,671
s1494 2672.46 0.59 1035.91 1755.78 465,092 98,812 0.21 21.33 91,690
s510 49.02 0.09 55.38 544.67 19,732 10,192 0.52 0.68 7,411
s641 3.84 0.28 4.54 13.71 257,322 13,910 0.05 5.36 14,623
s713 4.08 0.36 5.91 11.33 230,886 13,809 0.06 5.22 12,079
s832 80.94 0.33 28.45 86.21 501,098 30,841 0.06 11.23 28,773
s838 0.71 0.1 4.82 7.10 46,490 9,853 0.21 1.79 13,540
s953 — 1.92 — — 2,772,894 — — 90.06 161,056

9symml 6.15 0.08 5.29 66.12 59,616 15,572 0.26 1.57 14,453
alu2 1164.19 0.13 91.12 700.92 114,194 26,866 0.24 2.88 13,093
alu4 — 0.71 — — 2,147,052 — — 172.81 87,562

apex6 — 235.06 — — 156,430,304 — — — —
frg1 165.61 0.46 22.64 49.22 1,551,328 76,632 0.05 183.92 123,890
frg2 1876.64 49.76 690.63 13.88 21,820,292 235,761 0.01 2613.82 1,624,002

term1 517.52 25.36 454.08 17.91 5,545,908 249,372 0.04 468.92 818,343
ttt2 20.79 0.69 6.54 9.48 468,884 15,328 0.03 10.00 18,706
vda — 0.14 — — 126,152 — — 11.21 29,266
x4 21.22 0.36 12.04 33.44 252,530 23,920 0.09 9.16 27,102

2bitcomp 5 16.29 0.35 119.82 46.54 337,642 19,289 0.06 9.06 58,043
2bitmax 6 — 45.22 — — 153,512,364 — — — —
4blocksb 30.99 168.53 16.85 0.10 1,634 1,989 1.22 168.63 1,530
C163 FW 2457.58 10.55 — 232.95 3,909,336 — — 153.49 84,773
C171 FR 140.77 0.7 92.17 131.67 743,212 53,484 0.07 69.96 72,415

C210 FVF 1265.00 9.01 — 140.40 7,052,986 — — 426.93 165,582
C211 FS 7.80 0.17 3.93 23.12 111,004 8,590 0.08 3.00 9,243
C215 FC — 16.45 — — 11,625,728 — — 1294.15 431,589
C230 FR — 32.69 3320.03 101.56 38,975,404 571,611 0.01 2869.13 763,845

C638 FKA 497.18 5.21 50.35 9.66 1,106,488 17,930 0.02 61.95 25,669
ais10 — 2.6 1464.48 563.26 61,950 13,940 0.23 4.35 11,997

bw large.a 62.77 0.01 17.81 1781.00 1,512 1,642 1.09 0.16 1,290
bw large.b 3246.49 0.17 961.77 5657.47 5,552 4,309 0.78 0.63 3,698

cnt06.shuffled 2.03 0.04 27.74 50.75 3,004 2,874 0.96 0.10 2,994
huge 83.01 0.05 23.79 475.80 1,512 1,654 1.09 0.20 1,290
log-1 41.02 0.23 21.39 93.00 69,358 6,650 0.10 1.99 7,622
log-2 — 8.85 — — 11,249,348 — — — —
log-3 — 4.76 — — 440,868 — — 185.88 24,418

par16-1-c 224.79 1.22 116.10 95.16 1,220 1,204 0.99 1.23 1,214
par16-2-c 356.94 1.26 — 283.29 1,362 — — 1.32 1,242
par16-2 1098.42 1.28 1048.58 819.20 3,938 3,938 1.00 1.36 3,922
par16-3 666.46 4.46 713.34 149.43 3,960 3,960 1.00 4.54 3,934

par16-5-c 516.75 0.87 — 593.97 1,330 — — 0.93 1,226
par16-5 864.91 4.38 1722.34 197.47 3,960 4,000 1.01 4.46 3,934

prob004-log-a — 181.13 — — 212,553,140 — — — —
qg1-07 — 0.36 — — 4,576 — — 0.79 2,485
qg2-07 — 0.39 — — 8,072 — — 1.38 3,992
qg3-08 — 0.15 — — 18,310 — — 2.69 6,674
qg6-09 — 0.12 — — 6,458 — — 1.63 4,592
qg7-09 — 0.1 — — 6,712 — — 1.31 4,004

ra 269.96 4.77 — 56.60 619,146 — — 116.14 342,034
ssa7552-038 4.71 0.14 9.38 33.64 44,902 18,786 0.42 1.57 19,147

tire-2 6.98 0.18 5.58 31.00 75,472 4,013 0.05 1.27 4,487
tire-3 42.13 0.23 26.67 115.96 73,914 7,599 0.10 1.85 13,038
tire-4 593.53 0.28 98.75 352.68 164,996 17,129 0.10 5.07 8,395

uf250-026 — 1667.7 — — 8,880 — — 1667.91 1,013

Table 1: Bottom-up and top-down SDD compilations over iscas85, iscas89, LGSynth89, and some sampled bench-
marks. BU refers to bottom-up compilation without dynamic minimization and BU+ with dynamic minimization. TD refers to
top-down compilation, and TD+ with a single minimization step applied at the end.

come the SDD for the given DNF. Since no efficient negation
algorithm is known for d-DNNFs, one cannot use c2d when
the original knowledge base is represented in DNF. We note
that we did not evaluate our compiler for compiling DNFs
into SDDs, so we do not know how practical it would be.
Still, it can be immediately used to compile DNFs, which has
not been discussed before in the context of top-down compi-

lation. Another top-down compiler, called eadt, was pre-
sented recently [Koriche et al., 2013], which compiles CNFs
into a tractable language that makes use of decision trees with
xor nodes. A detailed comparison of bottom-up and top-
down compilation has been made before in the context of
compiling CNFs into OBDDs [Huang and Darwiche, 2004].
Our work can be seen as making a similar comparison for



compiling CNFs into SDDs.

8 Conclusion
We identified a subset of SDDs, called Decision-SDDs, and
introduced a top-down algorithm for compiling CNFs into
Decision-SDDs that is based on techniques from the SAT
literature. We provided a formal description of the new al-
gorithm with the hope that it would facilitate the develop-
ment of efficient compilers by the community. Our empirical
evaluation showed that the presented top-down compiler can
yield significant improvements in compilation time against
the state-of-the-art bottom-up SDD compiler, assuming that
the input is a CNF.
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