
Data Compression for Learning MRF Parameters

Khaled S. Refaat and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
{krefaat,darwiche}@cs.ucla.edu

Abstract

We propose a technique for decomposing and com-
pressing the dataset in the parameter learning prob-
lem in Markov random fields. Our technique ap-
plies to incomplete datasets and exploits variables
that are always observed in the given dataset. We
show that our technique allows exact computation
of the gradient and the likelihood, and can lead to
orders-of-magnitude savings in learning time.

1 Introduction
Markov Random Fields (MRFs) are probabilistic graphi-
cal models that have been useful to many fields, includ-
ing computer vision, bioinformatics, natural language pro-
cessing, and statistical physics; for example see [Li, 2001;
Yanover et al., 2007; Lafferty et al., 2001; Marinari et al.,
1997]. An MRF represents a joint probability distribution
compactly using a structure populated with parameters. In
brief, the structure is an undirected graph defining conditional
independence relationships between variables in the graph,
whereas the parameters consist of a factor for every maxi-
mal clique in the graph; see [Kindermann and Snell, 1980;
Koller and Friedman, 2009; Murphy, 2012]. This paper is
concerned with learning factors from incomplete data given a
fixed structure.

Learning MRF parameters from data is typically reduced to
finding the maximum likelihood parameters: ones that maxi-
mize the probability of a dataset, due to their attractive statis-
tical properties [Fisher, 1922]. However, due to the complex-
ity of learning maximum likelihood parameters, other sim-
plified methods have also been proposed in literature such as
pseudo-likelihood [Besag, 1975], ratio matching [Hyva rinen,
2005], composite maximum likelihood [Varin et al., 2011],
contrastive divergence [Hinton, 2000], and more recently the
Linear and Parallel algorithm (LAP) [Mizrahi et al., 2014].

A key distinction is commonly drawn between complete
and incomplete datasets. In a complete dataset, the value
of each variable is known in every example in the dataset,
whereas in an incomplete dataset, some variables may have
missing values. Computationally, learning from incomplete
data can be much harder than learning from complete data, as
we discuss next.

If the data is complete, learning maximum likelihood pa-
rameters can be formulated as a convex optimization prob-
lem. However, evaluating the objective or computing the
gradient requires doing inference (i.e. summation over all
possible variable instantiations) to compute the partition
function, which is #P-hard [Roth, 1996]. Iterative algo-
rithms, such as gradient descent [Russel et al., 1995], con-
jugate gradient (CG) [Hestenes and Stiefel, 1952], limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-
BFGS) [Liu and Nocedal, 1989], iterative proportional fit-
ting (IPF) [Jirousek and Preucil, 1995], and more recently the
edge-deletion maximum-likelihood algorithm (EDML) [Re-
faat et al., 2013], can be used to get the global optimal solu-
tion. Ideally, one inference is required per algorithm iteration,
unless line search is used, which may require multiple func-
tion evaluations; for more about line search, see Chapter 9
in [Boyd and Vandenberghe, 2004].

On the other hand, if the data is incomplete, the optimiza-
tion problem is generally non-convex, i.e. has multiple local
optima. Iterative algorithms, such as expectation maximiza-
tion (EM) [Dempster et al., 1977; Lauritzen, 1995] and gradi-
ent descent, can be used to get a locally optimal solution; see
Chapter 19 in [Murphy, 2012]. Unfortunately, non-convexity
is not the only difficulty introduced by the data being incom-
plete. As pointed out in Koller and Friedman (2009) [Koller
and Friedman, 2009], at every iteration, besides doing infer-
ence to compute the partition function, we now need to run
inference separately conditioned on every unique data exam-
ple. In this paper, we propose a technique that can signifi-
cantly decrease the number of required inferences per itera-
tion, without any loss of quality, which we highlight next.

Our goal is to alleviate the need for an inference for each
unique data example. We decompose the dataset into smaller
datasets each of which is over a subset of the variables, and
is associated with some part of the MRF structure. We prove
that to compute the objective function or its gradient, one can
operate on the decomposed datasets rather than the original
dataset. So why can operating on the decomposed datasets
be better? We show that our proposed decomposition can
create room for compressing the datasets. Accordingly, the
decomposed datasets can be much smaller than the original
dataset. This leads to decreasing the number of inferences
required by the optimization algorithm, and can significantly
decrease the learning time.

Our proposed technique exploits variables that are always
observed in the dataset, and it can be performed in time that
is linear in the MRF structure and dataset size.

The paper is organized as follows. In Section 2, we define
our notation and give an introduction to the problem of learn-
ing MRF parameters. We motivate the problem we tackle in
Section 3. In Section 4, we show how the data decomposition
technique works. The experimental results are given in Sec-
tion 5. We prove that our method is sound in Section 6. We
review some of the related work in Section 7, and conclude
in Section 8.

2 Learning Parameters
In this section, we define our notation, and review how pa-
rameter estimation for MRFs is formulated as an optimization
problem. We use upper case letters (X) to denote variables
and lower case letters (x) to denote their values. Variable sets
are denoted by bold-face upper case letters (X) and their in-
stantiations by bold-face lower case letters (x). The set of all
parameters of the MRF is denoted by θ. Variables and their
instantiations are used as subscripts for θ to denote a subset
of the parameters. Namely, the network parameters are given
by the vector θ = (. . . , θXf

, . . .). Component θXf
is a pa-

rameter set for a factor f , assigning a number θxf
> 0 for

each instantiation xf of variable set Xf .
We say that an instantiation x and a data example d are

compatible, denoted by x ∼ d, iff they agree on the state of
their common variables. For example x = a, b, c̄ is compati-
ble with d1 = a, c̄ but not with d2 = a, c as c 6= c̄.

The negative log-likelihood of a dataset D =
{. . . ,di, . . . } is denoted by −``(θ|D), and given by:

−``(θ|D) = −
N∑
i=1

logZθ(di) +N logZθ (1)

where N is the number of data examples, and Zθ is the par-
tition function. The partition function is given by Zθ =∑

x

∏
f θxf

, where
∑

x is a summation over all possible in-
stantiations of x, which determines an instantiation xf for
each factor f . Similarly, logZθ(di) =

∑
x∼di

∏
f θxf

is the
partition function conditioned on example di, i.e. the summa-
tion is over the instantiations that agree with the observed val-
ues of di. For simplicity, we assume, throughout the paper,
a tabular representation as given in [Refaat et al., 2013], as
opposed to an exponential representation as given in Chapter
19 in [Murphy, 2012]. In our experiments, however, we use
the exponential representation, to avoid the need for explicit
non-negativity constraints.

The first term in Equation 1 is called the data term, whereas
the second term is called the model term. If the data is com-
plete, Equation 1 is convex, if the exponential representation
is used; and the data term becomes trivial to evaluate. Thus,
in every optimization iteration, a single inference is typically
needed to evaluate the model term.

However, when the data is incomplete, the data term is non-
trivial to evaluate as it requires running inference conditioned
on every data example di. Thus, the number of inferences

needed per iteration would be N + 1 1. An efficient package
would however detect identical data examples, and do infer-
ence for every distinct data example. However, the number of
distinct data examples can still be substantially large. In this
paper, we propose a technique that decomposes the data term
and compresses the dataset. As a result, the number of infer-
ences required to evaluate the data term can decrease leading
to high speed-ups. We next give a motivation and explain how
the technique works.

3 Motivation
We highlight the proposed technique by taking a closer look
at the underlying optimization problem. When learning max-
imum likelihood parameters, the objective function consists
of the data term and the model term, as explained in Sec-
tion 2. Unlike the data term, the model term does not depend
on the dataset. In case of complete data, the data term evalu-
ation is trivial during optimization. Thus, only one inference
per iteration is required for the model term. However, when
the data is incomplete, evaluation of the data term requires a
number of inferences equal to the number of distinct data ex-
amples in the dataset. In this paper, we exploit variables that
are always observed in the dataset, and decompose the data
term into independent terms, each of which is over a possibly
much smaller dataset.

When inference is done conditioned on a data example, the
graph can be pruned using the observed values, to make infer-
ence more efficient; see Chapter 6 in [Darwiche, 2009]. Most
learning packages, that use efficient inference engines, use
such techniques that date back to Shachter [Shachter, 1986;
1990]. Namely, the graph is pruned given every data example,
before doing inference. The key observation that we exploit
is that the pruned graphs, given all the data examples, share
something in common, if some variables are always observed.
This commonality is the heart of the proposed method.

To capture this commonality, we decompose the graph con-
ditioned only on the variables that are always observed in the
dataset. As a result, the graph is decomposed into a number of
sub-graphs each of which is over a subset of the variables. We
then project the dataset onto the variables of each sub-graph,
by discarding the variables not in the sub-graph. We prove
that evaluating the data term or computing its gradient can
now be computed by doing inference in the sub-graphs and
their projected datasets independently. This begs the ques-
tion: Why is this decomposition useful?

Now, the number of variables and, therefore, unique data
examples in each projected dataset is much smaller than in
the original dataset. As a result, each projected dataset can
be compressed significantly by detecting repetitions, and ac-
cordingly, the number of inferences required in each iteration
decreases. We show empirically that the proposed method
can lead to orders-of-magnitude speed-ups. In fact, data com-
pression becomes particularly useful as the size of the dataset
grows, and as the number of observed variables increases.

Not surprisingly, in today’s world, with the growing
use of low-cost computers and sensors for data collec-

1N iterations are needed for doing inference conditioned on each
data example, and one inference is needed for the model term.

tion [Cherkassky and Mulier, 2007], large datasets are widely
available. Furthermore, it is not uncommon to have a sig-
nificant number of variables that are always observed. For
example, in the UCI repository: the internet advertisements
database has 1558 variables, only 3 of which have missing
values; the Automobile database has 26 variables, where 7
have missing values; the Dermatology database has 34 vari-
ables, where only age can be missing; the Mushroom dataset
has 22 variables, where only one variable has missing values;
and so on [Bache and Lichman, 2013]. Thus, data compres-
sion can potentially benefit a non-trivial spectrum of prob-
lems in different fields.

4 Data Decomposition

!" #"

$" %" &"

'" (")"

f12 f23

f45 f56

f78 f89

f14

f47

f36

f69

f25

f58

*"

f25
f56f45

f36

f69
f78

f47

f14

f23f12

f89
f58

f25
f56f45

f36

f69
f78

f47

f14

f23f12

f89
f58

Figure 1: The process of identifying graph sub-networks
given observed nodes: 2, 3, 4, 5, 7, and 9. Top: 3 × 3 MRF
grid. Middle: A graph of factors, where an edge between two
factors exists if they have common variables. Bottom: The
sub-networks obtained by deleting every edge between two
factors if all their common variables are always observed in
the data.

In this section, we explain how the data term is decom-
posed and, accordingly, the dataset is compressed. The proof
will be given in Section 6. Figure 1 (top) shows a 3 × 3 grid
MRF that we use as a running example. Factors in the grid
are binary, i.e. involves two variables, and variables can take
2 states: true (t) or false (f). Suppose that Variables 1,
6, and 8 have missing values in the dataset (denoted by ?),
whereas Variables 2, 3, 4, 5, 7, and 9 are always observed
(cannot take ?). The dataset takes the form:

example/variable 1 2 3 4 5 6 7 8 9
1 t f f f t ? t ? t
2 ? t t f t ? f ? f
3 t f t f f t t ? t
4 ? t t f f ? f f t
.

Firstly, we create a factor graph, as given in Figure 1 (mid-
dle), which has a node for every factor in the original MRF.
An edge between two factors exists if and only if they share a
common variable. For example, f12 and f25 share Variable 2,
and therefore has an edge between them in the factor graph.
The decomposition will be performed on the created factor
graph as shown next.

Secondly, we delete any edge, in the factor graph, if the
common variables between its nodes are always observed in
the dataset. For example, the edge between f12 and f25 is
deleted as the common Variable 2 is always observed in the
dataset. On the other hand, f58 and f89 remains intact as the
common Variable 8 has missing values in the dataset. The
result of this decomposition is given in Figure 1 (bottom).

Now, the decomposed factor graph in Figure 1 (bottom)
decomposes the MRF into multiple sub-networks, each of
which is over a subset of factors. For example, factors f12

and f14 forms a sub-network. As we will prove in Section 6,
the data term decomposes into a summation of independent
terms corresponding to each sub-network.

Thirdly, we project the dataset onto the variables of each
sub-network, by discarding the variables not in the sub-
network. For example, we project the dataset onto the vari-
ables of the sub-network, f12−f14, by discarding all variables
except 1, 2, and 4. Thus, this projected dataset will have only
3 columns, and will take the form:

example/variable 1 2 4
1 t f f
2 ? t f
3 t f f
4 ? t f
. . . .

Now, we have a projected dataset for each sub-network. Fi-
nally, we will compress every projected dataset by detecting
repetitions and adding a count field to every distinct data ex-
ample. For example, the compressed dataset for f12 − f14

may take the form:
example/variable 1 2 4 Count

1 t f f 5
2 ? t f 15
.

where the count keeps record of how many times the distinct
data example was repeated in the dataset. The key observa-
tion here is that the number of repetitions increases in the pro-
jected datasets. By a simple counting argument, one can show
that the maximum number of possible distinct data examples
that can appear in the original dataset is 26 × 33 = 1728. 2

On the other hand, the maximum number of distinct data ex-
amples in the projected dataset of f12− f14, for instance, can
be at most only 22 × 31 = 12.

2Note that a variable with missing values can take true, false, or
be missing.

Every sub-network with its own projected, and potentially
compressed, dataset now induces an independent data term,
defined exactly as the original data term, as we will show in
Section 6. We will prove that the original data term is equiva-
lent to the summation of all the independent sub-network data
terms. Thus, to evaluate or compute the gradient of the orig-
inal data term, one needs to evaluate or compute the gradient
of the data term of each sub-network independently, and then
combine them by addition.

The decomposition above suggests that as more variables
are always observed, the MRF is decomposed into much
smaller sub-networks leading to more repetitions. Moreover,
as the dataset size gets larger, the difference between the data
before and after decomposition is magnified. Now, we will
show that, experimentally, data decomposition works as ex-
pected and can achieve orders-of-magnitude savings in time.

5 Experimental Results
We compare the time taken by the gradient method if data
decomposition is used, versus if the original dataset is used.
In particular, using a fixed network structure, we simulate a
dataset, then make the data incomplete by randomly selecting
a certain percentage of variables to have missing values. After
that, we learn the parameters from the data using the gradi-
ent method with and without data decomposition, to obtain a
local optimum.

For 11 different networks, 3 and with hiding 20% of the
variables, Table 1 shows the time taken by the gradient
method without data decomposition tgrad, and with data de-
composition td−grad, together with the speed-up achieved by
data decomposition, computed as tgrad

td−grad
. In all cases, the

same learned parameters were returned by both techniques,
which we do not show in the table.

One can see that data decomposition achieved one-to-two
orders-of-magnitude speed-up in learning time in most cases.
The decomposition technique has almost left the dataset of
network 54.wcsp without much decomposition leading to lit-
tle speed-up.

In this experiment, we did not vary the percentage of ob-
served variables nor the dataset size. We selected the dataset
in each case to be as small as possible without making com-
puting the data term much easier than the model term. We
next analyze the behavior of the decomposition technique
when the percentage of observed variables or the dataset size
changes.

As the motivating example in Section 4 suggests, we expect
that data decomposition will behave favorably as the dataset
gets larger, and as more variables are always observed in the
dataset.

Figure 2 shows the speed-up achieved with a dataset of
212 examples, while always observing different percentages

3Among the used structures are randomly generated chains
(Chain-50 and Chain-100), and randomly generated binary trees
(Tree-63, Tree-127, Tree-225). Grid9x9 and Grid10x10 are grid
networks. Network 54.wcsp is a weighted CSP problem, whereas
Network win95pts is an expert system for printer troubleshooting in
Windows 95. Network smokers is a relational Markov network.

Table 1: The execution time taken by the gradient method
(without and with data decomposition), together with the
speed-up achieved when data decomposition is used.

Network #vars data size tgrad td−grad speed-up
Chain− 50 50 4096 4.7 mins 1.7 secs 165×
Chain− 100 100 4096 12.2 mins 2.9 secs 253×
Tree− 63 63 4096 6 mins 2.36 secs 152×
Tree− 127 127 4096 18 mins 5.77 secs 187×
Tree− 255 255 4096 53 mins 13 secs 236×
Grid9x9 81 8192 61 mins 73 secs 50×

Grid10x10 100 8192 74 mins 34 secs 130×
alarm 37 4096 3.4 mins 13.6 secs 15×
54.wcsp 67 1024 1.45 mins 1.32 mins 1.1×
win95pts 76 1024 4.3 mins 7.8 secs 33×
smokers 120 2048 16 mins 1.64 mins 9.7×

70 80 900

100

200

Observed %
Sp

ee
d−

up

70 80 900

100

200

Observed %

Sp
ee

d−
up

30 60 900

200

400

Observed %

Sp
ee

d−
up

30 60 900

200

400

Observed %

Sp
ee

d−
up

Figure 2: The speed-up obtained by data decomposition on
different percentages of always observed variables, for 4 dif-
ferent network structures: 9x9 grid, alarm, chain (50 vari-
ables), tree (63 variables).

of variables, using 4 different structures. As expected, as less
nodes have missing values, the speed-up increases.

Figure 3 shows the speed-up achieved while using a hiding
percentage of 20%, for different dataset sizes, in log-scale.
Indeed, the speed-up is directly proportional to the dataset
size. In this case, orders-of-magnitude speed-up was achieved
starting from 214 examples.

Given the difficulty of the problem, the speed-up achieved
by data decomposition can be indispensable. For example,
for a 9 × 9 Grid, 216 data examples, and 20% hiding per-
centage, the gradient method took about 3 minutes by data
decomposition versus about 17 hours by detecting repetitions
in the original dataset.

Decomposition can also make learning feasible in large
problems. For example, we were able to learn the parameters
of a network from the field of genetics (Family2Recessive),
that has 385 factors, from 212 examples with 20% hiding, in
about 55 minutes, by data decomposition. However, we were
not able to get results, in less than a day, without data decom-
position, for this network.

12 14 160

200

400

Dataset Size

Sp
ee

d−
up

12 14 160

200

400

Dataset Size

Sp
ee

d−
up

12 14 160

2000

4000

Dataset Size

Sp
ee

d−
up

12 14 160

2000

4000

Dataset Size

Sp
ee

d−
up

Figure 3: The speed-up obtained by data decomposition on
different dataset sizes in log-scale, for 4 different network
structures: 9x9 grid, alarm, chain (50 variables), tree (63 vari-
ables).

We next show that an existing prominent package (FastInf)
does not appear to use the proposed data decomposition. We
compare the speed-up obtained of our basic implementation
of gradient descent and EM, that use data decomposition,
against FastInf [Jaimovich et al., 2010]. We provided our
system and FastInf with the same initial parameters, same in-
complete datasets (hiding 20%), and the same MRF structure.

12 14 160

1000

2000

Dataset Size

Sp
ee

d−
up

1214160

5000

10000

Dataset Size

Sp
ee

d−
up

Figure 4: Speed-up of Gradient and EM methods (respec-
tively) that use data decomposition, (allowed 100 iterations)
over FastInf EM (allowed 2 iterations) on different dataset
sizes in log-scale. Network alarm was used; 20% of the nodes
have missing values in the data.

Figure 4 shows the speed-up obtained by our Gradient and
EM methods, that use data decomposition (allowed 100 it-
erations), over FastInf EM (with the gradient option allowed
only 2 iterations), for different dataset sizes in log-scale. One
can see that as the data increases, more speed-up is achieved.
We were able to get a better likelihood too as we run our sys-
tem for more iterations, and still achieve high speed-ups.

In Figure 5, we fix the dataset size to 212 and show the
speed-up obtained by our technique over FastInf EM with dif-
ferent algorithm options: 0-FR, 1-PR, 2-BFGS, 3-STEEP, 4-
NEWTON 4. Newton method was not successful and, there-

4For details about different algorithm options in FastInf,

01230

100

200

Algorithm

Sp
ee
d−
up

01230

500

1000

Algorithm

Sp
ee
d−
up

Figure 5: Speed-up of Gradient and EM methods, that use
data decomposition, over different FastInf algorithms on 212

data examples. Network alarm was used; 20% of the nodes
have missing values in the data.

fore, not shown in the figure.
Although FastInf uses approximate inference, and our im-

plementation is based on exact inference, we were still able
to realize orders-of-magnitude speed-ups over FastInf, as the
dataset size increases.

We note too that data decomposition is done once and can
be performed in time that is linear in the MRF structure size
and dataset size. The execution time of our methods used to
compute the speed-ups did involve the time needed to decom-
pose the graph and decompose the data. In the next section,
we prove that data decomposition is exact, and does not com-
promise quality.

6 Soundness
In this section, we prove that our decomposition technique
is sound. Before we give our decomposition theorem, we
review the notion of parameter terms, initially introduced in
the context of Bayesian networks in [Refaat et al., 2014].

6.1 Parameter Terms
Two parameters are compatible, denoted by θxf

∼ θxf′ , iff
they agree on the state of their common variables. For ex-
ample, parameters θxf=xy and θxf′=zy are compatible, but
parameters θxf=xy and θxf′=zy are not compatible, as y 6= y.

Moreover, a parameter is compatible with an example iff
they agree on the state of their common variables. For exam-
ple, parameter θxf=xy is compatible with example x, y, z, v,
but not with example x, y, z, v. The definition of a parameter
term is given as follows:

Definition 1 (Parameter Term) Let F be a set of network
factors and let d be a data example. A parameter term for
F and d, denoted Θd

F, is a product of compatible network
parameters, one for each factor in F, that are also compatible
with example d.

For example, consider an MRF with 3 factors
{θXf1

=X , θXf2
=XY , θXf3

=Y Z}; and let F be the sub-
set of factors {θXf1

=X , θXf2
=XY } and d = x, z. Then, Θd

F

will denote either θxf1
=x.θxf2

=xy or θxf1
=x.θxf2

=x.y .
When F has all the MRF factors, i.e. F =

{θXf1
=X , θXf2

=XY , θXf3
=Y Z}, then Θd

F will denote either

see [Jaimovich et al., 2010]

θxf1
=x.θxf2

=xy.θxf3
=yz or θxf1

=x.θxf2
=x y.θxf3

=yz; in this
case Zθ(d) =

∑
Θd

F
Θd

F. Armed with parameter terms, we
are now ready to state our decomposition theorem.

Theorem 1 The data term is decomposed into a number of
smaller functions corresponding to sub-networks. The log-
likelihood takes the form:

``(θ|D) =
∑
s

Ns∑
i=1

nsi logZsθ (di)−N logZθ (2)

where nsi is the number of times that distinct di appears
in the projected dataset of Sub-network s, Ns is the total
number of distinct data examples in the projected dataset of
Sub-network s, and Zsθ (di) is the partition function of Sub-
network s conditioned on example di.

Proof We will proceed by induction, decomposing one sub-
network, and operating inductively on the rest of the network
to decompose all the sub-networks.

We note that the data term in the log-likelihood function,∑N
i=1 logZθ(di), can be written as:

N∑
i=1

logZθ(di) =

N∑
i=1

log
∑
Θ

di
F

Θdi

F (3)

Where N is the number of data points in the dataset 5, and
F is the set of all factors in the MRF. Let Fs be the set of
factors in Sub-network s, and Fs

′
be the set of all the rest of

the factors. By definition of parameter terms, the data term
can be re-written as:

N∑
i=1

logZθ(di) =

N∑
i=1

log (
∑
Θ

di
Fs

Θdi

Fs

∑
Θ

di

Fs′∼Θ
di
Fs

Θdi

Fs′) (4)

where the fourth summation is over all Θdi

Fs′ that agree on the
state of their common variables with Θdi

Fs , which is denoted
by the compatibility: Θdi

Fs′ ∼ Θdi

Fs .
By the decomposition procedure, the common variables

between Sub-network s and the rest of the network are al-
ways observed. Otherwise, the sub-network would not have
been separated from the rest. Therefore, Θdi

Fs′ and Θdi

Fs al-
ways agree on the common variables, which are determined
by di. Thus, there is no need to ensure compatibility, and the
data term can be written as:

N∑
i=1

logZθ(di) =

N∑
i=1

log(
∑
Θ

di
Fs

Θdi

Fs

∑
Θ

di

Fs′

Θdi

Fs′) =

N∑
i=1

log
∑
Θ

di
Fs

Θdi

Fs +

N∑
i=1

log
∑
Θ

di

Fs′

Θdi

Fs′

(5)

5In this case, not necessarily distinct.

Now the distinct data points with respect to Sub-network s
can be detected, to get:

N∑
i=1

logZθ(di) =

Ns∑
i=1

nsi log
∑
Θ

di
Fs

Θdi

Fs +

N∑
i=1

log
∑
Θ

di

Fs′

Θdi

Fs′

(6)
By observing that

∑
Θ

di
Fs

Θdi

Fs is equivalent to the partition
function of Sub-network s conditioned on di, we get:

N∑
i=1

logZθ(di) =

Ns∑
i=1

nsi logZsθ (di) +

N∑
i=1

log
∑
Θ

di

Fs′

Θdi

Fs′

(7)
We continue inductively on the rest of the network to decom-
pose all the sub-networks. �

7 Related Work
Some work on decomposing MRFs and Bayesian networks
(BNs) exist in literature. In the context of inference in
BNs, pruning Barren nodes and edges outgoing from ob-
served variables was initially proposed in [Shachter, 1986;
1990] 6.

In the context of parameter learning from incomplete data,
decomposing the BN optimization problem was proposed
in [Refaat et al., 2014], where the notion of parameter terms
was introduced. Namely, it was shown that fully observed
variables may be exploited to decompose the optimization
problem into independent problems, leading to both data de-
composition and independent convergence. In this paper, we
migrate this concept to the context of MRFs. While the par-
tition function makes decomposing the optimization problem
exactly, as in [Refaat et al., 2014], hard, we showed here that
similar decomposition techniques can be used to decompose
the data term, leading to decomposing, and potentially, com-
pressing the dataset.

For MRFs, the LAP algorithm [Mizrahi et al., 2014] deals
with approximately decomposing MRFs in the case of com-
plete data, where they showed that LAP behaves similarly to
pseudo-likelihood and maximum likelihood, for large sample
sizes, while being more efficient. A similar method was in-
dependently introduced by [Meng et al., 2013] in the context
of Gaussian graphical models. Our work stands out from the
LAP algorithm in dealing with incomplete data, and in being
equivalent to maximizing the likelihood. However, our pro-
posed technique does not help in the case of complete data,
as the data term becomes trivial.

8 Conclusion
We proposed a technique for decomposing the dataset to
learn MRF parameters from incomplete data. The technique
works by decomposing the MRF to sub-networks based on
variables that are always observed in the incomplete dataset.
The dataset is then projected on each sub-network, and com-
pressed by detecting repetitions.

6Pruning edges migrates to MRFs.

The key observation, that data compression relies on, is
that sub-networks typically have a small number of variables.
Thus, it is likely that more repetitions, and, accordingly, com-
pression can take place. Our empirical results suggest that
orders-of-magnitude speed-ups may be obtained using data
decomposition.

The decomposition process incurs very little overhead as it
can be performed in time that is linear in the MRF structure
size and dataset size. Hence, given the potential savings it
may lead to, it appears that one must always try to decompose
the incomplete dataset before learning maximum likelihood
MRF parameters.

Acknowledgments
This work was supported by ONR grant #N00014-12-1-0423
and NSF grant #IIS-1118122.

References
[Bache and Lichman, 2013] K. Bache and M. Lichman. Uci ma-

chine learning repository. Technical report, Irvine, CA: Univer-
sity of California, School of Information and Computer Science,
2013.

[Besag, 1975] J. Besag. Statistical Analysis of Non-Lattice Data.
The Statistician, 24:179–195, 1975.

[Boyd and Vandenberghe, 2004] Stephen Boyd and Lieven Van-
denberghe. Convex Optimization. Cambridge University Press,
2004.

[Cherkassky and Mulier, 2007] Vladimir Cherkassky and Filip M.
Mulier. Learning from Data: Concepts, Theory, and Methods.
Wiley-IEEE Press, 2007.

[Darwiche, 2009] Adnan Darwiche. Modeling and Reasoning with
Bayesian Networks. Cambridge University Press, 2009.

[Dempster et al., 1977] A.P. Dempster, N.M. Laird, and D.B. Ru-
bin. Maximum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society B, 39:1–38, 1977.

[Fisher, 1922] R. A. Fisher. On the mathematical foundations of
theoretical statistics. Philosophical Transactions of the Royal So-
ciety of London Series, 1922.

[Hestenes and Stiefel, 1952] Magnus R. Hestenes and Eduard
Stiefel. Methods of conjugate gradients for solving linear sys-
tems. Research of the National Bureau of Standards, 1952.

[Hinton, 2000] G. Hinton. Training products of experts by mini-
mizing contrastive divergence. In Neural Computation, 2000.

[Hyva rinen, 2005] A Hyva rinen. Estimation of non-normalized
statistical models using score matching. The Journal of Machine
Learning Research, 2005.

[Jaimovich et al., 2010] A. Jaimovich, O. Meshi, I. McGraw, and
G. Elidan. Fastinf: An efficient approximate inference library.
The Journal of Machine Learning Research, 2010.

[Jirousek and Preucil, 1995] Radim Jirousek and Stanislav Preucil.
On the effective implementation of the iterative proportional
fitting procedure. Computational Statistics & Data Analysis,
19(2):177–189, 1995.

[Kindermann and Snell, 1980] R. Kindermann and J. L. Snell.
Markov Random Fields and their Applications. American Math-
ematical Society, 1980.

[Koller and Friedman, 2009] Daphne Koller and Nir Friedman.
Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

[Lafferty et al., 2001] J. D. Lafferty, A. McCallum, and F. C. N.
Pereira. Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In ICML, 2001.

[Lauritzen, 1995] S. L. Lauritzen. The EM algorithm for graphical
association models with missing data. Computational Statistics
and Data Analysis, 19:191–201, 1995.

[Li, 2001] S Z. Li. Markov random field modeling in image analy-
sis. Springer-Verlag, 2001.

[Liu and Nocedal, 1989] D. C. Liu and J. Nocedal. On the Limited
Memory BFGS Method for Large Scale Optimization. Mathe-
matical Programming, 45(3):503–528, 1989.

[Marinari et al., 1997] E. Marinari, G. Parisi, and J.J. Ruiz-
Lorenzo. Numerical simulations of spin glass systems. Spin
Glasses and Random Fields, 1997.

[Meng et al., 2013] Z. Meng, D. Wei, A. Wiesel, and A. O. Hero III.
Distributed learning of gaussian graphical models via marginal
likelihoods. In AIStats, 2013.

[Mizrahi et al., 2014] Yariv Dror Mizrahi, Misha Denil, and Nando
de Freitas. Linear and parallel learning of markov random fields.
In In International Conference on Machine Learning (ICML),
2014.

[Murphy, 2012] Kevin Patrick Murphy. Machine Learning: A
Probabilistic Perspective. MIT Press, 2012.

[Refaat et al., 2013] Khaled S. Refaat, Arthur Choi, and Adnan
Darwiche. EDML for learning parameters in directed and undi-
rected graphical models. In Advances in Neural Information Pro-
cessing Systems 26, pages 1502–1510, 2013.

[Refaat et al., 2014] Khaled S. Refaat, Arthur Choi, and Adnan
Darwiche. Decomposing parameter estimation problems. In
Advances in Neural Information Processing Systems 27, pages
1565–1573, 2014.

[Roth, 1996] Dan Roth. On the hardness of approximate reasoning.
Artificial Intelligence, 1996.

[Russel et al., 1995] S. Russel, J. Binder, D. Koller, and
K. Kanazawa. Local learning in probabilistic networks with
hidden variables. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, 1995.

[Shachter, 1986] R. Shachter. Evaluating influence diagrams. Op-
erations Research, 1986.

[Shachter, 1990] R. Shachter. Evidence absorption and propagation
through evidence reversals. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence, 1990.

[Varin et al., 2011] C. Varin, N. Reid, and D Firth. An overview of
composite likelihood methods. Statistica Sinica, 2011.

[Yanover et al., 2007] C. Yanover, O. Schueler-Furman, and
Y. Weiss. Minimizing and learning energy functions for side-
chain prediction. In Speed, Terry and Huang, Haiyan (eds.),
Research in Computational Molecular Biology, volume 4453 of
Lecture Notes in Computer Science, 2007.

