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Abstract

Computer Adaptive Tests dynamically allocate
questions to students based on their previous re-
sponses. This involves several challenges, such
as determining when the test should terminate, as
well as which questions should be asked. In this
paper, we introduce a Computer Adaptive Test
that uses a Bayesian network as the underlying
model. Additionally, we show how the notion
of the Same-Decision Probability can be used as
an information gathering criterion in this con-
text — to determine which further questions are
needed and if so, which further questions should
be asked. We show empirically that utilizing the
Same-Decision Probability is a viable and intu-
itive approach for determining question selection
in Bayesian-based Computer Adaptive Tests, as
its usage allows us to ask fewer questions while
still maintaining the same level of precision and
recall in terms of classifying competent students.

1 INTRODUCTION

Computer Adaptive Tests have recently become increas-
ingly popular, as they have the ability to adapt to each indi-
vidual unique user (Vomlel, 2004; Almond, DiBello, Moul-
der, & Zapata-Rivera, 2007; Almond, Mislevy, Steinberg,
Yan, & Williamson, 2015). This in turn allows for the test
to tailor itself specifically based on user responses and its
current estimation of the user’s knowledge level. For exam-
ple, if the user answers a series of questions correctly, the
test can adjust and curate some more difficult questions.
On the other hand, if the user answers a series of questions
incorrectly, the test can adjust and present easier questions.

Bayesian networks have been used as the principal base
model for many Computer Adaptive Tests (Millán & Pérez-
De-La-Cruz, 2002; Vomlel, 2004; Munie & Shoham, 2008;
Almond et al., 2015), as they offer powerful approaches to

inferring a user’s knowledge level given uncertain infor-
mation (unanswered questions). Additionally, a significant
body of work has been done on using Bayesian networks
to perform a wide array of tasks in the field of educational
diagnosis (VanLehn & Niu, 2001; Conati, Gertner, & Van-
Lehn, 2002; Suebnukarn & Haddawy, 2006).

A key question in this domain is when the test should termi-
nate. Some students may perform so well or so poorly that
the system can recognize that further testing is unnecessary,
as asking further questions would have very little probabil-
ity of reversing the initial diagnosis. (Millán & Pérez-De-
La-Cruz, 2002) discusses some stopping criteria that are
used to determine when further questioning is needed, as
well as some selection criteria that are used to determine
which questions are actually asked.

In this paper, we discuss the creation of a Computer Adap-
tive Test, and then take a recently introduced notion, called
the Same-Decision Probability (SDP) (Darwiche & Choi,
2010), and show its usefulness as an information gathering
criteria in this domain, in contrast to standard criteria. The
SDP quantifies the stability of threshold-based decisions in
Bayesian networks and is defined as the probability that a
current decision would stay the same, had we observed fur-
ther information.

The paper is structured as follows: We first present some
motivation for the constructed Computer Adaptive Test.
We then discuss some related work in the educational di-
agnosis field. Following that, we then show how the Same-
Decision Probability can be used as a stopping and selec-
tion criterion for our Computer Adaptive Test. Finally, we
discuss experiment setup, present empirical results demon-
strating the usefulness of the Same-Decision Probability,
and then conclude the paper.

2 MOTIVATION

The Berkeley Free Clinic1 is a clinic staffed entirely by vol-
unteers and offers medical and dental treatment for the sur-

1http://www.berkeleyfreeclinic.org/



rounding community. In particular, the dental section of the
clinic offers a wide variety of services ranging from clean-
ings, x-ray services, fillings, and extractions. Due to the
expertise required for these services, the volunteers need
to be highly trained to apply their knowledge in a practical
setting. The volunteers are thus required to undergo a train-
ing period in order to prepare them to serve at the clinic.

Recently, it was decided that in order to better evaluate
the knowledge of the volunteers, the volunteers would go
through a competency exam to determine whether or not
they had sufficient knowledge. The idea of this test is that
if a volunteer was found to be inadequate, that he/she would
have to undergo further instruction. The coordinators of the
clinic worked in conjunction with the volunteer dentists in
order to create a written test that thoroughly tested the dif-
ferent concepts and skills necessary for a volunteer. The
written test consists of 63 questions that includes questions
ranging from showing a portrait of a certain instrument
(e.g. a perioprobe) and asking “Name this instrument”, to
“What is in a bridge and crown set up tray?”. A portion of
this test can be seen in Figures 1, 2, 3, and 4.

This test was given to 22 subjects. Sixteen of the sub-
jects were evaluated prior to the test-taking to be competent
volunteers, whereas the other 6 subjects were evaluated to
be non-competent volunteers. The clinic coordinators set
the pass threshold to be at 60%, meaning that volunteers
needed to correctly answer 60% of the questions in order to
be considered competent. The test proved to be effective in
that of the 16 competent volunteers, 15 of them passed, and
of the 6 non-competent volunteers, none of them passed.
The test taking duration ranged from 30 minutes to 1 hour.
Feedback from the participants indicated that they felt this
test was fair and covered the necessary bases to be a volun-
teer, but that the test was too time-consuming.

The complaints about the duration of the test is in line with
the discoveries of (Garcı́a, Amandi, Schiaffino, & Campo,
2007), who discover that a significant problem with web-
based tests is that they are too long, which may hinder stu-
dents’ ability to perform as they simply become bored and
careless. This serves as the chief motivation for our work,
as we want to turn this test into a Computer Adaptive Test
(CAT), so that we can present students a test with fewer
questions, but just as many relevant questions — this way
we can decrease overall test duration without compromis-
ing the effectiveness of the test.

3 RELATED WORK

There has been a surge of interest in applying artificial
intelligence techniques in educational diagnosis. Educa-
tional diagnosis a broad field that covers Interactive Tu-
toring Systems (ITS) (Conati et al., 2002; Suebnukarn &
Haddawy, 2006; Gujarathi & Sonawane, 2012), as well
as Computer Adaptive Tests (CAT) (Munie & Shoham,

Figure 1: A portion of the competency test that measures
general dental clinic knowledge.

2008; Millán, Descalco, Castillo, Oliveira, & Diogo, 2013).
When compared to traditional techniques, these applica-
tions have been shown to be highly effective in increasing
the efficiency of student learning (Millán & Pérez-De-La-
Cruz, 2002; Vomlel, 2004; Sinharay, 2006; Brusilovsky &
Millán, 2007; Beal, Arroyo, Cohen, Woolf, & Beal, 2010;
Millán et al., 2013).

In the work of (Millán & Pérez-De-La-Cruz, 2002), they
use Bayesian networks as the framework for constructing
Computer Adaptive Tests (CATs). They introduce a model
for representing student knowledge, where knowledge is
modeled as different interrelated concepts. They noted that
student knowledge can be diagnosed (inferred) by treating
student answers as evidence. In addition to this model,
they introduced an adaptive testing algorithm. To evalu-
ate their model, they used 180 simulated students. They
found that the introduction of adaptive question selection
improves both accuracy and efficiency. Their model incor-
porates notions such as “slipping”, where a student might
answer a question incorrectly even if the concept is known.
They generate students randomly by sampling from the net-
work, where each student is assumed to hold knowledge of
different concepts.

Similar results were shown in (Vomlel, 2004), who discuss
applications of Bayesian networks in educational diagno-
sis, especially in skill diagnosis. They show that modeling



Figure 2: A portion of the competency test that measures
procedural knowledge.

Figure 3: A portion of the competency test that measures
tool recognition knowledge.

dependence between various skills allows for higher qual-
ity of diagnosis. Additionally, they show that Computer
Adaptive Tests allow them to best select a fitting question
to test for competency in certain skills. They found that
computer adaptive testing substantially reduces the number
of questions that may need to be asked.

Just like (Millán & Pérez-De-La-Cruz, 2002), (Vomlel,
2004) and (Almond et al., 2015) found that Bayesian net-
works to be useful to model the links between various re-
lated proficiencies, and modeled unseen questions as unob-
served variables. They use diagnostic Bayesian networks in
order to model uncertainty, where experts build a Bayesian
network and calibrate it from data.

Another application of Bayesian networks to model stu-
dent knowledge is discussed in (Munie & Shoham, 2008).
They use a Bayesian network to model qualifying exams
for graduate students at Stanford, where their goal is to se-
lect the questions (observations) that can best measure the
knowledge in order to determine whether or not the student
should pass. They also use a threshold function and stress
that reducing the number of questions asked is important.
They also prove the NP-hardness of deciding an optimal
set of questions to assign a student.

Additionally, a variety of work has been done on using
Bayesian networks in the educational diagnosis field for

Figure 4: A portion of the competency test that measures
conceptual knowledge.

threshold-based decision making under uncertainty, such
as 1) in (Xenos, 2004), where the authors model the edu-
cational experience of various students and use threshold-
based decisions to determine whether or not a student is
likely to fail, 2) in (Arroyo & Woolf, 2005), where the goal
is to determine the type of learner a student was (in terms of
attitude) 3) in (Gertner, Conati, & VanLehn, 1998), where
the goal is to infer what part of a problem a student is hav-
ing trouble with, in order to provide hint-based remedia-
tion, 4) in (Butz, Hua, & Maguire, 2004), where the con-
structed ITS can assess knowledge using a BN as well as
recommending certain remediation, and a threshold-based
decision is used to determine if a student is competent in
an area or not.

Some other work in the field of educational diagnosis is
found in (Brusilovsky & Millán, 2007), which describes a
model that details the relationship between the knowledge
of certain concepts and how the student will perform on
certain questions. They note that if a user demonstrates
lack of knowledge, the model can be used to locate the
most likely concepts that will remedy the situation. They
found that using a Bayesian model allows them to compute
the probability of a student answering a question correctly
given competency in some domain.

More recently, the work on educational diagnosis model-
ing has focused on even more intricate modeling and reme-
diation methods. For instance, (Rajendran, Iyer, Murthy,
Wilson, & Sheard, 2013) has focused on modeling user
emotional states, in order to detect when users are frus-
trated as well as the cause of the frustration. By finding the
root cause of the frustration, special measures may be taken
to remediate. Similarly, (Chrysafiadi & Virvou, 2013) has
done significant work in modeling a student’s performance,
progress, and behavior. The developed e-learning system
has been deployed into production. (Chrysafiadi & Virvou,
2014) finds that modeling a user’s detailed characteristics,



such as knowledge, errors, and motivation can improve the
quality of a student’s learning process as it allows for bet-
ter remediation. The need for personalized remediation is
also further stressed as (Vandewaetere & Clarebout, 2014)
studies the importance of giving learners instruction and
support directly. They stress that learner models need to be
adjusted and updated with new information about the learn-
ers knowledge, effective states, and behavior in order to be
maximally effective.

4 COMPUTER ADAPTIVE TESTING

4.1 USING A BAYESIAN NETWORK

To address the problem of having such a time-consuming
test, we believe that using a Computerized Adaptive Test
(CAT) could differentiate the competent students from the
non-competent students with fewer questions than a stan-
dard test. Asking fewer questions while still accurately
measuring a student’s ability is a canonical problem in ed-
ucational diagnosis, and is discussed thoroughly in (Millán
& Pérez-De-La-Cruz, 2002; Garcı́a et al., 2007; Munie &
Shoham, 2008; Millán et al., 2013). Our main goal is to
best measure whether or not a student is competent with
a limited subset of questions. This means that we have to
determine when enough questions have been asked, as well
as which additional questions should be asked, so as to en-
sure that overall the Computer Adaptive Test is comprised
of fewer questions.

Bayesian networks have been found to be especially useful
for decision making under uncertainty (Nielsen & Jensen,
2009). We believe that they provide us a natural mecha-
nism to model both 1) student knowledge and 2) questions
that may be potentially asked to measure student knowl-
edge. In these models, Bayesian networks can model the
relationships between various proficiencies. These models
detail the relationship between knowledge of certain con-
cepts and how the student will perform on certain ques-
tions.

Using a Bayesian network thus allows us to predict how
likely a student is to have knowledge in a certain concept
based on the student’s answers. Hence, we worked with
the clinic coordinators and experts to create a Bayesian
network structure and elicit the parameters for this exam.
Our developed model is similar to the models developed
by (Millán & Pérez-De-La-Cruz, 2002; Vomlel, 2004; Al-
mond et al., 2007; Munie & Shoham, 2008; Brusilovsky
& Millán, 2007; Millán et al., 2013), where Bayesian net-
works are used to evaluate and in a sense, “diagnose” a
student’s degree of knowledge or competency.

In our network, we have a main variable of interest that
is representative of the student’s total level of knowledge.
We refer to this variable as the decision variable (D), and
it serves as an overall measure of our belief that a student

is competent. General competency is determined by com-
petency in a collection of specialized fields of knowledge,
which are represented by a variety of latent concept vari-
ables. The final type of variable is a question variable that
represents a question that may be asked to the student. An
answered question, whether correct or incorrect, will act as
evidence that can influence our belief on the student’s com-
petency. The graphical structure of the model can be seen
in Figure 5.

Similarly to (Gertner et al., 1998; VanLehn & Niu, 2001;
Cantarel, Weaver, McNeill, Zhang, Mackey, & Reese,
2014), the clinic coordinators/experts determined that the
“pass threshold” should be set at 0.8, meaning that if given
some evidence (questions answered), the posterior prob-
ability of the decision variable was found to be over 0.8,
then the student would be considered as competent.2 Ac-
cording to this pass threshold, we found once again that
of the 16 competent volunteers, 15 of them passed, and of
the 6 non-competent volunteers, none of them passed. The
volunteers’ scores are shown in Table 1. From this table
we can see that our constructed Bayesian model allows us
to accurately predict a student’s competency.

Student # Percentage Correct Posterior Probability
1 0.952 0.957
2 0.921 0.941
3 0.714 0.951
4 0.539 0.704
5 0.762 0.956
6 0.746 0.950
7 0.825 0.957
8 0.619 0.948
9 0.777 0.952

10 0.857 0.954
11 0.857 0.957
12 0.809 0.956
13 0.349 0.153
14 0.238 0.023
15 0.539 0.178
16 0.809 0.923
17 0.603 0.883
18 0.635 0.954
19 0.873 0.954
20 0.524 0.135
21 0.492 0.153
22 0.413 0.314

Table 1: This table shows, for each student, the percent-
age of questions answered correctly (out of 63 questions),
and the posterior probability of the student being compe-
tent given all the answered questions. The non-competent
volunteers are bolded.

2Another commonly used threshold in the educational diagno-
sis field is 0.7 (Butz et al., 2004; Arroyo & Woolf, 2005).



4.2 STOPPING CRITERION FOR INFORMATION
GATHERING

Although the test has a total of 63 questions, there may be
a point during the adaptive test where we can determine
that it is unnecessary to ask any further questions. For edu-
cational diagnosis in Bayesian networks, (Millán & Pérez-
De-La-Cruz, 2002; Millán et al., 2013) shows there are two
standard ways to determine if more information gathering
(additional questions posed) is necessary. The first involves
a fixed test that asks a set number of questions, and then de-
termines if the student is competent after all questions have
been answered. This static method is clearly ineffective, as
the student is only evaluated at the conclusion of the test.

The second way involves terminating the test once the pos-
terior probability of the decision variable is above or be-
low some threshold. This stopping criteria is also seen
in (Hamscher, Console, & de Kleer, 1992; Heckerman,
Breese, & Rommelse, 1995; Kruegel, Mutz, Robertson, &
Valeur, 2003; Lu & Przytula, 2006). Note that (Millán &
Pérez-De-La-Cruz, 2002) compares an approach that uti-
lizes a set number of questions with a threshold-based ap-
proach — they found that with a set number of questions
they were able to diagnose students correctly 90.27% of the
time, whereas by using an adaptive criterion they were able
to diagnose students correctly 94.54% of the time, while
requiring fewer number of questions to be asked. This is
a clear indication that using a less trivial stopping criterion
can be ultimately beneficial.

Another possibility of a stopping criterion involves com-
puting the value of information of some observations, and
if that value is not high enough, to then stop information
gathering. However, this involves either computing the
myopic value of information and just computing the use-
fulness of making one observation, or computing the non-
myopic value of information and computing the usefulness
of making several observations. The former is fairly easy to
compute, but can prove to be very limited as often the com-
bined usefulness of some observations is greater than its
parts. For example, if a student answers a question incor-
rectly, it may not be very telling. However, if that student
also answers a question incorrectly for an entirely orthog-
onal field, these two mistakes combined may be indicative
of a student’s lack of competency. Note that computing the
non-myopic value of information is useful in determining if
a set of observations has significant value, but is intractable
to compute if the set of observations is large (Krause &
Guestrin, 2009).

To decide whether or not enough information has been
gathered, we use a non-myopic stopping criterion and com-
pute the Same-Decision Probability (SDP) (Darwiche &
Choi, 2010; Chen, Choi, & Darwiche, 2014).

Definition 1 Suppose we are making a decision based on

whether Pr(D=d | e) ≥ T for some evidence e and
threshold T . If H is a set of variables that are available
to observe, then the SDP is:

SDP(d,H, e, T ) =
∑
h

[Pr(d | h, e) ≥ T ]Pr(h | e). (1)

Here, [α] is an indicator function which is 1 if α is true,
and 0 otherwise.

In short, the SDP is a measure of how robust a decision
is with respect to some unobserved variables and will help
determine how much more information is necessary.

In this case, based on the student’s responses, at any point
in time, we can compute the posterior probability that they
are competent and thus determine a decision of whether or
not they are competent. Keep in mind that this decision is
temporary and can be reversed if more questions are an-
swered — we can compute the SDP over the remaining
unanswered questions to determine how likely it is that the
current decision (deciding whether a student is competent
or non-competent) would remain the same even if the re-
maining questions were answered. If the SDP is high, that
is an indication that we can terminate the test early. We
found that using the SDP allowed us to cut the test duration
significantly while maintaining diagnosis accuracy. Details
of our experiment setup and results can be found in Sec-
tion 5.1.

4.3 SELECTION CRITERION FOR
INFORMATION GATHERING

We have now motivated the usefulness of the SDP as a stop-
ping criterion for Computer Adaptive Tests, as it tells us
when we can terminate the test. However, the question re-
mains: if computing the SDP indicates that more questions
are necessary, which questions should we ask?

In a standard, non-adaptive test, the ordering of the ques-
tions cannot be controlled. In the adaptive setting we have
more control — based on a test taker’s answers on the test
so far, we can select questions that have the most potential
to give us further insight on the test taker. Our goal here is
to select questions such that the expected SDP after observ-
ing those questions is maximal. The expected SDP (Chen,
Choi, & Darwiche, 2015) is defined as the following:

Definition 2 Let G be a subset of the available features H
and let D(ge) be the decision made after observing fea-
tures G, i.e., D(ge) = d if Pr(d | g, e) ≥ T . The E-SDP
is then:

E-SDP(D,G,H, e, T )

=
∑
g

SDP(D(ge),H \G,ge, T ) · Pr(g | e). (2)



The expected SDP is thus a measure of how similar our de-
cision, after observing G, is to the decision made after ob-
serving H. We want to find a question that will maximize
the expected SDP. In other words, we want to ask ques-
tions such that no matter how they are answered, will, on
average, minimize the usefulness of any remaining ques-
tions. By maximizing this objective, we reduce the overall
number of questions that need to be answered before test
termination.

As stated before, computing the value of information (VOI)
is essential to the process of information gathering. Since
for our model it is intractable to compute the non-myopic
value of information, that leaves only computing the my-
opic VOI as an available possibility. The VOI of observ-
ing a variable may depend on various objective functions,
for instance, how much the observation reduces the en-
tropy of the decision variable. There is a comprehensive
overview of these different objective functions in (Krause
& Guestrin, 2009).3 (Chen et al., 2014, 2015) compares the
approach maximizing these standard objective functions to
maximizing the expected SDP and finds that maximizing
the expected SDP is more effective in reducing the number
of questions that need to be answered, particularly in cases
when the decision threshold is extreme.

Our approach involves selecting the question that leads to
the highest expected SDP. We found that selecting vari-
ables to optimize the expected SDP allowed us to substan-
tially decrease the number of questions selected compared
to other selection criteria. Details of experiment setup and
experimental results can be found in Section 5.2.

5 EXPERIMENTS

In this section, we empirically evaluate the SDP as a stop-
ping and selection criterion for our adaptive test. We com-
pare the SDP against the standard criteria used by other
Bayesian Computer Adaptive Tests. First, we introduce
some notation used throughout the experimental section.

We use standard notation for variables and their instanti-
ations, where variables are denoted by upper case letters
(e.g. X) and their instantiations by lower case letters (e.g.
x). Sets of variables are then denoted by bold upper case
letters (e.g. X) and their instantiations by bold lower case
letters (e.g. x). The primary decision variable, measuring
a student’s overall competency, is denoted by D, with two
states + (competent) and − (non-competent).

We have the completed tests for 22 subjects, where for each
subject, we have the responses of the n = 63 test questions

3Additionally, (Golovin & Krause, 2011) studies the usage of
adaptive submodularity for selection criteria and shows that ob-
jective functions that satisfy this notion can be readily approxi-
mated. For our problem, our objective function does not satisfy
the notion of adaptive submodularity.

(to be more precise, we know whether each question was
answered correctly or incorrectly). We denote this dataset
by T, where:

T = {e1, . . . , e22},

and where each ei ∈ T is an instantiation of the n test
responses for student i. Hence, the probability

Pr(D = + | ei)

denotes the posterior probability that student i is competent
given their test results. Using our Bayesian network, we de-
cide that student i is competent if Pr(D = + | ei) ≥ 0.80
(otherwise, we decide that they are not sufficiently compe-
tent). We report the quantity Pr(D = + | ei) for each
student, in Table 1.

To evaluate the SDP as a stopping and selection crite-
rion, we simulate partially-completed tests from the fully-
completed tests T. In particular, we take the fully-
completed test results ei, for each student i, and generate a
set of partially-completed tests Qi = {qi,1, . . . ,qi,n}. In
particular, we randomly permute the questions, and take the
first j questions of the permutation as a partially-completed
test qi,j . Hence, a partially-completed test qi,j+1 adds one
additional test question to test qi,j , and test qi,n corre-
sponds to the fully-completed test ei.

In our experiments, we use those partially-completed tests
qi,j that have at least 10 questions, i.e., where j ≥ 10 (we
assume 10 questions to be the minimum number of ques-
tions, where we can begin to evaluate the competency of a
student). Moreover, for each of the 22 students i, we sim-
ulated 50 sets of partially-completed tests Qi based on 50
random permutations, giving us a total of 22 · 50 = 1, 100
sets of partially-completed tests.

5.1 STOPPING CRITERION EXPERIMENTS

Using our partially-completed tests, we evaluate the SDP
as a stopping criterion, against more traditional methods.
In particular, we take each set of partially-completed tests
Qi, and going from test qi,10 up to test qi,n−1, we check
whether each stopping criterion is satisfied, i.e., a decision
is made to stop asking questions. Note that given test qi,n,
the only decision is to stop, since there are no more test
questions to ask. For the SDP, when we evaluate the test
qi,j , we compute the SDP with respect to the remaining
n − j unanswered questions (i.e., we treat them as the set
of available observables H).

As for other, more traditional, stopping criteria, we con-
sider (1) stopping after a fixed number of questions have
been answered (after which a student’s competence is de-
termined), or (2) stopping early once the posterior proba-
bility Pr(D = + | qi,j) surpasses a given threshold T ,
after which we deem a student to be competent.



In Table 2, we report the results where our stopping crite-
rion is based on asking a fixed number of questions. In
Table 3, we highlight the results where we use instead
a posterior probability threshold (Millán & Pérez-De-La-
Cruz, 2002; Xenos, 2004; Arroyo & Woolf, 2005; Mu-
nie & Shoham, 2008). These results are based on aver-
ages over our 1, 100 sets of partially-completed tests Qi,
which we simulated from our original dataset. In both ta-
bles, we see that there is a clear trade-off between the ac-
curacy of the test, and the number of questions that we
ask. (Note again that students were already evaluated to
be competent/non-competent prior to the test, and that pre-
cision/recall is based on this prior evaluation).

# Questions Precision Recall
10 0.566 0.403
15 0.752 0.659
20 0.805 0.755
25 0.815 0.812
30 0.835 0.835
35 0.874 0.875
40 0.901 0.909
45 0.915 0.914
50 0.918 0.926
55 0.924 0.938
60 0.950 0.938
62 0.954 0.938

Table 2: Precision and recall for a set number of questions.

T Precision Recall # Questions Asked
0.750 0.803 0.758 10.13
0.775 0.813 0.821 13.04
0.800 0.836 0.832 16.02
0.825 0.867 0.872 19.26
0.850 0.903 0.915 23.13
0.875 0.919 0.912 27.14
0.900 0.908 0.911 31.57
0.925 0.968 0.884 36.82
0.950 0.974 0.818 44.25

Table 3: Precision, recall, and average number of questions
asked, for varying thresholds T on the posterior probability.

We next consider the SDP as a stopping criterion. In partic-
ular, we compute the SDP with respect to all unanswered
questions, and then make a stopping decision when the
computed SDP surpasses a given threshold T . Note that
when we use a threshold T = 1.0, then we commit to a
stopping decision only when no further observations will
change the decision (i.e., the probability of making the
same decision is 1.0). In Table 4, we report the results of
using the SDP as a stopping criterion.

We see that even when our threshold is set to a relatively
small value (0.850), we still attain precision and recall rates
that are comparable to those obtained by asking nearly all
questions (as in Table 2). For the stopping criterion based
on posterior probability thresholds (in Table 3), we can see
that we can attain a higher precision, but at the expense of

a lower recall. In fact, we see that once the threshold is
set high enough, the recall actually drops: Some students
who should be diagnosed as competent are in fact being
diagnosed incorrectly as non-competent once the threshold
is set too high.

Consider now the case where we set a very large threshold
on the SDP (0.999). In this case, the precision and recall
are equivalent to the case where our criterion is to ask a set
number of n−1 = 62 questions (as in Table 2). In contrast,
using the SDP criterion, we ask only an average of 42.05
questions, meaning that the SDP as a stopping criterion has
the same robustness as the ”set number of questions” stop-
ping criterion — while asking nearly 20 fewer questions.

SDP T Precision Recall # Questions Asked
0.850 0.927 0.932 39.10
0.875 0.938 0.938 39.73
0.900 0.942 0.938 39.61
0.925 0.946 0.938 39.77
0.950 0.946 0.938 40.09
0.975 0.950 0.938 40.61
0.990 0.950 0.938 41.14
0.995 0.950 0.938 41.41
0.999 0.954 0.938 42.05

Table 4: Precision, recall, and average number of questions
asked for different thresholds.

It is clear from our results that if our goal is to ask fewer
questions, while maintaining competitive precision and re-
call rates, using the SDP as a stopping criterion is a com-
pelling alternative to the traditional stopping criteria of 1)
asking a set number of questions and 2) checking to see if
the posterior probability of competency surpasses a thresh-
old — using the SDP as a stopping criterion allows us to
reduce the number of questions asked while still maintain-
ing the same precision and recall.

5.2 SELECTION CRITERION EXPERIMENTS

We next consider experiments that compare various ques-
tion selection criteria such as 1) random selection, where
we select the next question randomly (as in non-adaptive
or linear testing), 2) information gain (mutual information)
(Millán & Pérez-De-La-Cruz, 2002; Vomlel, 2004), and 3)
margins of confidence (Krause & Guestrin, 2009). Note
that as this model does not fit the decision-theoretic setting
(there are no assigned utilities), we do not consider utility
maximization as a selection criterion. In addition to the
above, we evaluate the SDP as a selection criterion.

Since our adaptive test involves selecting one question at a
time, our goal is to select a variable H ∈ H (correspond-
ing to a question not yet presented) that leads to the greatest
gain in the SDP, i.e., the SDP gain. Our selection criteria
is based on asking the question which yields the highest
SDP gain, using information gain as a tie-breaker, when
multiple questions have the same SDP gain. A tie-breaker



is needed as the SDP gain of observing a single variable
can be zero. In this case, observing a single variable is not
enough to change our decision (multiple observations may
be needed). In our experiments, we compute the SDP gain
using a branch-and-bound algorithm, as in (Chen, Choi, &
Darwiche, 2013). The advantages of this algorithm are (1)
it can prune the corresponding search space, and (2) it can
cache and reuse intermediate calculations, resulting in sig-
nificant computational savings.

We compare how quickly these selection criteria allow us
to stop information gathering, each using the SDP as a
stopping criterion; see Table 5. Here, we took partially-
completed tests (all tests where at least 30 questions were
answered), and used each selection criterion to select addi-
tional questions to ask, until the SDP dictates that we stop
asking questions. On average, we find that (1) the random
selection criterion asks an additional 8.18 questions, (2) in-
formation gain asks an additional 3.67 questions, (3) mar-
gins of confidence ask an additional 3.57 questions, and (4)
our approach based on the SDP gain requires the fewest
additional questions: 2.77.

Note that while the random question selection criterion
clearly has the poorest performance, there is a relatively
modest improvement based on our approach, using the
SDP gain, compared to the more common approaches
based on information gain (Millán & Pérez-De-La-Cruz,
2002; Vomlel, 2004), and margins of confidence (Krause
& Guestrin, 2009). Nevertheless, the benefits of our ap-
proach, as a selection criteria, are still evident. Further,
the results suggest the potential of using the SDP gain in a
less greedy way, where we ask multiple questions at a time,
which we consider a promising direction for future work.

SDP T Random IG Margins SDP
0.850 4.77 2.98 2.71 2.05
0.875 4.78 3.08 2.87 2.14
0.900 5.08 3.20 3.12 2.20
0.925 5.95 3.19 3.04 2.31
0.950 6.81 3.37 3.44 2.47
0.975 7.86 3.73 3.56 2.96
0.990 10.64 4.19 4.29 3.18
0.995 12.95 4.32 4.22 3.43
0.999 14.80 4.97 4.91 4.25

Table 5: Number of additional observations necessary be-
fore stopping for the random selection criterion, informa-
tion gain criterion, margins of confidence criterion, and the
SDP hybrid criterion.

5.3 RUNNING TIMES

The SDP has been shown to be highly intractable, being
PPPP-complete (Choi, Xue, & Darwiche, 2012). There-
fore, the computational requirements of the SDP, as a stop-
ping and selection criterion, may be higher than other, more
common approaches. This complexity depends largely on

the number of unasked questions that must be considered.
Figure 6 shows a plot of the running times for the SDP
stopping and selection criteria, in comparison to other mea-
sures. Note that the SDP selection criterion is on aver-
age more efficient than the SDP stopping criterion, even
though the selection criterion includes an SDP gain com-
putation, as well as an information gain computation (as a
tie breaker). Here, there are cases that can be detected that
allow us to skip the SDP gain computation (Chen et al.,
2013), leaving just the relatively efficient information gain
computation. In general, we note that there is a trade-off:
the SDP, as stopping and selection critera, provides valu-
able information (leading to fewer questions asked), but the
SDP is also more computationally demanding.
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Figure 6: Runtimes of different algorithms. SDP-STOP
and SDP-SEL are respectively the stopping and selection
criterion algorithms, THRESH represents the standard pos-
terior stopping criterion, and IG represents the standard in-
formation gain selection criterion.

6 CONCLUSION

We created a Computer Adaptive Test using a Bayesian net-
work as the underlying model and showed how the notion
of the SDP can be used as an information gathering crite-
rion in this context. We showed that it can act as a stopping
criterion for determining if further questions are needed,
and as a selection criterion for determining which questions
should be asked. Finally, we have shown empirically that
the SDP is a valuable information gathering tool, as its us-
age allows us to ask fewer questions while still maintaining
the same level of precision and recall for diagnosis.
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Figure 5: Bayesian network modeling clinic volunteer knowledge. The 63 questions are labeled from Q1 to Q63. The
primary decision variable Adequacy is located in the top center.


