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Abstract

Knowledge compilation has been successfully used to solve
beyond NP problems, including some PP-complete and
NPPP-complete problems for Bayesian networks. In this
work we show how knowledge compilation can be used
to solve problems in the more intractable complexity class
PPPP. This class contains NPPP and includes interesting AI
problems, such as non-myopic value of information. We show
how to solve the prototypical PPPP-complete problem MAJ-
MAJSAT in linear-time once the problem instance is compiled
into a special class of Sentential Decision Diagrams. To show
the practical value of our approach, we adapt it to answer the
Same-Decision Probability (SDP) query, which was recently
introduced for Bayesian networks. The SDP problem is also
PPPP-complete. It is a value-of-information query that quan-
tifies the robustness of threshold-based decisions and comes
with a corresponding algorithm that was also recently pro-
posed. We present favorable experimental results, comparing
our new algorithm based on knowledge compilation with the
state-of-the-art algorithm for computing the SDP.

1 Introduction
The complexity class PPPP is highly intractable being at the
second level of the counting hierarchy (Wagner 1986). De-
spite this difficulty, the PPPP class includes some interesting
and practical AI problems, such as non-myopic value of in-
formation (Krause and Guestrin 2009). Developing effective
methods for problems in this class is therefore both signifi-
cant and difficult.

Our proposed approach for tackling problems in the PPPP

class will be based on knowledge compilation, which is a
well-established research area in AI; see for example (Mar-
quis 1995; Selman and Kautz 1996; Cadoli and Donini 1997;
Darwiche and Marquis 2002; Darwiche 2014). The key no-
tion here is to compile problem instances into tractable rep-
resentations, allowing one to solve such problems efficiently
if the compilation is successful. Although knowledge com-
pilation was originally motivated by the need to push much
of the computational overhead into an offline compilation
phase, it has been increasingly used as a general methodol-
ogy for computation. In particular, this approach has been
successfully used to solve beyond NP problems, including

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

some problems that are complete for the PP class (Darwiche
2001a; 2003), and the NPPP class (Huang, Chavira, and Dar-
wiche 2006; Pipatsrisawat and Darwiche 2009).

In this work, we extend the reach of knowledge compi-
lation techniques to problems in the highly intractable com-
plexity class PPPP, which contains NPPP and can be thought
of as its counting analogue. In particular, we introduce a
new algorithm for the prototypical PPPP-complete prob-
lem known as MAJMAJSAT. This decision problem is posed
with respect to a CNF, asking whether there exists a majority
of truth assignments to some variables, under which there is
a majority of satisfying truth assignments to the remaining
variables (Wagner 1986). Our algorithm is based on com-
piling the problem instance into a special class of Senten-
tial Decision Diagrams (SDDs), which have been recently
introduced as a tractable representation of Boolean func-
tions (Darwiche 2011). This new class of SDDs we identify
in this paper constrains their structure, allowing one to solve
MAJMAJSAT in time linear in the SDD size.

To show the effectiveness and applicability of our ap-
proach, we modify our algorithm to solve a PPPP-complete
problem that is of practical interest: The Same-Decision
Probability (SDP) introduced recently for Bayesian net-
works (Choi, Xue, and Darwiche 2012). The SDP problem
is a value-of-information query that quantifies the robust-
ness of threshold-based decisions. It has been successfully
applied as a selection or stopping criterion when making de-
cisions under uncertainty (Chen, Choi, and Darwiche 2014;
2015b; 2015a), and in medical diagnosis (Gimenez et al.
2014). Further, it comes with a corresponding exact algo-
rithm (Chen, Choi, and Darwiche 2013). We empirically
compare our proposed approach with the state-of-the-art al-
gorithm for computing the SDP, showing favorable results.

We organize the paper as follows. Section 2 provides
some technical background. Section 3 reviews some com-
plexity classes beyond NP. Section 4 introduces the special
class of SDDs and the new MAJMAJSAT algorithm that op-
erates on these SDDs. Section 5 introduces the SDP problem
and provides a corresponding algorithm. Sections 6 and 7
discuss the compilation of SDDs, and Section 8 presents
empirical results. Section 9 provides a broader perspective
on this work. We conclude the paper after discussing related
work in Section 10. The appendix contains the proofs.
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Figure 1: An SDD and a vtree for (A ∧B) ∨ (B ∧ C) ∨ (C ∧D).

2 Technical Background
Upper case letters (e.g., X) will denote variables and lower
case letters (e.g., x) will denote their instantiations. That is,
x is a literal denotingX or¬X . Bold upper case letters (e.g.,
X) will denote sets of variables and bold lower case letters
(e.g., x) will denote their instantiations. We liberally treat
an instantiation of a variable set as conjunction of its corre-
sponding literals. Given instantiations x and y, we say x is
compatible with y, denoted x ∼ y, iff x ∧ y is satisfiable.

A Boolean function f(Z) maps each instantiation z of
variables Z to 1/true or 0/false. A trivial Boolean function
maps all its inputs to true (denoted >) or maps them all to
false (denoted⊥). An instantiation z satisfies function f , de-
noted z |= f , iff f maps z to true. In this case, z is said to
be a model of function f . The model count of function f ,
denoted MC(f), is the number of models of f . The condi-
tioning of function f on instantiation x, denoted f |x, is the
sub-function obtained by setting variables X to their values
in x. We will combine Boolean functions using the tradi-
tional Boolean operators, such as ∧ and ∨.

SDDs: A Boolean function f(XY), where X and Y are
disjoint, can always be decomposed into the following form:

f(XY) =
(
p1(X) ∧ s1(Y)

)
∨ . . . ∨

(
pn(X) ∧ sn(Y)

)
such that the sub-functions pi(X) are consistent, mu-
tually exclusive, and exhaustive.1 A decomposition of
this kind is called an (X,Y)-partition, and denoted
{(p1, s1), . . . , (pn, sn)}. In this case, each pi is called a
prime, each si is called a sub. Moreover, an (X,Y)-partition
is compressed when its subs are distinct, i.e., si 6= sj for
i 6= j (Darwiche 2011). For instance, consider the Boolean
function f = (A ∧B) ∨ (B ∧C) ∨ (C ∧D) represented as
a DNF. Choosing X = {A,B} and Y = {C,D} yields the
following (X,Y)-partition:

{(A ∧B︸ ︷︷ ︸
prime

, >︸︷︷︸
sub

), (¬A ∧B︸ ︷︷ ︸
prime

, C︸︷︷︸
sub

), (¬B︸︷︷︸
prime

, D ∧ C︸ ︷︷ ︸
sub

)}.

SDDs will result from the recursive decomposition of
a Boolean function using (X,Y)-partitions. This recursive
decomposition process requires a structure to determine the
X/Y variables of each partition. For that, we use a vtree,
which is a full binary tree whose leaves are labeled with vari-
ables; see Figure 1(b). For an internal vtree node v, we will

1pi 6= ⊥ for all i; pi ∧ pj = ⊥ for i 6= j; and
∨

i pi = >.

use vl and vr to denote the left and right children of v. We
will denote variables appearing inside v by vars(v). We will
also not distinguish between vtree node v and the subtree
rooted at v. We next define SDDs (Darwiche 2011).

Definition 1. α is an SDD that is normalized for vtree v iff:

– α = ⊥ or α = >, where v is a leaf node;
– α = X or α = ¬X , where v is a leaf node labeled by X;
– α = {(p1, s1), . . . , (pn, sn)}, where v is an internal

node, p1, . . . , pn are SDDs that are normalized for vl, and
s1, . . . , sn are SDDs that are normalized for vr.

A constant or literal SDD is called a terminal; otherwise it
is called a decomposition. SDDs are depicted graphically as
in Figure 1(a). Here, each decomposition is represented by a
circle, where each element is depicted by a paired box p s .
The left box corresponds to a prime p and the right box cor-
responds to its sub s. A prime p or sub s are either a constant,
literal, or pointer to a decomposition node. Decomposition
nodes are labeled by the vtree nodes they are normalized for.

An SDD is compressed iff each of its decompositions is
a compressed partition. For a fixed vtree, a Boolean func-
tion has a unique SDD that is compressed and normalized.
If an SDD is normalized for vtree v, then its model count
is defined over vars(v). For example, the terminal SDDs ⊥,
>, X and ¬X have model counts of 0, 2, 1, and 1, respec-
tively. We will not distinguish between an SDD node α and
the Boolean function that α represents. We will also identify
an SDD by its root node.

3 Complexity Classes Beyond NP

In this section, we will review some complexity classes be-
yond NP that are relevant to our work. In particular, our fo-
cus will be on the complexity classes NP, PP, NPPP, and
PPPP, which are related in the following way:

NP ⊆ PP ⊆ NPPP ⊆ PPPP.

NP is the class of decision problems that can be solved by
a non-deterministic polynomial-time Turing machine. PP is
the class of decision problems that can be solved by a non-
deterministic polynomial-time Turing machine, which has
more accepting than rejecting paths. NPPP and PPPP are
the corresponding classes assuming a PP oracle. That is, the
corresponding Turing machine has an access to a PP oracle.
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Figure 2: An X-constrained vtree, where X = {A,B,D}.

Given a CNF ∆ representing Boolean function f(XY),
we have the following decision problems which are respec-
tively complete for the above complexity classes.

SAT is the prototypical NP-complete problem, asking if
there is an instantiation xy that satisfies CNF ∆.

MAJSAT is the prototypical PP-complete problem, asking if
there are a majority of instantiations xy that satisfy CNF ∆.

E-MAJSAT is the prototypical NPPP-complete problem,
asking if there is an instantiation x for which a majority of
instantiations y satisfy CNF ∆|x.2

MAJMAJSAT is the prototypical PPPP-complete problem,
asking if there are a majority of instantiations x for which a
majority of instantiations y satisfy CNF ∆|x.

In the remainder of the paper, we will focus on a func-
tional variant of MAJMAJSAT, denoted MMS(f,X, T ),
which we introduce as follows:3

Given a threshold T , how many instantiations x are
there, for which the number of instantiations y that sat-
isfy f |x is greater than or equal to T ?

Formally, MMS(f,X, T ) can be defined as follows:

MMS(f,X, T ) =
∑
x

[MC(f |x) ≥ T ], (1)

where [P ] is an indicator function equal to 1 if P is true and
equal to 0 otherwise.

We will next show how to solve MAJMAJSAT in linear-
time when the underlying Boolean function is represented as
a special type of SDD.

4 Solving MAJMAJSAT using SDDs
In this section, we will present a new algorithm that solves
the prototypical PPPP-complete problem MAJMAJSAT, us-
ing a special type of SDDs which we will introduce next.

Constrained SDDs
The new class of SDDs will basically have a constrained
structure, due to the following special type of vtrees.

2The CNF ∆|x is obtained by replacing variables X in CNF ∆
with their values in instantiation x.

3Solving the functional version would immediately imply a so-
lution to the decision problem.

Algorithm 1: MMS(S,X, T )

Input:
X : set of variables
T : threshold
S : (root) X-constrained SDD
Data:
vr() : value registers (one for each SDD node)
Output: computes MMS(S,X, T )

1 foreach SDD node α in S (children before parents) do
2 if α is a terminal then vr(α)← MC(α)
3 else vr(α)←

∑
(pi,si)∈α vr(pi)× vr(si)

4 if α is X-constrained then
5 vr(α)← 1 if vr(α) ≥ T ; else 0

6 return vr(S)

Definition 2. A vtree node v is X-constrained, denoted vX,
iff v appears on the right-most path of the vtree and X is the
set of variables outside v. A vtree is X-constrained iff it has
an X-constrained node.

Figure 2 shows an X-constrained vtree for X = {A,B,D},
where vtree node v = 4 is the X-constrained node. A vtree
can have at most one X-constrained node. Moreover, an X-
constrained vtree constrains the variable order obtained by a
left-right traversal of the vtree, pushing variables X in front.
The reverse is not necessarily true. For example, the left-
right traversal of the vtree in Figure 2 puts variables X =
{A,B} in front, yet the vtree is not X-constrained.

To compute MMS(f,X, T ), we will represent the
Boolean function f using an X-constrained SDD.
Definition 3. An SDD is X-constrained iff it is normalized
for an X-constrained vtree. An SDD node is X-constrained
iff it is normalized for the X-constrained vtree node.

Intuitively, an X-constrained SDD node corresponds to the
conditioning of the SDD f on some instantiation x, and will
be used to compute the indicator function [MC(f |x) ≥ T ].

A New Algorithm to Solve MAJMAJSAT

We present the pseudocode of our approach in Algo-
rithm 1, which takes as input a set of variables X, a thresh-
old value T , and an X-constrained SDD S, to compute
MMS(S,X, T ). The algorithm performs a single bottom-up
pass over S (Lines 1–5). For each visited SDD node α, the
algorithm applies one of several actions, depending on the
vtree node v to which α is normalized for.

If vtree node v is not an ancestor of the X-constrained
vtree node vX, the algorithm computes the model count ofα.
Lemma 1. Let α be an SDD node normalized for v, where v
is not an ancestor of vX. Line 2 or Line 3 computes MC(α).

If v = vX, α must be equal to S|x for some instantiation x.
So, we also compute the indicator function [MC(α) ≥ T ]
(Lines 4–5), and pass either 0 or 1 to the ancestors of α.
Because of this, if v is an ancestor of vX, the algorithm ba-
sically counts the instantiations y for which the model count



of α|y is above the threshold T , where Y is the subset of X
appearing in v.
Lemma 2. Let α be an SDD node normalized for v, where
v is an ancestor of vX or v = vX. Then,

vr(α) =
∑
y

[
MC(α|y) ≥ T

]
,

where Y = vars(v) ∩X.
The above cases ensure that the algorithm computes Equa-
tion (1) at the root of SDD S (Line 6).
Proposition 1. Algorithm 1 computes MMS(S,X, T ).
As the algorithm performs a single pass over S (Lines 1–5),
and at each node it takes a constant amount of time, the time
complexity of Algorithm 1 is linear in the size of S.
Proposition 2. Algorithm 1 takes time linear in the size of S.

We now demonstrate how Algorithm 1 works on con-
strained SDDs. Consider the SDD S in Figure 1(a). This
SDD is normalized for the vtree in Figure 1(b). This vtree is
X-constrained for X = {A,B}, where the root vtree node is
X-constrained. Given a threshold T = 3, Figure 1(c) shows
the value registers of SDD nodes computed by Algorithm 1,
upon the call MMS(S,X, T ), by labeling the nodes with
the corresponding values. Accordingly, the root of SDD S
returns 1, meaning that there exists only one instantiation x
of variables X such that the model count of S|x exceeds the
given threshold T = 3.

We close this section with the following remark. When the
Boolean function is represented as a general SDD (serving
the role of a PP oracle), MAJMAJSAT would be PP-hard.
This is still true when we use other well-known compilation
languages that support polynomial-time model counting,
such as d-DNNFs (Darwiche 2001a) and OBDDs (Bryant
1986). To solve the problem in linear-time, however, we
need an additional property, as in X-constrained vtrees. We
are not aware if there is a weaker property that would suffice.

5 Computing the SDP using SDDs
We will now modify our algorithm to solve another PPPP-
complete problem, which is of practical interest: The Same-
Decision Probability (SDP) for Bayesian networks (Choi,
Xue, and Darwiche 2012). The input to this problem is
a probability distribution represented by the Bayesian net-
work, together with some variable sets and a threshold. In-
tuitively, the SDP is used to quantify the robustness of de-
cisions against new evidence. That is, given initial evidence
e, one makes a decision d based on whether Pr(d|e) sur-
passes a given threshold T . The SDP is then the probabil-
ity that this decision would stay the same after observing
the state of new evidence (which is also given as input). We
will actually define an abstraction of this problem in which
the distribution is represented by a weighted Boolean func-
tion. This abstraction will facilitate the computation of SDP
through compilation into SDDs.

SDP on Weighted Boolean Functions
We start by defining weighted Boolean functions, which
simply augment a Boolean function with a weight function.

Definition 4. A weighted Boolean function is a pair
(
f,W

)
where f is a Boolean function over variables Z and W is a
weight function that maps literals of Z to real numbers.

Given a weighted Boolean function (f,W ), one is typically
interested in computing its weighted model count, which is
formally defined as follows:∑

z|=f

(∏
`∈z

W (`)
)
.

That is, the weighted model count of f is the summation of
the weights of the models of f , where the weight of a model
is the product of its literals’ weights. The weighted model
count subsumes the model count when the weight function
W assigns the weight 1 to each literal.

We also define the weighted model count with respect to
an instantiation x, also called evidence x:

φ(f,W )(x) =
∑

z|=f, z∼x

(∏
`∈z

W (`)
)
.

That is, the weighted model count of f under evidence x is
the summation of the weights of the models of f compatible
with x. We will omit W from the subscript whenever it is
clear from the context, and write φf (x) instead. Under no
evidence (i.e., x ≡ >), we often drop x and write φf . In this
case, φf reduces to the weighted model count.

We finally define the conditional weighted model count:

φf (x | y) =
φf (xy)

φf (y)
.

Note here that φf (. | >) is a probability distribution. More-
over, φf (. | y) is a probability distribution conditioned
on instantiation y. This shows how a weighted Boolean
function can be used to represent a probability distribu-
tion, allowing us to define the same-decision probability on
weighted Boolean functions.

Definition 5. Consider a weighted Boolean function(
f,W

)
. Let E,H and {D} be mutually disjoint variables

of f . Given an instantiation d, a threshold T , and an in-
stantiation e, the same-decision probability is defined as fol-
lows:

SDPf (d,H, e, T ) =
∑
h

[
φf (d | he) ≥ T

]
φf (h | e).

(2)
Here, [P ] is the indicator function which is 1 if P is true,
and 0 otherwise.

We remark that the classical definition of SDP on
Bayesian networks is based on the probability distribution
defined by the Bayesian network. Equation (2), however,
replaces that distribution by its weighted Boolean func-
tion representation. Similarly to its Bayesian network ana-
logue, the SDP on weighted Boolean functions is highly in-
tractable, assuming a CNF representation of the function.

Theorem 1. The problem of deciding whether the SDP on a
weighted CNF is greater than a number p is PPPP-complete.



Algorithm 2: SDP (d,H, e, T, S)

Input:
d : hypothesis
H : query variables
e : evidence
T : threshold
S : H-constrained SDD
Data:
vr1(), vr2() : value registers (one for each SDD node)
Output: computes SDPS(d,H, e, T )

1 foreach SDD node α in S (children before parents) do
2 if α is a terminal then
3 vr1(α)← φα if α ∼ e; else 0

4 else vr1(α)←
∑

(pi,si)∈α vr1(pi)× vr1(si)

5 foreach SDD node α in S (children before parents) do
6 if α is a terminal then
7 vr2(α)← φα if α ∼ d e; else 0

8 else vr2(α)←
∑

(pi,si)∈α vr2(pi)× vr2(si)

9 if α is H-constrained then
10 vr2(α)← vr1(α) if vr2(α)

vr1(α)
≥ T ; else 0

11 φ(e)← vr1(S)
12 Q← vr2(S)

13 return Q
φ(e)

As we shall see next, if a Boolean function is repre-
sented by an H-constrained SDD, the SDP problem be-
comes tractable. Indeed, as long as the set of variables H
does not change, each instance of SDP with different pa-
rameters d, e, and T can be solved in linear-time in the SDD
size. That is, our knowledge compilation approach would
effectively solve exponentially many queries in linear-time.

A New Algorithm to Compute SDPs
We now present our method to compute the SDP on
weighted Boolean functions, using constrained SDDs. The
pseudocode of our approach is described in Algorithm 2,
which takes as input an SDP instance with parameters
d,H, e, T and an H-constrained SDD S, to compute
SDPS(d,H, e, T ). The algorithm is a slight modification
of Algorithm 1 presented earlier. It performs two bottom-
up passes over S and maintains two value registers per
SDD node. This is because it needs to compute (conditional)
weighted model counts under evidence.

Given an SDD node α normalized for vtree node v, and
evidence e, we let ev denote the subset of the instantiation
e that pertains to the variables of vtree v. Algorithm 2 then
computes φα(ev) for each node α in S, during the first pass
(Lines 1–4). The result is cached in the register vr1(α).
Lemma 3. Let α be an SDD node normalized for vtree v.
Then, vr1(α) = φα(ev).

In the second pass (Lines 5–10), the algorithm mimics
Algorithm 1. First, if v is not an ancestor of vH, it simply

computes a weighted model count.
Lemma 4. Let α be an SDD node normalized for vtree v,
where v is not an ancestor of vH. Lines 7–8 compute
φα(d ev) ifD is contained in vtree v, and φα(ev) otherwise.
Next, if v = vH, then α must be equal to S|h for some
instantiation h. Here, we also compute the indicator function[
φα(d | e) ≥ T

]
(Lines 9–10) and pass either 0 or φα(e)

to the ancestors of α. This way, if v is an ancestor of vH, it
basically computes the following quantity:∑

y

[
φα(d | y, e) ≥ T

]
φα(y e),

where Y is the subset of H appearing in v.
Lemma 5. Let α be an SDD node normalized for vtree v,
where v is an ancestor of vH or v = vH. Then,

vr2(α) =
∑
y

[
φα(d | y e) ≥ T

]
φα(y e),

where Y = vars(v) ∩H.
We now obtain the following quantity at the root of SDD S:

Q =
∑
h

[
φS(d | he) ≥ T

]
φS(he).

The quantity Q is not equal to the SDP (note φS(h, e) in-
stead of φS(h | e)). Dividing Q by φS(e), which is com-
puted by the first pass, gives the desired result (Line 13).
Proposition 3. Algorithm 2 computes SDPS(d,H, e, T ).
The algorithm takes two passes over SDD S (Lines 1–4 and
Lines 5–10). During each pass, the work it performs at each
SDD node takes a constant amount of time. Hence, the time
complexity of Algorithm 2 is linear in the size of S.
Proposition 4. Algorithm 2 takes time linear in the size of S.

6 Compiling X-Constrained SDDs
Our algorithms require the representation of Boolean func-
tions as constrained SDDs, which also require the construc-
tion of constrained vtrees. Since the SDD size depends crit-
ically on the corresponding vtree, identifying good con-
strained vtrees is quite critical for compiling successfully.
Moreover, once compilation is completed, further queries
can be answered in time linear in the SDD size. Hence, the
smaller the compiled SDDs, the more efficient further infer-
ence will be. We will next describe a method for obtaining
X-constrained vtrees that tend to yield smaller SDD sizes.

There are two different methods for generating vtrees.
The first method, which is static, identifies an appropriate
vtree before the compilation starts. This method requires
a preprocessing step of the Boolean function representa-
tion. The second method, which is dynamic, searches for an
appropriate vtree during the compilation process. That is,
while compiling the SDD, one can use a search algorithm
that tries to identify vtrees leading to smaller SDD sizes. Al-
though this search might be costly, it is needed most of the
time to successfully finish compilation.

To get X-constrained vtrees, we will combine static and
dynamic approaches as follows. Our initial vtree will be
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right-linear, where variables X appear first in the left-right
traversal of the vtree.4 Here, one can use some heuristic
method to find a variable order for variables X and another
for the remaining variables.5 By combining these two vari-
able orders, one can obtain an X-constrained vtree, which
is right-linear. Then, during compilation, we can employ a
dynamic vtree search algorithm as long as the search al-
gorithm ensures that the new vtree remains X-constrained.
In our case, we modified the search algorithm introduced
by (Choi and Darwiche 2013). This algorithm essentially
navigates the search space of vtrees by applying three dif-
ferent vtree operations on vtree nodes, namely, right rota-
tion, left rotation, and children swapping. These operations
are depicted in Figure 3. To make sure the new vtree will
remain X-constrained, all we need is to restrict the use of
some vtree operations at certain vtree nodes. In particular,
the restrictions below suffice for our purpose:

– Right rotation can be done on any vtree node.

– Left rotation can be done on any vtree node unless it is the
X-constrained vtree node.

– Children swapping can be done on any vtree node unless
it is an ancestor of the X-constrained vtree node.

7 Compiling Bayesian Networks into
Weighted SDDs

We defined the SDP problem on weighted Boolean func-
tions, while the original SDP problem is defined on Bayesian
networks. Our experimental results in the next section as-
sume a Bayesian network input. We therefore need to cap-
ture the probability distribution of a Bayesian network as a
weighted Boolean function, represented by an SDD. We dis-
cuss this process briefly in this section as it is described in
detail by (Darwiche 2002) and (Choi, Kisa, and Darwiche
2013). The reader is also referred to (Darwiche 2009) for an
introduction to Bayesian networks.

4A vtree is right-linear if the left child of each internal node is
a leaf. In this case, the SDD would correspond to an OBDD.

5We use the minfill heuristic which is commonly used in the
Bayesian network literature.

Suppose we are given a Bayesian network N that in-
duces a probability distribution Pr over variables Z. The
weighted Boolean function (f,W ) which represents distri-
bution Pr(Z) has the following variables and weights.

Indicator variables: Function f has an indicator variable
Ix for each value x of variable X in Z. Moreover, for each
variable Ix, the corresponding weights are W (Ix) = 1 and
W (¬Ix) = 1.

Parameter variables: Function f has a parameter vari-
able Px|u for each Bayesian network parameter θx|u. More-
over, for each variable Px|u, the corresponding weights are
W (Px|u) = θx|u and W (¬Px|u) = 1.

Using the above variables, (Darwiche 2002) describes
an efficient CNF representation of the Boolean function f .
Hence, one can compile this CNF into a constrained SDD for
the purpose of computing the SDP. However, we use a more
recent approach which compiles the Boolean function f di-
rectly into an SDD, therefore bypassing the construction of a
CNF (Choi, Kisa, and Darwiche 2013). See also (Roth 1996)
for a theoretical treatment of reducing probabilistic infer-
ence to weighted model counting, and (Sang, Beame, and
Kautz 2005; Chavira and Darwiche 2008) for further practi-
cal approaches and reviews of encoding Bayesian networks
into weighted CNFs.

8 Experiments
We now empirically evaluate our proposed SDD-based ap-
proach for solving PPPP-complete problems. To our knowl-
edge, the only existing system for solving PPPP-complete
problems is the SDP algorithm of (Chen, Choi, and Dar-
wiche 2013), which is implemented in a beta version
of the Bayesian network modeling and reasoning system,
SAMIAM.6 Hence, we compare our approach to SAMIAM’s,
in the task of computing SDPs in Bayesian networks. Note
that both systems produce exact solutions, hence our evalu-
ation is based on the efficiency of computing the SDP.

We evaluated our systems using the Deterministic QMR
(DQMR) benchmarks,7 which are deterministic versions of
the classical diagnostic QMR benchmarks. These are two-
layer networks where a top layer represents diseases and
the bottom layer represents symptoms; logical-ORs are used
(by DQMR) instead of noisy-ORs (by QMR) to represent
the disease-symptom interactions. The DQMR benchmark
consists of 120 Bayesian networks. For each network, we
created an SDP problem at random, where the decision vari-
able was chosen at random, and 10 evidence variables were
selected at random and set to true (which is the more chal-
lenging setting for logical-OR networks). Further, we eval-
uated three settings on the number of query variables H:
10, 20 and 30. To compute SDPs using our algorithm, we
compiled Bayesian networks into SDDs as discussed in Sec-
tion 7. The constrained vtrees are constructed as discussed
in Section 6. The SDP algorithm of SAMIAM was run with

6SAMIAM is available at http://reasoning.cs.ucla.
edu/samiam. We obtained a beta version from the authors.

7http://www.cs.rochester.edu/users/
faculty/kautz/Cachet
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Figure 4: Experimental results on DQMR-networks.

default settings. Finally, our experiments were performed on
a 2.6GHz Intel Xeon E5-2670 CPU with a 1 hour time limit
and a memory limit of 12GB RAM.

Figure 4 highlights the results. On the x-axis, we sorted
the 120 problem instances by running time (y-axis), where
a running time of 3, 600s corresponds to an out-of-time or
an out-of-memory. We make a few observations. First, our
SDD-based approach solves at worst 79% of the 120 in-
stances, over all cases (where we vary the number of query
variables H). In contrast, SAMIAM solves at best 39%, over
all cases. Next, we remark that the timing for the SDD-based
approach includes both the compilation time, and the SDD
evaluation time to compute the SDP. In practice, compila-
tion would be performed in an offline phase. Further, eval-
uation time on an SDD is relatively negligible (typically on
the order of milliseconds). This is quite significant, as one
expects to use the SDP in an online fashion in practice (one
would continue to make observations, and re-compute the
SDP until the SDP is high enough, and further observations
are unlikely to be relevant). In contrast, the SDP algorithm
of SAMIAM is in general invoked from scratch.

Finally, we want to stress the important role that SDDs
and the dynamic vtree search played in our experiments. For
that, we disabled the dynamic search and ran the experiment
again. In this case, the compiled SDDs would be OBDDs as
the initial vtrees were right-linear. However, this approach
finished compilation for a very few instances (5 out of 360).8

9 Knowledge Compilation for Solving
Beyond NP Problems

We will now present a perspective on this work from
the broader context of solving beyond NP problems us-
ing knowledge compilation. A number of prototypical prob-
lems for beyond NP classes are defined on CNF represen-
tations of Boolean functions. Moreover, these problems be-
come tractable when the Boolean functions are represented

8As the approach in (Choi, Kisa, and Darwiche 2013) is based
on SDDs, using dynamic search while ensuring that the result is
an OBDD is nontrivial. For a detailed empirical analysis on SDDs
and OBDDs, see (Choi and Darwiche 2013) who report orders-of-
magnitude better performance in favour of SDDs.

as negation normal form (NNF) circuits that satisfy certain
properties. Recall that an NNF circuit contains only ∧-gates
or ∨-gates, with inputs being literals or constants. Among
the well known subsets of NNF circuits are DNNFs, d-
DNNFs, SDDs and OBDDs, each of which results from im-
posing specific properties on NNF circuits (Darwiche and
Marquis 2002). One can therefore solve various NP-hard
problems by compiling the input CNF into a NNF circuit
with certain properties.

For example, the prototypical NP-complete problem SAT
becomes tractable when the NNF circuit is decomposable,
leading to DNNFs (Darwiche 2001a). Similarly, the proto-
typical PP-complete problem MAJSAT becomes tractable
when the NNF circuit is both decomposable and determin-
istic, leading to d-DNNF (Darwiche 2001b). Further, the
prototypical NPPP-complete problem E-MAJSAT becomes
tractable when the NNF circuit is decomposable, determin-
istic, and certain variables of interest appear in certain posi-
tions (Huang, Chavira, and Darwiche 2006). This work iden-
tifies a new property of SDDs that makes the prototypical
PPPP-complete problem MAJMAJSAT tractable. This new
property is the notion of X-constrained vtrees, which basi-
cally constrains the structure of SDDs, allowing one to solve
MAJMAJSAT in time linear in the size of constrained SDD.
Note that SDDs result from imposing stronger versions of
decomposability and determinism on NNF circuits (Dar-
wiche 2011). The tradition of solving Beyond NP prob-
lems using knowledge compilation can perhaps be traced
to (Coste-Marquis et al. 2005), which observed that Quanti-
fied Boolean Formulas (QBFs) can be solved in linear time
when the formula is represented as an OBDD whose vari-
able order satisfies certain properties. QBF is complete for
the complexity class PSPACE (Papadimitriou 1994).

10 Related Work
PPPP-complete problems, such as MAJMAJSAT and SDP,
are particularly challenging as they are still PP-hard given
access to a PP-oracle. Analogously, NPPP-complete prob-
lems, such as the MAP problem in Bayesian networks, are
still NP-hard given access to a PP-oracle (Park 2002). In
this context, search-based MAP algorithms have been pro-
posed that assume an oracle for exact inference in Bayesian
networks, which is PP-complete (Park and Darwiche 2003).
Knowledge compilation techniques have also been em-
ployed here (Huang, Chavira, and Darwiche 2006; Pipatsri-
sawat and Darwiche 2009), where Bayesian networks were
compiled into d-DNNFs, which were in turn used as oracles.
Further, a relaxed notion of constraining a d-DNNF structure
was used to produce tighter upper-bounds on the MAP solu-
tion, which improves the efficiency of search. This notion of
constraining a d-DNNF is similar, but distinct from the no-
tion of a constrained vtree which we introduced in this paper
(SDDs and vtrees have stronger semantics). Further, we re-
mark that since NPPP ⊆ PPPP, we consider more demand-
ing problems, compared to the above prior work; in fact, our
approach can be leveraged to solve MAP as well (we do not
pursue this here). Another distinction is that the above works
compiled Bayesian networks to d-DNNFs, but through an



intermediate CNF representation. In contrast, we can bypass
this step using SDDs, which can be more efficient in prac-
tice (Choi, Kisa, and Darwiche 2013). This is enabled by an
efficient Apply9 operation, which SDDs support, whereas
d-DNNFs do not (Darwiche and Marquis 2002). Indeed, this
also explains why we used in our experiments the bottom-
up SDD compiler (Choi and Darwiche 2013), rather than
the top-down SDD compiler (Oztok and Darwiche 2015);
the latter compiles CNFs into SDDs, whereas the former
can compile Bayesian networks into SDDs directly, using
Apply. Moreover, the top-down compiler requires a spe-
cial type of vtree as input, called a decision vtree (Oztok
and Darwiche 2014). Thus, to use the top-down compiler for
our purposes, we need to construct decision vtrees that are
also X-constrained. However, this requires a corresponding
heuristic for identifying such vtrees, which is nontrivial.

11 Conclusion
We applied techniques from the domain of knowledge com-
pilation to tackle some PPPP-complete problems, which are
highly intractable but can be practically important. In partic-
ular, we identified a special class of SDDs on which some
PPPP-complete problems can be solved in time linear in the
size of the SDD. We proposed two algorithms based on this
class of SDDs, one to solve the prototypical PPPP-complete
problem of MAJMAJSAT and another to solve the same-
decision probability (SDP) problem in Bayesian networks.
Empirically, our SDD-based approach significantly outper-
formed the state-of-the-art algorithm for computing the SDP
on some benchmarks, solving over twice as many instances.
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A Soundness of Algorithm 1
We show the soundness of Algorithm 1 whose proof was
outlined earlier. We start with a few complementary lemmas.
Lemma 6. Let f = {(p1, s1), . . . , (pn, sn)} be an (X,Y)-
partition. Then, for each x |= pi(X), si(Y) = f(XY)|x.
Proof. Take some instantiation x |= pi(X). Since primes
are mutually exclusive, x 6|= pj(X) for j 6= i. Thus, f |x can
be obtained as follows:

f |x =
(
p1|x ∧ s1|x

)
∨ . . . ∨

(
pn|x ∧ sn|x

)
=
(
⊥ ∧ s1

)
∨ . . . ∨

(
> ∧ si

)
∨ . . . ∨

(
⊥ ∧ sn

)
= si. �

Lemma 7. Let f = {(p1, s1), . . . , (pn, sn)} be an (X,Y)-
partition and e = eler be evidence over f where el and
er are the (partial) instantiations of X and Y, respectively.
Then, φf (e) =

∑
i φpi(e

l)× φsi(er).
Proof. As f is an (X,Y)-partition, the sub-functions pi(X)
and si(Y) are defined over disjoint sets of variables. So,
φpi∧si(e) = φpi(e

l) × φsi(e
r). Since pi’s are mutually

exclusive, (pi ∧ si) ∧ (pj ∧ sj) = ⊥ for i 6= j. Hence,
φf (e) =

∑
i φpi(e

l)× φsi(er). �

9The Apply operation combines two SDDs using any Boolean
operator, and has its origins in the OBDD literature (Bryant 1986).

Corollary 1. Let f = {(p1, s1), . . . , (pn, sn)} be an
(X,Y)-partition. Then, MC(f) =

∑
i MC(pi)×MC(si).

Proof. Follows from Lemma 7, as MC(f) = φf (>) when
the weight function W assigns 1 to each literal. �
We are now ready to prove Lemma 1 and Lemma 2, which
perform case analysis on vtree nodes.
Lemma 1. Let α be an SDD node normalized for v, where v
is not an ancestor of vX. Line 2 or Line 3 computes MC(α).
Proof. If α is a terminal SDD, Line 2 clearly computes
MC(α). Suppose that α is a decomposition SDD. Let α =
{(p1, s1), . . . , (pn, sn)}. As v is not an ancestor of vX,
Line 5 will never be executed for any descendants of α. So,
Line 3 computes

∑
i MC(pi) × MC(si), which is equal to

MC(α) by Corollary 1. �
Lemma 2. Let α be an SDD node normalized for v, where
v is an ancestor of vX or v = vX. Then,

vr(α) =
∑
y

[
MC(α|y) ≥ T

]
,

where Y = vars(v) ∩X.
Proof. The proof is by induction on the distance of v to vX.

Base case: Suppose v = vX. As v is not an ancestor of vX,
Line 2 or Line 3 computes MC(α) by Lemma 1. So, Line 5
computes vr(α) =

[
MC(α) ≥ T

]
. Note that Y = ∅, and so

the only possible instantiation of Y is y = >. As α = α|y,
vr(α) =

∑
y

[
MC(α|y) ≥ T

]
.

Inductive step: Suppose that v is an ancestor of vX and
that the lemma holds for SDDs nodes that are normalized
for vr. Let Yl = vars(vl) and Yr = vars(vr) ∩ X. Note
that Y = Yl ∪ Yr. Let α be {(p1, s1), . . . , (pn, sn)}. As
each pi is normalized for vl, which is not an ancestor of vX,
vr(pi) = MC(pi) by Lemma 1. Also, as each si is nor-
malized for vr, vr(si) =

∑
yr

[
MC(si|yr) ≥ T

]
by the

induction hypothesis. So, Line 3 computes the following:

vr(α) =
∑
i

vr(pi)× vr(si)

=
∑
i

MC(pi)
(∑

yr

[
MC(si|yr) ≥ T

])
=
∑
i

( ∑
yl|=pi

1
)(∑

yr

[
MC(si|yr) ≥ T

])
=
∑
i

∑
yl|=pi,yr

[
MC(si|yr) ≥ T

]
=
∑
i

∑
yl|=pi,yr

[
MC(α|ylyr) ≥ T

]
(by Lemma 6)

=
∑
yl,yr

[
MC(α|ylyr) ≥ T

]
(as pi’s are partition)

=
∑
y

[
MC(α|y) ≥ T

]
(asY = Yl ∪Yr). �

Since the root of SDD S is normalized for an ances-
tor of vX, by Lemma 2 we conclude that Algorithm 1 re-
turns

∑
x

[
MC(S|x) ≥ T

]
on Line 6, which is the same as

MMS(S,X, T ). Hence, Proposition 1 holds.



B Soundness of Algorithm 2
We next prove the soundness of Algorithm 2 whose proof
was outlined earlier. We start by showing two lemmas.
Lemma 8. Let α be a function over variables Z, and let
Y ⊆ Z. Then φα(y e) = φy φα|y(e).
Proof. The lemma holds due to the following.

φα(y e) =
∑
z|=α
z∼y e

φz =
∑
z|=α
z∼y e

φy φz|y = φy
∑

x|=α|y
x∼e

φx

= φy φα|y(e). �

Lemma 9. φα(d | y e) = φα|y(d | e), where α is defined
over variables Z and Y ⊆ Z.
Proof. The following holds due to Lemma 8.

φα(d | y e) =
φα(dy e)

φα(y e)
=
φy φα|y(d e)

φy φα|y(e)
= φα|y(d | e).

�

We now prove the lemmas that show Algorithm 2 is sound.
Lemma 3. Let α be an SDD node normalized for vtree v.
Then, vr1(α) = φα(ev).
Proof. vr1(α) is computed during the first pass over S
(Lines 1–4). If α is a terminal SDD, Line 3 clearly com-
putes vr1(α) = φα(ev). Suppose α is an (X,Y)-partition.
Let α = {(p1, s1), . . . , (pn, sn)}, and let ev = eler where
el and er are the partial instantiations over X and Y respec-
tively. Line 4 then computes

∑
i φpi(e

l)×φsi(er), which is
equal to φα(ev) by Lemma 7. �

Lemma 4. Let α be an SDD node normalized for vtree v,
where v is not an ancestor of vH. Lines 7–8 compute
φα(d ev) ifD is contained in vtree v, and φα(ev) otherwise.
Proof. Since v is not an ancestor of vH, Line 10 will never
be executed for the descendants of α. Hence, the compu-
tations of Lines 7–8 is analogous to the computation of
Lines 1–4, as in Lemma 3, except where we include d as
part of the evidence ev (if variable D is contained in vtree
node v). That is, we compute vr2(α) = φα(d ev), if D is
contained in v, and vr2(α) = φα(ev) otherwise. �

Lemma 5. Let α be an SDD node normalized for vtree v,
where v is an ancestor of vH or v = vH. Then,

vr2(α) =
∑
y

[
φα(d | y e) ≥ T

]
φα(y e),

where Y = vars(v) ∩H.
Proof. The proof is similar to the proof of Lemma 2, and is
done by induction on the distance of v to vH.

Base case: Suppose v = vH. As v is not an ancestor of vH,
Line 7 or Line 8 computes φα(d e) by Lemma 4. More-
over, vr1(α) = φα(e) by Lemma 3. So, Line 10 computes
vr2(α) =

[
φα(d | e) ≥ T

]
φα(e). Note that Y = ∅, and so

the only possible instantiation of Y is y = >. As α = α|y,
vr2(α) =

∑
y

[
φα(d | y e) ≥ T

]
φα(y e).

Inductive step: Suppose that v is an ancestor of vH and that
the lemma holds for SDD nodes that are normalized for vr.

Let Yl = vars(vl) and Yr = vars(vr) ∩ H. Note that
Y = Yl ∪Yr. Let α be {(p1, s1), . . . , (pn, sn)}. Note that
each pi is normalized for vl, and neither D nor E appears in
vars(vl). Hence, via Lemma 4, vr2(pi) = φpi(>) = φpi .
Further, as each si is normalized for vr, we have vr2(si) =∑

yr

[
φsi(d | yr e) ≥ T

]
φsi(y

r e) by the induction hy-
pothesis. So, Line 8 computes the following (justifications
are provided at the end):

vr2(α) =
∑
i

vr2(pi)× vr2(si)

=
∑
i

φpi

(∑
yr

[
φsi(d | yr e) ≥ T

]
φsi(y

r e)
)

=
∑
i

∑
yl|=pi,yr

φyl

[
φsi(d | yr e) ≥ T

]
φsi(y

r e)

=
∑
i

∑
yl|=pi,yr

φyl

[
φα|yl(d | yr e) ≥ T

]
φα|yl(yr e) (3)

=
∑
i

∑
yl|=pi,yr

[
φα|yl(d | yr e) ≥ T

]
φα(yl yr e) (4)

=
∑
i

∑
yl|=pi,yr

[
φα(d | yl yr e) ≥ T

]
φα(ylyr e) (5)

=
∑
yl,yr

[
φα(d | yl yr e) ≥ T

]
φα(ylyr e) (6)

=
∑
y

[
φα(d | y e) ≥ T

]
φα(y e). (7)

Equations (3), (4), and (5) are due to Lemma 6, Lemma 8,
and Lemma 9, respectively. Equation (6) holds as primes are
partitions. Equation (7) holds as Y = Yl ∪Yr. �

As the root of SDD S is normalized for an ancestor of vH,
by Lemma 5, vr2(S) =

∑
h

[
φS(d | he) ≥ T

]
φS(he). We

also know that vr1(S) = φS(e). So, Algorithm 2 returns
SDPS(d,H, e, T ) on Line 13. Hence, Proposition 3 holds.

C Complexity of SDP on Weighted CNFs
We now show that SDP on weighted CNFs is a PPPP-
complete problem (Theorem 1). In particular, we reduce
SDP on a weighted CNF to and from SDP on a Bayesian
network, which is PPPP-complete. First, we can encode a
weighted CNF to a Bayesian network and vice-versa, where
the weighted model count of a CNF is equivalent to the
probability of evidence in a Bayesian network. We can en-
code a weighted CNF to a Bayesian network, e.g., as shown
by (Choi, Xue, and Darwiche 2012) (we additionally en-
code CNF weights as priors in the network). We can en-
code a Bayesian network as a weighted CNF, e.g., as shown
by (Chavira and Darwiche 2008) (using ENC1). The reduc-
tions are polynomial-time, and results in a one-to-one corre-
spondence between the weighted CNF models and the (non-
zero) rows of the joint distribution induced by the network.
Hence, the corresponding SDPs are equivalent.
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