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Abstract

We consider the problem of learning Bayesian
network structures from complete data. In
particular, we consider the enumeration of
their k-best equivalence classes. We propose
a new search space for A* search, called the
EC graph, that facilitates the enumeration
of equivalence classes, by representing the
space of completed, partially directed acyclic
graphs. We also propose a canonization of
this search space, called the EC tree, which
further improves the efficiency of enumera-
tion. Empirically, our approach is orders of
magnitude more efficient than the state-of-
the-art at enumerating equivalence classes.

1 INTRODUCTION

Learning the structure of a Bayesian network is a fun-
damental problem in machine learning and artificial in-
telligence. Historically, approximate methods, such as
Markov Chain Monte Carlo (MCMC) and local search,
were used for this task. In the past decade, there has
been a surge in interest, in finding optimal Bayesian
network structures, i.e., learning a single best directed
acyclic graph (DAG) from a complete dataset; see,
e.g., (Koivisto and Sood, 2004; Singh and Moore, 2005;
Silander and Myllymäki, 2006; Jaakkola et al., 2010;
Cussens, 2011; Yuan and Malone, 2013).

In some situations, learning a single optimal DAG is
not sufficient—a single DAG is subject to noise and
other idiosyncrasies in the data. As such, a data an-
alyst would want to be aware of other likely DAGs.
Hence, a number of algorithms have been proposed to
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enumerate the k-most likely DAGs from a complete
dataset (Tian et al., 2010; Cussens et al., 2013; Chen
and Tian, 2014; Chen et al., 2015). Such methods fur-
ther facilitate approximate Bayesian model averaging
(Tian et al., 2010; Chen and Tian, 2014).

There is a fundamental inefficiency in enumerating the
k-most likely DAGs, namely that any given DAG may
be Markov equivalent to many other DAGs, which are
all equally expressive in terms of representing proba-
bility distributions. Thus, by enumerating DAGs, one
may spend a significant amount of effort in enumerat-
ing redundant Bayesian networks. In this paper, we
consider instead the enumeration of their equivalence
classes, with each equivalence class representing a po-
tentially large (even exponential) number of DAGs,
which we show can be the case in practice empirically.

In this paper, we propose a new approach to enu-
merating equivalence classes that is in practice orders
of magnitude more efficient than the existing state-
of-the-art, which is based on dynamic programming
(Chen and Tian, 2014). Our approach is instead based
on a framework proposed by Chen et al. (2015), which
provides a general approach to a variety of structure
learning tasks, such as enumerating the k-best DAGs.
This approach is based on navigating an expressive
yet seemingly intractable search space, called the BN
graph, which represents the space of all DAGs. Chen
et al. show that the complexity of the BN graph can
be mitigated by exploiting an oracle for optimal struc-
ture learning, which in turn can be used to tackle even
more computationally challenging tasks (such as enu-
merating the k-best DAGs).

Here, we propose a specific instance of this framework,
where we specialize the BN graph to a more compact
search space over equivalence classes. In particular, we
represent equivalence classes (ECs) using completed
partially directed acyclic graphs (CPDAGs) (Chicker-
ing, 2002), leading to a new search space called the EC
graph. We further propose a canonization of the EC
graph, leading to the EC tree, whose properties can
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be exploited by heuristic search methods such as A*,
leading to improved time and space efficiency.

This paper is organized as follows. Section 2 reviews
Markov equivalence and related concepts. In Section 3,
we first review search spaces for learning Bayesian net-
works, and then propose the EC graph. Section 4 dis-
cusses the enumeration of equivalence classes. In Sec-
tion 5, we canonize the EC graph to the EC tree. We
evaluate our approach empirically in Section 6, and
conclude in Section 7.

2 TECHNICAL PRELIMINARIES

The structure of a Bayesian network (BN) is given by
a DAG, and two given DAGs are considered Markov
equivalent iff they encode the same conditional inde-
pendencies, and consequently, represent the same class
of probability distributions. For example, the follow-
ing three DAGs are Markov equivalent:

X1 → X2 → X3 X1 ← X2 ← X3 X1 ← X2 → X3

Markov equivalence can be characterized by a graphi-
cal criterion, based on the structure of a DAG. First,
the skeleton of a DAG is the undirected graph found
by ignoring the orientation of the edges. Second, a
v-structure in a DAG is a set of three nodes X,Y, Z
with edges X → Y ← Z, but with no edge between X
and Z. The following theorem characterizes Markov
equivalent DAGs.

Theorem 1 (Verma and Pearl, 1990) Two
DAGs are Markov equivalent iff they have the same
skeleton and the same v-structures.

A set of Markov equivalent DAGs can be summarized
by a partially directed acyclic graph (PDAG), which
is a graph that contains both directed and undirected
edges, but with no directed cycles; see, e.g., Chicker-
ing (2002). Given a PDAG P , we can induce a set of
Markov equivalent DAGs by directing the undirected
edges of a PDAG, but as long as we introduce no di-
rected cycles and no new v-structures. We use class(P )
to denote this set of Markov equivalent DAGs.

In an equivalence class of DAGs, each edge of their
common skeleton can be classified as compelled, or re-
versible. An edge connecting X and Y is compelled
to a direction X → Y if every DAG in the equiv-
alence class has the directed edge X → Y . Other-
wise, an edge is reversible, and there exists a DAG in
the equivalence class with edge X → Y , and another
DAG with edge Y → X. In a PDAG, if all compelled
edges are directed in the appropriate orientation, and
all reversible edges are left undirected, then we obtain

a completed PDAG (CPDAG).1 A CPDAG uniquely
characterizes an equivalence class of DAGs (Chicker-
ing, 2002). That is, there is a one-to-one correspon-
dence between CPDAGs and equivalence classes. Fur-
ther, a given CPDAG represents all DAGs, and only
those DAGs, of a given equivalence class.

As an example, the CPDAG X1 −X2 −X3 represents
the Markov equivalence class for the three DAGs given
in our example from the start of this section. We pro-
vide another example below, of a DAG (left), and its
corresponding CPDAG (right).

X1

X2 X3X4

X5

X1

X2 X3X4

X5

3 SEARCH SPACES OVER BNs

Given a dataset D over variables X, we want to learn
the DAG G of a Bayesian network, but one that
minimizes a score that decomposes over families XU
(where X is a variable with parents U):

score(G | D) =
∑

XU score(XU | D). (1)

For example, MDL and BDeu scores decompose over
families (possibly negated, to obtain a minimization
problem). See, e.g., Darwiche (2009); Koller and
Friedman (2009); Murphy (2012). MDL and BDeu
scores are score equivalent : they assign the same score
to two Markov equivalent DAGs (Chickering, 1995).

3.1 BN Graphs

Previously, Chen et al. (2015) proposed the BN graph,
a search space over DAGs, for learning Bayesian net-
works from data. The BN graph was shown to be an ef-
fective framework for certain structure learning tasks,
such as enumerating the k-best DAGs, and for learning
with certain types of non-decomposable scores.

Figure 1(a) illustrates a BN graph over 3 variables.
In this graph, each node represents a DAG over some

subset of the variables X. A directed edge Gi
XU−−→ Gj

from a DAG Gi to a DAG Gj exists iff Gj can be
obtained from Gi by introducing variable X as a leaf
node with parents U. Thus, the BN graph is a layered
graph, where each layer adds one more leaf to a DAG
when we walk an edge from one layer to the next.
Hence, when we refer to a DAG Gi, we assume it is
on the i-th layer, i.e., Gi has i nodes. The top (0-th)

1CPDAGs are also sometimes referred to as essential
graphs or maximally oriented graphs.
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(a) A BN graph.
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Figure 1: Bayesian network search spaces for the set of variables X = {X1, X2, X3}.

layer contains the root of the BN graph, a DAG with
no nodes, which we denote by G0. The bottom (n-th)
layer contains DAGs Gn over our n variables X. A

path G0
X1U1−−−−→ · · · XnUn−−−−→ Gn from the root to a DAG

Gn on the bottom layer, is a construction of the DAG

Gn, where each edge Gi−1
XiUi−−−→ Gi adds a new leaf

Xi with parents Ui. Moreover, each path corresponds
to a unique ordering 〈X1, . . . , Xn〉 of the variables.

For example, consider the BN graph of Figure 1(a) and
the following path, i.e., sequence of DAGs:

G0 G1 G2 G3

X1 X1 → X2 X1 → X2 X3

Starting with the empty DAG G0, we add a leaf X1

(with no parents), then a leaf X2 (with parent X1),
then a leaf X3 (with no parents), giving us a DAG G3

over all 3 variables.

If each edge Gi−1
XiUi−−−→ Gi is associated with a cost

score(XiUi | D), then the cost of a path from the root
G0 to a goal Gn gives us the score of the DAG,

score(Gn | D) =
∑n

i=1 score(XiUi | D)

as in Equation 1. Hence, in the BN graph, the DAG
Gn with the shortest path from the root G0 to itself,
is an optimal DAG with the lowest cost.

The BN graph has O(n! · 2(n
2)) nodes, leading to a

tremendously large and seemingly intractable search
space. Classically, only approximate methods such as
MCMC and greedy local search were used to navigate
search spaces over DAGs. Recently, Chen et al. (2015)
showed that a search space as large as the BN graph
can in fact be efficiently navigated, by leveraging ad-
vances in optimal Bayesian network structure learning.

3.2 EC Graphs

We now propose a new search space for Bayesian net-
work structures, but more specifically, for their equiv-
alence classes. This is a more compact search space,

called the EC graph, where each node now represents
an equivalence class of DAGs.

In an EC graph, each node represents a CPDAG P ,
which denotes a set of Markov equivalent DAGs G.
Intuitively, we can obtain an EC graph by aggregating
the Markov equivalent DAGs of a BN graph into a
single node, and labeling the resulting node with the
corresponding CPDAG P .

Recall that in a BN graph, a directed edge Gi
XU−−→ Gj

indicates that DAG Gj can be obtained from DAG Gi

by adding to Gi a leaf node X with parents U. In
an EC graph, we have a corresponding directed edge

Pi
XU−−→ Pj . Here, the CPDAG Pi represents the equiv-

alence class class(Pi), containing DAGs Gi. We can
view the edge as adding a leaf node X with parents U
to each of the DAGs Gi ∈ class(Pi). First, we observe
that any of the resulting DAGs Gj must belong to the
same equivalence class Pj .

Proposition 1 Let Pi denote a CPDAG and let Gi

denote a DAG in class(Pi). If we add a new leaf Xi

with parents Ui to the DAGs Gi, the resulting DAGs
Gj belong to the same equivalence class Pj.

Figure 2(a) illustrates an EC graph over 3 variables.
Consider, as an example, the CPDAG X1−X2, which
corresponds to the Markov equivalent DAGs X1 → X2

and X1 ← X2. Adding a new leaf X3 with parent X2,
we obtain X1 → X2 → X3 and X1 ← X2 → X3, with
CPDAG X1−X2−X3. We remark that there is a third
DAG X1 ← X2 ← X3 in this equivalence class, which
we did not obtain here since X3 is not a leaf. This
DAG is obtained on a different path of the EC graph,
where we add X1 as a leaf to the CPDAG X2 −X3.

Proposition 2 For a given CPDAG P , and any DAG
G ∈ class(P ), there exists a path that constructs G
from root P0 to node P in the EC graph.

We remark that when we traverse an edge Pi
XU−−→ Pj ,

we add a new leaf to the DAGs of class(Pi), yet the new
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Figure 2: EC search spaces for the set of variables {X1, X2, X3}.

edges in the resulting CPDAG Pj may be directed or
undirected. Thus, to traverse the EC graph, we need
to a way to orient the new edges from parents U to
leaf X in CPDAG Pj . Previously, Chickering (1995)
proposed a polytime algorithm that, given a DAG G,
finds the corresponding CPDAG P . We next observe
that Chickering’s algorithm can be run incrementally,
by labeling only the new edges from U to X.

Proposition 3 Consider a DAG Gi, its CPDAG Pi,
and a DAG Gj obtained by adding a new leaf X to
DAG Gi, with parents U. The CPDAG Pj for Gj can
be obtained locally from Pi, by applying Algorithm 1.

Given a DAG G, Chickering’s original algorithm tra-
verses the nodes of a DAG G, in topological order, and
labels the edges incoming a node as either compelled
or reversible. Hence, running the same algorithm on
a DAG Gj will first obtain the sub-CPDAG Pi. The
edges incoming to the new leaf X can then be labeled
by running an additional iteration of Chickering’s al-
gorithm, which is given by Algorithm 1.

As in the BN graph, each edge Pi−1
XiUi−−−→ Pi is asso-

ciated with a cost, score(XiUi | D). For metrics that
are score equivalent, the cost of a path from the empty
CPDAG P0 to a CPDAG Pn gives us the score of the
corresponding DAGs Gn in class(Pn),

score(Gn | D) =
∑n

i=1 score(XiUi | D).

as in Equation 1. Hence, the CPDAG Pn that has the
shortest path from the root P0 is an optimal equiva-
lence class, whose DAGs have the lowest cost.

3.3 Order Graphs

Yuan and Malone (2013) formulate the structure learn-
ing problem as a shortest-path problem on a graph
called the order graph. Figure 1(b) illustrates an or-
der graph over 3 variables X. In an order graph, each

Algorithm 1: LabelEdges(P,XU)

Data: CPDAG P , new variable X with parents U in P
Result: Label edges from X to U as compelled/reversible
begin

label each edge between X and U as unknown
let G be any DAG in class(P )
while there exists an unknown edge do

let X ′ −X be the unknown edge with the greatest
X ′ in a topological ordering of G
foreach X ′′ → X ′ ∈ P do

if X ′′ 6∈ U then label all unknown Y −X
incident to X as compelled to X
else label X ′′ −X as compelled to X

if ∃Z ∈ U s.t. Z → X ′ /∈ G then label all
unknown Y −X incident to X as compelled to X
else label all unknown Y −X incident to X as
reversible

node represents a subset Y of the variables X. There
is a directed edge from Y to Z in the order graph iff we
add a new variable X to the set Y, to obtain the set Z.
We can view the order graph as another compressed
form of the BN graph (and the EC graph): if we ag-
gregate all DAGs G over the same subset of nodes Y
in the BN graph, we obtain an order graph.

The principle advantage of the order graph is its
size: there are only 2n nodes in the order graph
(which is much smaller than the BN graph). How-
ever, certain learning tasks, such as enumerating the
k-best Bayesian network structures, can be orders-of-
magnitude more effective on the BN graph than on the
order graph, as demonstrated by (Chen et al., 2015).

4 ENUMERATION WITH A*

Previously, Chen et al. (2015) demonstrated that enu-
merating the k-best Bayesian network structures can
be done effectively using A* search on the BN graph.
This approach was shown to be orders-of-magnitude
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more efficient than the existing state-of-the-art, which
included dynamic programming algorithms based on
the order graph (Tian et al., 2010), and methods based
on integer linear programming (Cussens et al., 2013).
Here, we propose to enumerate equivalence classes of
Bayesian network structures, also using A* search, but
now on the EC graph.

A* search is a best-first search, for finding shortest
paths on a graph. It uses an evaluation function f to
guide the search process, where we expand first those
nodes with the lowest f cost (Hart et al., 1968). In-
tuitively, nodes with lower f cost are more promising
nodes to explore. In an EC graph, the evaluation func-
tion for A* takes the form: f(P ) = g(P )+h(P ), where
P is a given CPDAG. Further, function g is the path
cost, i.e., the cost of the path to reach P from the root
node P0. Function h is the heuristic function, which
estimates the cost to reach a goal, starting from P .
If our heuristic function h is admissible, i.e., it never
over-estimates the cost to reach a goal, then A* search
is optimal. That is, the first goal node Pn that A*
expands is the one that has the shortest path from the
root P0. In general, A* search is more efficient, when
given a heuristic function h that can more accurately
estimate the cost to a goal state.

We are particularly interested in perfect heuristic func-
tions h(P ), which can predict the optimal path from
a given node P to a goal node Pn. In particular, A*
search with a perfect heuristic offers a simple approach
to enumerating shortest paths. In this case, A* can im-
mediately find the first optimal solution with a perfect
heuristic; indeed, it marches straight to a goal node
(with appropriate tie-breaking, where we expand the
deepest node first). The next best solution can be
found by simply continuing A* search. Once we have
exhausted all optimal CPDAGs (if more than one ex-
ists), a perfect heuristic is no longer perfect, with re-
spect to the next best CPDAGs. Our heuristic is still
admissible, however, as it still lower-bounds the cost
of a path from a node P to a goal node Pn—it may
just report a cost for a goal node that was already
enumerated (and hence has a lower cost).

Indeed, this was the strategy underlying the approach
proposed by Chen et al. (2015), to enumerate the k-
best DAGs, in the BN graph. More abstractly, we can
view this strategy as one that first assumes an oracle
(the perfect heuristic) that can solve an NP-complete
problem, i.e., finding the single best DAG Chickering
et al. (2004). We can then use this oracle to find the
k-th best DAG, which appears, fundamentally, to be a
much more difficult problem. For example, identifying
the k-th best most probable explanation (MPE) in a
Bayesian network is FPPP-complete (Kwisthout et al.,
2011), whereas the MPE problem itself is only NP-

Algorithm 2: ValidEdge(Pi−1, XiUi)

Data: CPDAG Pi−1 and candidate family XiUi

Result: true if Pi−1
XiUi−−−→ Pi is valid, false otherwise

begin
let Pi be the CPDAG obtained by appending Xi to
Pi−1 (using Algorithm 1)
foreach node Xk in Pi where k > i do

if there exists compelled edge Y ← Xk then
continue

let S = {Y | Y −Xk is reversible in P}
if variables in S form a clique then

return false

return true

complete (Shimony, 1994).

As in Chen et al. (2015), we assume an oracle that
can find the single-best DAG, but now to find the k-th
best CPDAG. For this purpose, any learning system
could be used as such, provided that it can accept a
DAG G, and find an optimal DAG Gn that extends
it. Systems such as URLearning meet this criterion
Yuan and Malone (2013), which we use in our subse-
quent experiments. See also Dechter et al. (2012), for
more on using A* search for k-best enumeration.2

4.1 Implementation

In our framework, the heuristic function evaluations
(made through our oracle) are relatively expensive op-
erations. Hence, we cache heuristic values (some en-
tries can even be primed, by inferring them from other
evaluations). Further, we use partial-expansion A* to
delay the generation of children (which does not sacri-
fice the optimality of A* search); see, e.g., Yoshizumi
et al. (2000); Felner et al. (2012). In particular, we
only generate those children whose heuristic values fall
within a certain threshold; this threshold is then in-
creased if a node needs to be re-expanded.

5 EC TREES

For heuristic search methods such as A* search, the
structure of the search space has a significant impact
on the efficiency of search. Consider the EC graph in
particular. A CPDAG node P can be reached from the

2We remark that Dechter et al. (2012) is more specif-
ically concerned with the enumeration of the k-shortest
paths. Since we are interested in enumerating the k-closest
goal nodes, we remark that some, but not all, of their theo-
retical analyses applies to our problem. In particular, each
distinct goal node in the EC graph may have many paths
that can reach it. Hence, once we obtain one goal node,
many more shortest-paths may be needed to obtain the
next closest (and distinct) goal node.
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root P0 via possibly many paths. Further, each path
has the same cost (Markov equivalent DAGs have the
same score). Thus, after we visit a node for the first
time, we do not care about other paths that reach the
same node. This redundancy introduces significant
memory and computational overheads to A* search.
Thus, we propose a canonization of the EC graph, that
ensures that every CPDAG node P can be reached by
a unique, canonical path. Here, each node has a single
parent, and hence, we obtain a search tree.3 Hence,
we refer to the canonized space as the EC tree. Fig-
ure 2(b) depicts an EC tree over 3 variables.

Consider any path P0
X1U1−−−−→ · · · XiUi−−−→ Pi from the

root node P0 to a node Pi, in the EC graph, which cor-
responds to an ordering of nodes, πi = 〈X1, . . . , Xi〉.
To define a canonical path from P0 to Pi, it thus suf-
fices to define a canonical ordering of the variables of
Pi. In turn, to define an EC tree from an EC graph,
it suffices to (1) associate each CPDAG node P with a
canonical ordering π, and (2) show which edges of the
EC graph remain in the EC tree, with respect to the
canonical orderings.

First, let us define a canonical ordering for a given
DAG G: let us use the largest topological ordering
that is consistent with a given DAG G, but in reverse
lexicographic order (where the right-most element in
an order is the most significant).4 We can construct
such an order, from right-to-left, by iteratively remov-
ing the leaf with the largest index. For example, the
DAG X1 ← X2 → X3 has two topological orderings:
πa = 〈X2, X1, X3〉 and πb = 〈X2, X3, X1〉, where πa
is larger in reverse lexicographic order (we remove X3

first, then X1, and then X2).

We now define a canonical ordering for a CPDAG P :
let us use the largest canonical ordering of its Markov
equivalent DAGs G ∈ class(P ). Consider the CPDAG
X1 −X2 −X3, and its Markov equivalent DAGs:

X1 → X2 → X3 X1 ← X2 ← X3 X1 ← X2 → X3

with the canonical orderings: πa = 〈X1, X2, X3〉,
πb = 〈X3, X2, X1〉, and πc = 〈X2, X1, X3〉. Among
these DAGs, ordering πa is the largest, and is thus the
canonical ordering of CPDAG X1 −X2 −X3.

Given a CPDAG P , we can construct its canonical
ordering π, again from right-to-left, by iteratively re-
moving the largest leaf among the Markov equivalent
DAGs in class(P ). As for obtaining the structure of the

3In more technical terms, the savings that we obtain
are: (1) duplicate detection is no longer needed (i.e., the
closed list), and (2) fewer edges in the search space implies
fewer heuristic function evaluations.

4Here, we assume comparisons are made based on the
natural ordering of variables, i.e., by index.

EC tree, this iterative process provides a local condi-

tion for determining whether an edge Pi−1
XiUi−−−→ Pi

belongs in the EC tree. That is, variable Xi must be
the largest leaf among the Markov equivalent DAGs in
class(Pi). This is summarized by the following result.

Proposition 4 Let πi−1 be the canonical ordering of
CPDAG Pi−1, and let Pi be the CPDAG found by
adding leaf Xi with parents Ui to the DAGs Gi−1 ∈
class(Pi−1). In this case, πi = 〈πi−1, Xi〉 is the canon-
ical ordering of Pi iff Xi has the largest index among
all leaves in DAGs Gi ∈ class(Pi).

It remains to show how to identify, for a given CPDAG
P , the largest leaf among the Markov equivalent DAGs
in class(P ). Consider the following CPDAG:

X1

X2 X4

X3

We note that P cannot be obtained by appending X4

as a leaf. If it could, then the resulting DAG would
have a new v-structure X2 → X4 ← X3, since there is
no edge connecting X2 and X3 (i.e., such a DAG would
not belong in the equivalence class of P ). As we cannot
append X4 as a leaf, it cannot be the last variable of
any topological ordering of a DAG in class(P ). How-
ever, there is a DAG in class(P ) where X3 is a leaf.
The canonical ordering for P thus mentions X3 last.

For a given CPDAG Pi, the following theorem al-
lows us to enumerate all leaves among the DAGs in
class(Pi), allowing us to easily test whether a node X
appears as the largest leaf in some DAG of a given
CPDAG P . Algorithm 2 further provides a polytime
procedure for this test.

Theorem 2 Consider a CPDAG P and variable X,
with no compelled edges directed away from X. Let set
S be the nodes adjacent to X through a reversible edge.
In this case, there exists a DAG G ∈ class(P ) where
X is a leaf iff nodes S form a clique in P .

A proof appears in the supplementary Appendix.

Finally, we remark that the only difference between
the EC tree and the EC graph is that each node in
the EC tree can be reached through exactly one path,
compared to multiple paths in the EC graph. This
distinction results in memory and computational sav-
ings for A* search, as discussed earlier. Otherwise, A*
search in the EC tree proceeds in the same manner as
in the EC graph. In particular, a heuristic function
is admissible in the EC tree iff it is admissible in the
EC graph. Thus, to navigate the EC tree, we use the
same heuristic function as discussed in Section 4.1.



Eunice Yuh-Jie Chen, Arthur Choi, Adnan Darwiche

benchmark 10-best 100-best 1, 000-best
EC tree KBestEC EC tree KBestEC EC tree KBestEC

name n N t m t m t m t m t m t m

wine 14 178 0.05 1 15.35 2 0.15 1 270.14 2 0.86 1 5569.34 4
letter 17 20,000 18.11 1 120.26 2 48.31 1 2559.38 2 81.72 1 ×t

voting 17 435 1.89 1 141.66 2 2.11 1 3289.75 2 6.67 1 ×t

zoo 17 101 2.89 1 139.37 2 3.59 1 3206.18 2 6.03 1 ×t

statlog 19 752 29.28 1 618.73 2 41.99 1 ×t 43.89 1 ×t

hepatitis 20 126 36.33 1 1328.27 2 63.37 1 ×t 101.05 2 ×t

imports 22 205 174.84 4 ×s 223.78 4 ×s 224.11 4 ×s

parkinsons 23 195 897.81 8 ×t 897.97 8 ×t 898.68 8 ×t

Table 1: Time t (in seconds) and memory m (in GBs) used by EC tree and KBestEC. ×t denotes an out-of-time (2hr),
and ×s denotes a segmentation fault. n is the number of variables in the dataset, and N is the size of the dataset.

benchmark 10-best 100-best 1, 000-best
name n gen. exp. re-exp. invoke gen. exp. re-exp. invoke gen. exp. re-exp. invoke

adult 14 243 220 630 67 2045 1865 12355 265 15072 13574 163462 465
wine 14 2205 1874 0 39 12691 10256 10156 206 68403 56612 111224 358
nltcs 16 252 249 2151 287 1407 1389 27069 689 11431 11193 356755 1363
letter 17 377 377 2936 324 2705 2704 59915 1562 16057 15979 659076 3373
msnbc 17 555 555 5450 1147 969 965 22490 1269 2662 2561 78050 1313
voting 17 1617 1419 0 147 15971 11613 23026 413 114498 106378 421512 1402
zoo 17 192 151 0 166 1978 1029 929 377 9330 8812 7812 864

statlog 19 393 369 0 212 3379 3065 2965 444 26698 24063 46126 685
hepatitis 20 2431 2281 0 667 17875 15852 15752 2191 121022 99956 197912 6423
imports 22 666 270 0 103 4181 2034 0 244 21544 14064 0 259

parkinsons 23 836 524 0 214 4222 2616 0 237 26390 17134 0 318

Table 2: EC tree: number of nodes (1) generated, (2) expanded, (3) re-expanded, and (4) oracle invocations.

6 EXPERIMENTS

We compare our approach with the recently proposed
algorithm for finding the k-best equivalence classes of
Bayesian networks, called KBestEC,5 based on dy-
namic programming (DP) (Chen and Tian, 2014).

Our experiments were performed on a 2.67GHz Intel
Xeon X5650 CPU. We use real-world datasets from the
UCI ML Repository (Bache and Lichman, 2013),6 and
assume BDeu scores with an equivalent sample size
of 1. We adapt the URLearning structure learning
package of Yuan and Malone (2013) and Fan et al.
(2014),7 to serve as our oracle for learning a single
optimal DAG, as in Section 4. We pre-compute the
scores of candidate parent sets, which we provide as
input into each system we evaluate. All timing results
are averages over 10 runs.

For each approach, we enumerate the 10-best, 100-
best and 1, 000-best CPDAGs, with a 2 hour limit on
running time. To analyze memory usage, we incre-
mentally increased the amount of memory available

5Open-source, available at http://web.cs.iastate.
edu/~jtian/Software/AAAI-14-yetian/KBestEC.htm

6Discretized, and available at http://urlearning.org/
7Open-source, available at http://urlearning.org/.

To share computations among repeated invocations of
URLearning, we also cache some intermediate results.

to each system (from 1GB, 2GB, 4GB, to 8GB), and
recorded the smallest limit that allowed each system
to finish. For our A* search, we set the threshold for
partial-expansion to the value of the optimal BN plus
1, which increases by 1 for re-expansions.

Table 1 summarizes our results for A* search on the
EC tree, and for the DP-based approach of KBestEC.
First, we observe that on instances where both A*
search and KBestEC are successful, A* search is con-
sistently more efficient, both in terms of computation
time and in memory usage. In terms of time, A* search
can be orders of magnitude more efficient: for exam-
ple, in the zoo dataset, A* search is over 893 times
faster than KBestEC. We further observe that A*
search is capable of scaling to larger networks, and
to larger values of k. In fact, KBestEC appears to
scale super-linearly with k, but A* search appears to
scale sub-linearly with respect to k. This trend can
in part be attributed to the more exhaustive nature
of DP, which maintains all partial solutions that can
potentially be completed to a k-th best solution.

To gain more insight about the computational nature
of A* search on the EC tree, consider Tables 3 & 2,
which includes 3 additional datasets, adult, nltcs, and
msnbc (we were unable to generate score files for these
datasets using KBestEC). In Table 3, we consider the
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benchmark 10-best 100-best 1, 000-best
name n Th TA∗ Th TA∗ Th TA∗

adult 14 0.25 0.01 0.49 0.05 0.63 0.56
wine 14 0.03 0.02 0.05 0.10 0.09 0.77
nltcs 16 3.35 0.01 5.44 0.12 8.08 1.50
letter 17 18.07 0.04 47.74 0.57 75.54 6.18
msnbc 17 145.64 0.07 152.87 0.18 154.61 0.46
voting 17 1.88 0.01 1.92 0.19 4.16 2.51
zoo 17 2.88 0.01 3.55 0.04 5.83 0.20

statlog 19 29.27 0.01 41.94 0.05 43.49 0.40
hepatitis 20 36.24 0.09 62.79 0.58 96.82 4.23
imports 22 174.82 0.02 223.71 0.07 223.81 0.30

parkinsons 23 897.74 0.07 897.82 0.15 898.25 0.43

Table 3: Time Th to compute the heuristic function, and
time TA∗ spent in A* search (in seconds).

benchmark n N 10-best 100-best 1, 000-best

adult 14 30,162 68 1,399 15,572
wine 14 178 60 448 4,142
nltcs 16 16,181 3,324 27,798 248,476
letter 17 20,000 884 15,796 569,429
msnbc 17 291,326 231,840 1,720,560 16,921,080
voting 17 435 30 413 3,671
zoo 17 101 52 377 5,464

statlog 19 752 44 444 4,403
hepatitis 20 126 89 892 8,919
imports 22 205 12 136 1,493

parkinsons 23 195 132 476 3,444

Table 4: Number of DAGs in the k-best equivalent classes.

amount of time Th spent in evaluating the heuristic
function (i.e., invoking our oracle), and the time TA∗
spent traversing the EC tree in A* search (where total
time spent is t = Th + TA∗, as reported in Table 1).
Table 2 further reports the number of nodes generated
(i.e., inserted into the open list), expanded, and re-
expanded (by partial-expansion) in A* search. We also
report the number of oracle invocations. First, observe
that A* search spends almost all of its time in evalu-
ating the heuristic function, which we already know is
relatively expensive. Next, observe that the the num-
ber of nodes generated is relatively low. This suggests
that the oracle is powerful enough to efficiently nav-
igate the search space of the EC tree. Further, we
observe that the number of oracle invocations is also
low, which is further minimized by caching and infer-
ring heuristic values, as discussed in Section 4.1.

We further count the equivalent number of DAGs rep-
resented by the k-best CPDAGs, in Table 4. Pre-
viously, Gillispie and Perlman (2001) observed that
when the number of variables is small (not greater
than 10), a CPDAG represents on average 3.7 DAGs.
Here, we observe that for a moderate number of vari-
ables, a CPDAG may represent a much larger number
of DAGs. That is, when we learn equivalence classes,
the data may prefer CPDAGs with many reversible

benchmark 1, 000-best EC
EC tree BN graph

name n N t m t m

adult 14 30,162 1.19 1 11.87 1
wine 14 178 0.86 1 3.89 1
nltcs 16 16,181 9.58 1 1,126.05 4
letter 17 20,000 81.72 1 4,666.29 4
msnbc 17 291,326 155.07 1 ×t

voting 17 435 6.67 1 17.89 1
zoo 17 101 6.03 1 10.34 1

statlog 19 752 43.89 1 76.99 1
hepatitis 20 126 101.05 2 284.46 4
imports 22 205 224.11 4 604.14 8

parkinsons 23 195 898.68 8 1,450.46 16

Table 5: Time t (in seconds) and memory m (in GBs) used
by EC tree and BN graph. n is the number of variables
in the dataset, and N is the size of the dataset. A ×t

corresponds to an out-of-time (2hr).

edges (deviating from the average case). For example,
the larger datasets (larger N) tend to have equivalence
classes that contain many more DAGs. When we com-
pare the enumeration of the 1, 000-best equivalence
classes, with the enumeration of an equivalent number
of DAGs, using the system of Chen et al. (2015),8 we
can again see orders-of-magnitude improvements in ef-
ficiency; see Table 5. In the supplementary Appendix,
we observe similar gains by the EC tree, compared
to the BN graph, in terms of nodes explored by A*
search, as would be expected (EC trees have smaller
search spaces).

7 CONCLUSION

In this paper, we propose an approach for enumerating
the k-best equivalence classes of Bayesian networks,
from data. Our approach is an instance of a more gen-
eral framework for the optimal structure learning of
Bayesian networks, given by Chen et al. (2015). In
particular, we specialize the search space of Bayesian
network structures, to a search space of their equiva-
lence classes. We further identify a canonization of this
search space, to improve the efficiency of search fur-
ther. Empirically, our approach is orders-of-magnitude
more efficient than the state-of-the-art, in the task of
enumerating equivalence classes.
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Appendix

Proof of Theorem 2

First recall the following theorem from Verma and
Pearl (1992); Meek (1995).

Theorem 3 Given a PDAG where all the v-structures
are oriented, then the CPDAG can be obtained by re-
peatedly applying the following orientation rules:

R1 Orient b−c into b→ c whenever there is an arrow
a→ b such that a and c are nonadjacent.

R2 Orient a − b into a → b whenever there is chain
a→ c→ b.

R3 Orient a − b into a → b whenever there are two
chains a− c→ b and a− d→ b such that c and d
are nonadjacent.

R4 Orient a − b into a → b whenever there are two
chains a− c → d and c → d → b such that c and
b are nonadjacent and a and d are nonadjacent.

Proof of Theorem 2 (If:) First, note that there are
no compelled edges directed away from X (which
would make X a non-leaf). Next, note that we can
compel each edge S −X towards X one-by-one, each
time checking if Theorem 3 compels another edge in
S′−X towards S′ instead. If this never happens, then
all edges S − X can be oriented towards X (which
makes X a possible leaf).

We start by orienting one edge S−X towards S. Con-
sider each of the rules in Theorem 3:

R1 cannot be used to orient the edge from X → S.
First, if there were some other compelled edge
Y → X where Y 6∈ S and Y is not adjacent to
S, then the edge S −X should already have been
compelled (i.e., P was not a CPDAG). Otherwise,
we only orient edges from S → X and all S ∈ S
are adjacent.

R2 cannot be used to orient the edge from X → S,
since there is no chain from X to S (which would
imply X was a non-leaf).

R3 cannot be used to orient the edge from X → S,
since all potential neighbors c and d via an unori-
ented edge must be adjancent.

R4 cannot be used to orient the edge from X → S,
since all potential neighbors c and b via an unori-
ented edge must be adjancent.

Since no rule compels us to orient an edge away from
X, we can orient the edges one-by-one to make X a
leaf.

(Only if:) We show that if S is not a clique, then X is
not a leaf. If S is not a clique, then there is a pair S
and S′ in S that are non-adjacent. If we orient S −X
as S ← X, then X is not a leaf. If we orient S −X as
S → X, then by Theorem 3, Rule R1, we must orient
S′ −X as S′ ← X. Hence, X is not a leaf. �

Proofs of Propositions

Proof of Proposition 1 Follows from the definition
of equivalence classes. �

Proof of Proposition 2 This path can be con-
structed by following any path to G in the BN graph,
and then identifying the corresponding CPDAGs in
the EC graph. �

Proof of Proposition 3 Follows from Theorem 10
in Chickering (1995). �

Proof of Proposition 4 Follows from the fact that
the canonical ordering is the ordering with the largest
reverse lexicographic order. �

EXPERIMENTS: EC TREE VS. BN GRAPH

In this section, we provide additional experimental re-
sults on EC trees and BN graphs, to gain a deeper
insight into their performances differences. We first
enumerate the 10-best, 100-best, and 1000-best equiv-
alence classes using a EC tree. Using the BN graph,
we then enumerate an equivalent number of DAGs, per
dataset; Table 4 (from the main text) reports these
numbers. Table 6 summarizes the time (in seconds)
and memory (in GB) used by the EC tree and the
BN graph, during A* search. As seen in the paper,
the EC tree is more efficient (both in speed and mem-
ory consumption) than the BN graph, up to orders of
magnitude differences (at least in time).

Table 7 shows, for the BN graph, the number of gen-
erated nodes, expanded nodes, re-expanded nodes (by
partial-expansion), and the number of invocations of
the oracle. In contrast to the EC tree (from Table 2 in
the main text), the BN graph usually expands and gen-
erates at least one order of magnitude more nodes, and
in some datasets, e.g., letter, msnbc and nltcs, more
than three orders of magnitudes. In addition, Table 8
shows the time spent on computing the heuristic func-
tion Th and the time spent on traversing the search
space TA∗. For the data sets where the k-best equiv-
alence classes contains a large number of DAGs, i.e.,
adult, letter, msnbc and nltcs, the majority of the time
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benchmark 10-best EC 100-best EC 1, 000-best EC
EC tree BN graph EC tree BN graph EC tree BN graph

name n N t m t m t m t m t m t m

adult 14 30162 0.26 1 0.47 1 0.54 1 1.49 1 1.19 1 11.87 1
wine 14 178 0.05 1 0.09 1 0.15 1 0.33 1 0.86 1 3.89 1
nltcs 16 16181 3.36 1 11.34 1 5.56 1 46.91 1 9.58 1 1126.05 4
letter 17 20000 18.11 1 20.68 1 48.31 1 84.07 1 81.72 1 4666.29 4
msnbc 17 291326 145.71 1 896.45 2 153.05 1 ×t 155.07 1 ×t

voting 17 435 1.89 1 2.86 1 2.11 1 3.70 1 6.67 1 17.89 1
zoo 17 101 2.89 1 5.09 1 3.59 1 5.85 1 6.03 1 10.34 1

statlog 19 752 29.28 1 51.89 1 41.99 1 73.77 1 43.89 1 76.99 1
hepatitis 20 126 36.33 1 86.05 2 63.37 1 176.83 2 101.05 2 284.46 4
imports 22 205 174.84 4 455.65 8 223.78 4 603.68 8 224.11 4 604.14 8

parkinsons 23 195 897.81 8 779.90 16 897.97 8 1034.50 16 898.68 8 1450.46 16

Table 6: Time t (in seconds) and memory m (in GBs) used by EC tree and BN graph. n is the number of
variables in the dataset, and N is the size of the dataset. A ×t corresponds to an out-of-time (2hr).

benchmark 10-best EC 100-best EC 1, 000-best EC
name n gen. exp. re-exp. invoke gen. exp. re-exp. invoke gen. exp. re-exp. invoke

adult 14 1672 1352 3852 173 30619 27015 179312 634 245687 215753 2602353 1050
wine 14 8203 3714 0 107 44209 23572 23124 274 461799 254154 500024 595
nltcs 16 56719 53572 452232 633 326813 314528 6021330 1372 2727808 2605978 82512570 2180
letter 17 16296 16227 153430 678 230931 230931 4948105 2726 5443620 5424968 213643716 4963
msnbc 17 1288695 1288339 10564990 2695 ×t ×t

voting 17 5314 4364 346 147 72658 50004 99182 413 114498 106378 421512 3965
zoo 17 1049 704 0 330 12003 3875 3498 539 53562 47162 41698 1695

statlog 19 1915 1558 0 212 19653 12847 12403 628 153048 101570 194334 1029
hepatitis 20 18726 15470 0 4645 167033 105997 105105 13223 1378039 720381 1422924 31854
imports 22 1023 295 0 150 8041 2724 0 404 41007 21475 0 426

parkinsons 23 8233 2732 0 290 32136 10189 0 652 151200 58802 0 1273

Table 7: BN graph: number of nodes (1) generated, (2) expanded, (3) re-expanded, and (4) oracle invocations.

benchmark 10-best EC 100-best EC 1, 000-best EC
name n Th TA∗ Th TA∗ Th TA∗

adult 14 0.46 0.02 0.88 0.61 1.11 10.76
wine 14 0.05 0.04 0.06 0.26 0.12 3.77
nltcs 16 9.22 2.11 15.00 31.90 18.23 1107.81
letter 17 19.52 1.16 48.28 35.79 70.22 4596.07
msnbc 17 126.34 770.11 ×t ×t

voting 17 2.80 0.06 2.86 0.84 7.32 10.57
zoo 17 5.06 0.02 5.77 0.09 9.69 0.65

statlog 19 51.78 0.11 73.47 0.30 75.31 1.68
hepatitis 20 85.56 0.48 174.07 2.76 263.28 21.18
imports 22 454.71 0.93 602.49 1.19 602.71 1.43

parkinsons 23 778.45 1.45 1032.56 1.94 1447.56 2.89

Table 8: Time Th to compute the heuristic function and time TA∗ spent in A* search, in the BN graph (in
seconds).

is spent on exploring the search space, rather the com-
puting the heuristic function. This is in contrast to
the EC tree, illustrated in Table 3, and the smaller
datasets in Table 8, where the heuristic function is the
performance bottleneck. However, on the EC tree, for

these larger datasets, only a very small amount of time
is used to traverse the search space (in Table 3), which
shows that the EC tree is a more compact and efficient
search space for enumerating equivalence classes.


