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Abstract
The space of Bayesian network structures is forbiddingly large and hence numerous techniques
have been developed to prune this search space, but without eliminating the optimal structure.
Such techniques are critical for structure learning to scale to larger datasets with more variables.
Prior works exploited properties of the MDL score to prune away large regions of the search space
that can be safely ignored by optimal structure learning algorithms. In this paper, we propose new
techniques for pruning regions of the search space that can be safely ignored by algorithms that
enumerate the k-best Bayesian network structures. Empirically, we show that these techniques
allow a state-of-the-art structure enumeration algorithm to scale to datasets with significantly more
variables.
Keywords: Bayesian networks, structure learning, model selection, minimum description length.

1. Introduction

Learning the structure of a Bayesian network is a fundamental problem in artificial intelligence and
machine learning, where one seeks a structure (i.e., DAG) that best explains a given dataset. In
practice, learning a single optimal DAG may not be sufficient, especially when the dataset size is
small and noisy. Thus, we are interested in discovering other likely DAGs, and not just the best one.

Recently, a number of algorithms have been proposed to enumerate the k-most likely DAGs
from a given dataset (Tian et al., 2010; Cussens et al., 2013; Chen and Tian, 2014; Chen et al., 2015,
2016). For example, using dynamic programming, Tian et al. (2010) can enumerate the 100-best
networks for real-world datasets with 17 variables. Using heuristic search methods, Chen et al.
(2015) can enumerate the 1, 000-best networks for real-world datasets with 23 variables, which is
the current state-of-the-art. In this paper, we show how to extend the reach of systems like Chen
et al. (2015) further, and allow it to enumerate structures for datasets with 29 variables. Each of
these advances is quite significant, when we consider how quickly the search space grows, as we
increase the number of variables.1

More specifically, we propose techniques that can greatly reduce the search space of Bayesian
network structures, by safely eliminating regions that do not contain any of the k-most likely DAGs
that we are interested in. By exploiting properties of the popular MDL score for Bayesian networks,
we identify an upper bound on the number of parents that a node can have, in any of the k-best
structures. Any structure enumeration algorithm that can incorporate such a bound (including all
of the aforementioned approaches) can benefit from the techniques that we propose. In fact, our

1. For n variables, there are O(n! · 2(
n
2)) BN structures. More precisely, for n = 17, 23 and 29, there are 6.27 · 1052,

6.97 · 1094 and 2.51 · 10148 structures, respectively; see https://oeis.org/A003024.
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bounds generalize those proposed for the problem of learning a single optimal structure (Suzuki,
1996; Tian, 2000; De Campos and Ji, 2011). Such bounds are broadly used in the literature, and the
scalability of modern structure learning algorithms depend critically on such bounds.

This paper is organized as follows. In Section 2, we review score-based structure learning
and the MDL score. In Section 3, we propose our techniques for pruning the search space for
the purposes of enumerating the k-best Bayesian network structures. We evaluate our approach
empirically in Section 4, and conclude in Section 5. Proofs are provided in the Appendix.

2. Technical Preliminaries and Related Work

We use upper case letters (X) to denote variables and lower case letters (x) to denote their values.
Variable sets are denoted by bold-face upper case letters (X) and their instantiations by bold-face
lower case letters (x). We use |X| to denote the number of values of a discrete variable X , and
|X| to denote the number of variables in a set X. Generally, we will use X to denote a variable in
a Bayesian network and U to denote its parents. We refer to a variable X and its parents U as a
family, which we denote by XU.

2.1 Score-Based Structure Learning

Score-based approaches to learning the structure of a Bayesian network are based on searching for
a DAG that minimizes a given scoring metric, which generally rates the quality of a DAG based (in
part) on how well a given structure fits a given dataset D (which is typically complete). Structure
scores often decompose into a sum of local scores, over the families XU of the DAG:

score(G | D) =
∑

XU score(XU | D). (1)

For example, MDL and BDeu scores are decomposable (note that we negate such scores as needed
to obtain minimization problems). For more on score-based structure learning, see, e.g., Darwiche
(2009); Koller and Friedman (2009); Murphy (2012).

In the problem of enumerating the k-best DAGs, we simply want k DAGs with the smallest
scores. One of the first approaches for solving this problem optimally was due to Tian et al. (2010),
which extended a dynamic programming (DP) approach originally intended for learning a single
optimal DAG (Koivisto and Sood, 2004; Singh and Moore, 2005; Silander and Myllymäki, 2006).

Another approach for enumerating the k-best DAGs is to encode the learning problem as a series
of integer linear programming (ILP) problems (Cussens et al., 2013). The first ILP problem encodes
the problem of finding a single optimal DAG (Jaakkola et al., 2010; Cussens, 2011; Cussens et al.,
2013). The corresponding solution is then added as a constraint to the current ILP problem, whose
new solution gives us the second best DAG. This process continues until we can enumerate each of
the k-best DAGs.

The current state-of-the-art for enumerating the k-best DAGs is based on heuristic search meth-
ods such as A* (Chen et al., 2015). It is based on navigating a seemingly intractable search space
over all DAGs. The complexity of this search can be mitigated, however, by exploiting an oracle
that can find a single optimal DAG. This search space, called the BN graph, can also be used to learn
Bayesian network structures with non-decomposable priors and constraints (Chen et al., 2015).
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2.2 Evaluating Bayesian Network Structures Using the MDL Score

Suppose we are given a (complete) datasetD containing N examples over a set of variables X. The
MDL score of a DAG G given dataset D is denoted by MDL(G|D) and defined as:

MDL(G|D) =
∑

XU MDL(X|U)

which decomposes into local scores MDL(X|U) over the families XU of G:

MDL(X|U) = H(X|U) + c ·K(X|U).

where c = 1
2 log2N is a constant. The MDL score balances between two objectives. First, we seek

to minimize the conditional entropy:

H(X|U) = −N ·
∑

xu PrD(xu) log2 PrD(x|u)

where H(X|U) is the conditional entropy of a variable X given its parents U (and scaled by N
here). This conditional entropy is computed with respect to the empirical distribution PrD induced
by the data, i.e., PrD(x) = 1

ND#(x), where D#(x) is the number of times instance x appears
in the dataset D. Roughly, the conditional entropy H(X|U) is the expected uncertainty in the
value of variable X , when we observe the parents U. Hence, the lower the conditional entropy, the
better the parents U are at predicting the value of X (and hence, providing a better fit of the data).
Finally, we remark that the conditional entropy is non-negative, and upper-bounded byHmax(X) =
N ·log2 |X|. This upper bound corresponds to the entropy of the uniform distribution overX , where
Pr(x) = 1

|X| .
The second objective of the MDL score is to minimize the model complexity:

K(X|U) = (|X| − 1)
∏
U∈U |U |

where K(X|U) is the number of free parameters in the conditional distribution of X given U. For
a given DAG G, the sum of all K(X|U) is the total number of free parameters in the corresponding
Bayesian network.2

2.3 Pruning Parent Sets with the MDL Score

The MDL score balances the fit of the data with the complexity of the model. Prior works have
studied this balance, finding ways to prune the search space of DAGs, thus simplifying the learning
problem (Tian, 2000; Teyssier and Koller, 2005; De Campos and Ji, 2011), at least for the case of
learning a single optimal DAG.

Consider now a variable X and two candidate parent sets U and U′, where U ⊂ U′. The
following theorem identifies a general situation where we can guarantee that U′ will never appear
in a DAG minimizing a decomposable score (MDL or otherwise).

Theorem 1 (Teyssier and Koller (2005)) Let D denote a dataset with a variable X and two can-
didate sets of parents U and U′. If U′ ⊂ U and score(XU′|D) < score(XU|D), then no DAG G
that minimizes score(G|D) contains the family XU.3

2. We note that the MDL and BIC scores are numerically equivalent, and that both scores are asymptotically equivalent
to the BDeu score; see, e.g., Koller and Friedman (2009).

3. Although non-strict inequalities lead to more pruning, we use strict inequalities to simplify the discussion.
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Consider a DAG G that contains XU as a family. We can replace the family XU with the smaller
familyXU′ and obtain a new DAGG′, since replacingXU with a smaller family will not introduce
any directed cycles. Moreover, since the smaller family XU′ has a better score, the new DAG G′

also has a better score (since the scores of other families do not change). Hence, an optimal DAG
would not contain such a family XU, as we can always obtain a better DAG with a strictly better
score. We can thus ignore the family XU when searching for an optimal Bayesian network.

The ability to prune many families in this manner is critical to the efficiency and scalability
of structure learning (De Campos and Ji, 2011; Cussens, 2012). Unfortunately, Theorem 1 is not
practical enough by itself, as there are exponentially many pairs of parent sets U and U′ to test.
However, the MDL score lends itself to a simple test on the size of a parent set, that allows us to
eliminate a large number of structures at once.

Roughly, there is a trade-off in the score of a family MDL(XU|D) when we try to add a new
parent U to X . Adding a parent increases the fit of the data, but it also increases the complexity of
the model. For the MDL score, there is a point after which adding new parents cannot provide a
better fit of the data, compared to the additional complexity it would introduce. This is summarized
by the following theorem.

Theorem 2 Given a dataset with N examples, there exists an optimal DAG under the MDL score
where families XU have parents where |U| ≤ blog2 Nc c, where c = 1

2 log2N .

Theorem 2 provides an upper bound on the number of parents U that a variable X needs to have
in an optimal Bayesian network. If a structure learning algorithm can accommodate such a bound,
then it can potentially eliminate an exponential number of candidate structures. For example, in
frameworks based on heuristic search methods such as A*, one can prune away nodes (representing
DAGs) in the search space when they violate the bounds (Chen et al., 2015). Similarly, in frame-
works based on dynamic programming, one can simplify the underlying recurrence relations so that
they do not consider sub-problems that violate the bounds. As another example, approaches based
on ILP can significantly benefit from pruning away irrelevant families (those with too many par-
ents). Such families do not need to be encoded into the ILP, and can lead to exponentially fewer ILP
variables in the encoding of a structure learning problem (Jaakkola et al., 2010; Cussens, 2011). For
structure learning approaches based on decomposable scores (as in Equation 1), one typically has to
solve local optimization sub-problems of the form maxU score(XU|D). Some approaches perform
some pre-computations on these sub-problems, allowing for more efficient lookups to be performed
during structure learning itself (De Campos and Ji, 2011; Yuan and Malone, 2013). However, for
datasets over larger sets of variables, such an approach is only feasible when (1) there are not too
many scores to process, and (2) the associated data structures can fit in memory (both are indeed
enabled by the above bounds).

3. Pruning Parent Sets While Enumerating Structures

In this section, we generalize the pruning techniques from the previous section for the task of enu-
merating the k-best Bayesian network structures. For example, Theorem 2 can only guarantee that
X does not have too many parents in an optimal DAG—but it says nothing about how many parents
a variable can have in the 2nd best DAG.

Our goal in this paper is to prune the space of structures that we need to consider when enumer-
ating the k-best DAGs. First, we present a simple generalization of Theorem 1.
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Theorem 3 Let D denote a dataset, with variable X and a candidate set of parents U. If there
are k parents sets U′ ⊂ U where score(XU′|D) < score(XU|D), then none of the k-best DAGs
contains the family XU.

Consider a DAG G that contains XU as a family. We can replace the family XU with any of the
k-better families XU′ (none of which will introduce a cycle), and obtain k new DAGs G with a
strictly lower score. Hence, none of the k-best DAGs will contain such a family XU, since we
can always find k better DAGs with lower scores. Hence, we can eliminate the family XU from
consideration when enumerating the k-best DAGs. That is, no DAG that contains XU as a family
will be found in the first k best scoring DAGs. We remark that Theorem 3 was also implicitly used
in the k-best enumeration algorithms of Tian et al. (2010) and Chen and Tian (2014), although we
make the underlying concept explicit here.

The following observation provides another simple condition where we can safely prune a fam-
ily from an enumeration problem.

Theorem 4 Let D denote a dataset, with variable X and a candidate set of parents U. Let G
denote the DAG with the best score(G|D), among all DAGs containing the family XU. If there are
k better DAGs G′ where score(G′|D) < score(G|D), then none of the k-best DAGs of dataset D
contains the family XU.4

Theorems 3 and 4 are simple and intuitive, but they are of limited practical utility by themselves.
However, we explicate them as they conceptually underlie more practical and sophisticated tests that
we shall soon propose. Before we proceed, we first remark that Theorem 3 is based on reasoning
locally about families XU. In contrast, Theorem 4 is based on reasoning globally about DAGs G.
We consider instances of such local and global tests, next.

3.1 Pruning with Local Tests

Theorem 2 provided a practical realization of Theorem 1, for the MDL score. It provided an upper
bound on the number of parents that a variable needs to have in an optimal DAG, which allows
us to eliminate a large proportion of DAG structures at once (but without eliminating the optimal
DAG). Theorem 2 was based on the trade-off between the conditional entropy (fit to the data) and
the model complexity (number of parameters). The following result establishes an analogous bound
for the problem of enumerating the k-best structures.

Theorem 5 Let D denote a dataset, with variable X and a candidate set of parents U. If we have
Hmax(X) ≤ 1

2c ·K(X|U), then every proper subset U′ of U has a local score MDL(XU′|D) ≤
MDL(XU|D), where c = 1

2 log2N .

Intuitively, this theorem identifies a limit on the number of parents U that a variable needs to have,
where the added complexity of a large enough parent set U makes every smaller parent set U′ ⊂ U
preferable to U itself. In particular, if a given parent set U satisfies the conditions of Theorem 5,
then there are 2|U| − 1 smaller parent sets U′ ⊂ U that are at least as good as U. Thus, if we are
interested in enumerating the k-best DAGs, and if k ≤ 2|U| − 1, then we know that XU is not
needed to find the k-best DAGs, via Theorem 3. As a result, we obtain the following result that is
analogous to Theorem 2.

4. Note that if G is the best DAG containing the family XU, and if G′ is a DAG with a strictly better score, then G′

cannot contain the family XU (by the optimality of G).
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Theorem 6 Given a dataset with N examples, there exists a set of k-best DAGs under the MDL
score where families XU have parents where |U| ≤ d = blog2 2N

c c when k ≤ 2d+1 − 1.

Like Theorem 2, Theorem 6 provides an upper bound on the number of parents U that a variable X
needs to have, but now for the k-best Bayesian networks. The above bound may not be tight, in that
there may be a tighter bound on the number of parents, perhaps using a more complex test. Next,
we will indeed consider some more sophisticated tests that can allow us to prune more candidate
structures for the k-best enumeration problem.

3.2 Pruning with Global Tests

We now provide a practical realization of Theorem 4, which states that if there are k DAGs better
than the best DAG containing a family XU, then we can prune any DAG containing the family
XU for the purposes of enumerating the k-best DAGs. While Theorem 3 reasons locally about the
family XU, Theorem 4 reasons globally about DAGs. The importance of this distinction is that it
will allow us to be more aggressive in pruning the space of DAGs.

We shall now propose a practical method for pruning a familyXU, by reasoning globally about
DAGs. We shall proceed in multiple steps. First, we will discuss a technique that allows us to
determine when there are k better DAGs than a given DAG G. Next, we will apply this technique
so that we can prune a family XU under the assumption that a DAG’s topological ordering is fixed.
Finally, we will generalize across all possible topological orderings, allowing us to prune XU as a
candidate family for the original learning problem over all DAGs.

Consider again Theorem 5, which tells us if a family XU has too many parents U, then under
the MDL score, the complexity of the corresponding model is high enough so that every smaller
family XU′ will be preferred, where U′ ⊂ U. This reasoning can be extended to multiple families
YV, for a given set of variables Y. That is, the size of the family XU can introduce enough model
complexity so that we can reduce the size of other families YV as well, and still obtain a better
scoring DAG. This is formalized in the following theorem.

Theorem 7 Suppose we are given a dataset with N examples over variables X, and a DAG G with
(1) a family XU and (2) a set of variables Y ⊆ X\X with families YV for each Y ∈ Y. Suppose
further that

Hmax(X) +
∑
Y ∈Y

Hmax(Y ) ≤ 1

2
c ·K(X|U)

where c = 1
2 log2N . If we construct a new DAG G′ from G where we:

1. replace the parents U of variable X with some proper subset U′ ⊂ U,

2. for each Y ∈ Y, replace the parents V of variable Y with some subset V′ ⊆ V.

then any such DAG G′ satisfies MDL(G′|D) ≤ MDL(G|D).

By reasoning about the additional families of variables Y, we can identify many more DAGs that
are better than a given DAG G. In particular, when the conditions of Theorem 7 are met, then any
sub-DAGG′ ofG has an MDL score that is at least as good, after we reduce the sizes of the families
XU and YV. More specifically, for the family XU, there are 2|U| − 1 proper subsets of U. For

6



ON PRUNING WITH THE MDL SCORE

each family YV, there are 2|V| subsets of V. We can pick any sub-DAG by taking any combination
of these families, hence there are

(2|U| − 1) ·
∏
YV
Y ∈Y

2|V|

possible sub-DAGsG′ whose scores are at least as good asG. This is in contrast to Theorem 5 which
considers a single family XU, and consequently, it identifies only 2|U| − 1 better DAGs. Based on
this analysis, we obtain the following upper bound on the number of parents that a variable needs to
have.

Corollary 8 Suppose we are given a dataset withN examples over variables X, and a DAGG with
(1) a family XU and (2) a set of variables Y ⊆ X\X with families YV for each Y ∈ Y. Suppose
that log2 |Y | ≤ α · (|X| − 1) for all Y ∈ Y, for some constant α. Let

d(Y) =
⌈
log2

(1
c
· 2αN · (|Y|+ 1)

)⌉
.

where c = 1
2 log2N . There exists a set of k-best DAGs under the MDL score where families XU

have parents where |U| ≤ d(Y)− 1 when k ≤ (2|U| − 1) ·
∏
YV:Y ∈Y 2|V|.

If the conditions of Corollary 8 are met, then we can find a set of k-best DAGs where X has at most
d(Y)− 1 parents. A question remains: how do we find the smallest set Y that provides the tightest
bound d(Y)− 1? We discuss this next.

3.2.1 A SPECIAL CASE: A FIXED TOPOLOGICAL ORDERING

Let π denote a topological ordering 〈X1, . . . , Xn〉 of the n variables X, and let π1:i (and πi:n) denote
the set of the first i (and last n − i + 1) variables in the order. Consider the optimal DAG G? that
contains the family XU, but also respects the given ordering π:

G? = argmax
G∼π
XU∈G

MDL(G|D) = MDL(XU|D) +
∑

i∈{1,...,n}
Xi 6=X

max
Ui⊆π1:i−1

MDL(XiUi|D)

Since the DAG must respect the given ordering (which we denote by G ∼ π), the optimal DAG
G can find the optimal families independently (apart from XU, which we keep fixed). This cor-
responds to the K2 structure learning algorithm (Cooper and Herskovits, 1992). For networks of
the scale that we are interested in, these local sub-problems maxU MDL(XU|D) are tractable in
practice. Hence, we can also compute such a DAG G?.

Now, if we can find a set Y ⊆ X\X , such that the DAGG? meets the conditions of Corollary 8,
then we need d(Y) − 1 or fewer parents for variable X , to obtain the k-best DAGs that respect an
ordering π. Essentially, we will have found k DAGs at least as good as G? (the best DAG with
family XU and respecting π), as in Theorem 7. Ideally, we want a smaller set Y, leading to a
tighter bound on the number of parents. However, there are exponentially many subsets Y. Thus,
we first propose a simpler greedy method (which we shall again extend shortly). Since we are
given a topological ordering of the variables π, we simply add variables one-by-one to Y in the
reverse order of π, until the conditions of Corollary 8 are met.5 This procedure is summarized in

5. We use the reverse order since variables at the end of the order generally have larger families, which helps us enu-
merate more sub-DAGs, which in turn lets us obtain a tighter bound on the number of parents.
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Algorithm 1: BoundParents(D,π,X ,k)
Data: dataset D over variables X;
topological ordering π;
variable X; count k to enumerate.
Result: upper bound on |U| for X .

(Y, s)← ({}, 1)
for i← |X| to 1 do

Xi ← πi:i
if Xi 6= X then

U∗i ← argminUi⊆π1:i−1
MDL(XiUi|D)

(Y, s)← (Y ∪Xi, s2
|U∗i |)

if k ≤ s(2d(Y) − 1) then
return d(Y)− 1

Algorithm 2: BoundParents(D,X ,k)
Data: dataset D over variables X;
variable X; count k to enumerate.
Result: upper bound on |U| for X .

Q← queue initialized with tuple (X, {}, 1)
Ymax ← {}
while Q is not empty do

extract the first item (Z,Y, s) from Q
if |Ymax| < |Y| then Ymax ← Y
foreach Z ∈ Z do

Z′ ← Z \ Z
if Z 6= X then

U∗ ← argminU⊆Z′ MDL(XU|D)
(Y′, s′)← (Y ∪ Z, s2|U∗|)

else (Y′, s′)← (Y, s)

if k > s′(2d(Y
′) − 1) then

insert (Z′, Y ′, s′) into Q

return d(Ymax)− 1

Algorithm 1, which returns an upper bound on number of parents that we need to consider when
enumerating the k-best DAGs, given a topological ordering π.

3.2.2 THE GENERAL CASE

Our final goal is to determine an upper bound on the number of parents that a given variable can
have in the k-best DAGs. We have just identified an upper bound for the special case where all
k-best DAGs respect a given topological ordering. If we find such a bound for all n! orderings, then
the loosest of these bounds will give us an upper bound for the general case that we seek.

Here, we propose to navigate the permutation tree of all n! orderings, where each (partial) path
on the permutation tree corresponds to a (partial) ordering of the variables; see Figure 1. The key
observation here is that walking down a path on the permutation tree can be viewed as an instance
of Algorithm 1 using the corresponding order. That is, Algorithm 1 incrementally adds variables
one-by-one from the end of the ordering π. However, once Algorithm 1 finds a large enough set
Y satisfying Corollary 8, then it returns an upper bound of d(Y) − 1. Note that if it constructs
a set Y = πi:n, then the bound obtained from Y would be the same as the one that would be
obtained for any other topological ordering with the same suffix (i.e., each run of the different
orderings would perform precisely the same steps in Algorithm 1). Hence, a run of Algorithm 1
that returns early can be viewed as obtaining bounds for (exponentially) many permutations at once.
We can then backtrack to the next unexplored branch of the permutation tree, and continue running
Algorithm 1 at that point. By repeating this process, we can perform an exhaustive search of the
permutation tree over n! orderings, where we prune a downward path when Algorithm 1 terminates
early. The loosest bound that we observe during this exhaustive search gives us an upper bound
on the number of parents that a given variable can have in the k-best DAGs. This procedure is
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X1 X2 X3

{}

X2 X3 X4 X1 X2 X4

X4X3 X4X2 X3X2 X4X1 X2X1

X4

X4 X3 X4 X2 X3 X2 X4 X1 X2 X1

Figure 1: A (pruned) permutation tree over 4 variables: each path from the root to a node corre-
sponds to a (partial) ordering π. The permutation spaces below the (partial) orderings
〈X2〉, 〈X3, X1〉 and 〈X4〉 have been pruned here.

benchmark 10-best 100-best 1, 000-best
name n N S p s p s p s

hepatitis 20 126 0.16 6 0.01 6 0.01 7 0.03
imports 22 205 0.69 6 0.03 6 0.03 7 0.07

parkinsons 23 195 1.44 6 0.04 6 0.04 8 0.10
sensors 25 5456 6.25 10 1.69 10 1.69 10 1.69
autos 26 159 13.00 6 0.10 6 0.10 8 1.46
horse 28 300 56.00 7 0.53 7 0.53 8 0.70
flag 29 194 116.00 6 0.22 6 0.22 7 0.73

Table 1: Full vs. pruned score lists for enumerating the k-best DAGs. For each benchmark we
report: the number of variables n in the dataset, the size of the dataset N , the sizes of the
full (S) and pruned (s) score lists in GBs, and the bound p on the number of parents.

described in Algorithm 2, where the permutation tree is implicitly navigated using a queue, which
is used to enumerate all of the needed suffixes.

We finally remark that while the search space over permutations is large, depending on the
number k of DAGs that we want to enumerate, we may only need to traverse the permutation tree
up to a shallow depth. We shall illustrate this in our experiments next.

4. Experiments

In the section, we evaluate our proposed method for pruning the search space of Bayesian net-
work structures, for the problem of enumerating the k-best DAGs (more specifically, we evaluate
Algorithm 2). We shall first evaluate the effectiveness of our approach in reducing the space of
DAGs. We next evaluate the impact that this has on the state-of-the-art system for enumerating the
k-best network structures, which is due to Chen et al. (2015). Our experiments were performed on
a 2.67GHz Intel Xeon X5650 CPU with a memory limit of 64 GB. We use real-world datasets from
the UCI ML Repository (Bache and Lichman, 2013).6 All timing results are averages over 10 runs.

6. Discretized, and available at http://urlearning.org/
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benchmark 10-best 100-best 1, 000-best
name n Eh Th TA∗ Eh Th TA∗ Eh Th TA∗

hepatitis 20 155 1.71 0.17 2188 3.32 0.80 6427 5.13 14.23
imports 22 111 63.26 0.16 232 73.83 0.20 1041 134.97 0.72

parkinsons 23 110 666.23 1.23 741 973.44 1.71 4313 3143.19 10.61
sensors 25 354 10219.25 3.65 482 13991.11 4.76 1342 23237.06 10.49
autos 26 1199 2098.97 6.46 2909 3242.36 8.96 9185 4062.17 13.78
horse 28 1095 2045.58 8.96 11653 2449.30 21.92 48069 5908.90 55.98
flag 29 1248 4454.21 19.79 26766 11093.91 45.22 110272 21959.47 257.27

Table 2: Enumerating the k-best DAGs using a pruned score list. For each benchmark we report:
the number of variables n in the dataset, the number Eh of black-box invocations, and the
times to compute the heuristic function (Th) and to navigate the BN graph with A* search
(TA∗), in seconds. See Chen et al. (2015) for details.

First, we obtain an upper bound p on the maximum number of parents that any variable needs
to have. In particular, we apply Algorithm 2 on every variable. Table 1 highlights the results. First,
we note that the bound p ranges from 24% (with flag) and 40% (with sensors) of the total number of
variables. Next, we compare the memory required to represent the full list of scores of all families
XU versus the pruned list. We assume a neutral representation (data structure) of a score list, where
we use 64-bits to represent the parents (as a bit set), and another 64-bits to represent the score itself
(using floating-point).78 Table 1 shows that the pruned score lists use a much smaller amount of
memory, compared to full score lists. While the pruned score lists always use less than 2GB of
memory, it would not be possible to store the full score list in memory for a dataset like flag (given
our 64GB limit). For dataset flag, the prune list is a 158× savings in space. Finally, we note that for
the datasets considered in Table 1, the upper bounds p are computed in less than 5 minutes.

We now use our pruned score list to learn the k-best DAGs using the state-of-the-art system
of Chen et al. (2015), which previously scaled to datasets over 23 variables, using full score lists.
Table 2 highlights the results, showing that the 1, 000-best structures can be enumerated for datasets
with as many as 29 variables. Note that the improvement from 23 variables to 29 variables is
quite significant, considering the relative sizes of these search spaces (from Footnote 1). We also
report the timings of the enumeration algorithm, broken down into two parts (the total time is thus
Th + TA∗); see Chen et al. (2015) for details, although we remark that the majority of time (Th) is
spent evaluating the structure learning oracle, i.e., the heuristic function (Chen et al., 2015).

5. Conclusion

In this paper, we proposed new techniques for pruning the search space of DAGs, for the purposes
of enumerating the k-best Bayesian networks. These techniques identify an upper bound on the
number of parents that a node can have, among the k-best DAGs. These bounds exploit properties

7. We assume that for each variable X , the scores score(XU|D) are stored in the same data structure, and then indexed
by the parents U (which is represented as a bit set).

8. For a dataset over n variables, there are n · 2n−1 total families XU. For a bound p on the number of parents, there
are n ·

∑p
i=0

(
n−1
i

)
unpruned families. Hence, a full score list uses 128 · n · 2n−1 bits, and a pruned score list uses

128 · n ·
∑p

i=0

(
n−1
i

)
bits, which is reported in Table 1.
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of the MDL score, and generalize widely-used bounds for the case of finding a single optimal DAG.
In our experiments, our techniques allowed a state-of-the-art system for enumerating the k-best
DAGs to scale from datasets over 23 variables to larger datasets over 29 variables.
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T. Silander and P. Myllymäki. A simple approach for finding the globally optimal Bayesian network
structure. In UAI, pages 445–452, 2006.

11



CHEN, CHOI AND DARWICHE

A. P. Singh and A. W. Moore. Finding optimal Bayesian networks by dynamic programming.
Technical report, CMU-CALD-050106, 2005.

J. Suzuki. Learning Bayesian belief networks based on the minimum description length principle.
In ICML, 1996.

M. Teyssier and D. Koller. Ordering-based search: a simple and effective algorithm for learning
Bayesian networks. In UAI, pages 584–590, 2005.

J. Tian. A branch-and-bound algorithm for MDL learning Bayesian networks. In UAI, pages 580–
588, 2000.

J. Tian, R. He, and L. Ram. Bayesian model averaging using the k-best Bayesian network structures.
In UAI, pages 589–597, 2010.

C. Yuan and B. Malone. Learning optimal Bayesian networks: A shortest path perspective. JAIR,
48:23–65, 2013.

Appendix A. Proofs

The proof of Theorem 3 is given in the text. The proof of Theorem 4 is immediate.

Lemma 9 For parent sets U and U′ where U′ ⊂ U: 1
2c ·K(X|U) ≤ c ·K(X|U)− c ·K(X|U′).

Proof From the definition of K(X|U), and since |X| ≥ 2 for every variable X .

Theorem 10 (Tian, 2000) Consider U′ ⊂ U. If Hmax(X) ≤ c ·K(X|U)− c ·K(X|U′), then U
and any of its supersets U′′ satisfies MDL(X,U′ | D) ≤ MDL(X,U′′ | D).

Proof of Theorem 5 SinceHmax(X) ≤ 1
2c·K(X | U), if U′ ⊂ U thenHmax(X) ≤ c·K(X|U)−

c ·K(X|U′), by Lemma 9. By Theorem 10, MDL(XU′|D) ≤ MDL(XU|D).

Proof of Theorem 6 By Theorem 5, it suffices to showHmax(X) ≤ 1
2c ·K(X|U) for |U| ≥ d+1.

That is: Hmax(X) = N log2 |X| ≤ N(|X| − 1) ≤ 1
2c · (|X| − 1) · 2d+1 ≤ 1

2c ·K(X | U)

Proof of Theorem 7 Consider a DAG G, where Xi has parents Ui for 1 ≤ i ≤ m (i.e., let Y =
{X2, . . . , Xm} where m = |Y| + 1). Let G′ denote the same DAG but where X1 has parents
U′1 ⊂ U1 and Xi has parents U′i ⊆ Ui for 2 ≤ i ≤ m. Then

MDL(G′) = MDL(G) +
∑

1≤i≤m
[
H(Xi|U′i) + c ·K(Xi|U′i)−H(Xi|Ui)− c ·K(Xi|Ui)

]
≤ MDL(G) +

∑
1≤i≤mHmax(Xi) +

∑
1≤i≤m

[
c ·K(Xi|U′i)− c ·K(Xi|Ui)

]
≤ MDL(G) + 1

2c ·K(X1 | U1) +
∑

1≤i≤m
[
c ·K(Xi|U′i)− c ·K(Xi|Ui)

]
≤ MDL(G) +

∑
2≤i≤m

[
c ·K(Xi|U′i)− c ·K(Xi|Ui)

]
≤ MDL(G)

Proof of Corollary 8 First we show that if αN(|Y|+1)(|X| − 1) ≤ 1
2c ·K(X|U′), then we have

that Hmax(X) +
∑

Y ∈YHmax(Y ) ≤ 1
2c ·K(X|U). Note that

Hmax(X) +
∑

Y ∈YHmax(Y ) ≤ αN(|Y|+ 1)(|X| − 1) ≤ 1
2c ·K(X|U)

By Theorem 7, there exist (2|U|−1)·
∏
YV, where Y ∈Y 2|V| manyG′ such that MDL(G′) ≤ MDL(G).

Finally, note that when |U| ≥ d(Y), then αN(|Y|+ 1)(|X| − 1) ≤ 1
2c ·K(X|U).
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