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Abstract

We consider tractable representations of probability distributions and the polytime
operations they support. In particular, we consider a recently proposed arithmetic
circuit representation, the Probabilistic Sentential Decision Diagram (PSDD). We
show that PSDDs support a polytime multiplication operator, while they do not
support a polytime operator for summing-out variables. A polytime multiplication
operator makes PSDDs suitable for a broader class of applications compared to
classes of arithmetic circuits that do not support multiplication. As one example,
we show that PSDD multiplication leads to a very simple but effective compilation
algorithm for probabilistic graphical models: represent each model factor as a
PSDD, and then multiply them.

1 Introduction

Arithmetic circuits (ACs) have been a central representation for probabilistic graphical models,
such as Bayesian networks and Markov networks. On the reasoning side, some state-of-the-art
approaches for exact inference are based on compiling probabilistic graphical models into arithmetic
circuits [Darwiche, 2003]; see also Darwiche [2009, chapter 12]. Such approaches can exploit
parametric structure (such as determinism and context-specific independence), allowing inference to
scale sometimes to models with very high treewidth, which are beyond the scope of classical inference
algorithms such as variable elimination and jointree. For example, the ace system for compiling
ACs [Chavira and Darwiche, 2008] was the only system in the UAI’08 evaluation of probabilistic
reasoning systems to exactly solve all 250 networks in a challenging (very high-treewidth) suite of
relational models [Darwiche et al., 2008].

On the learning side, arithmetic circuits have become a popular representation for learning from
data, as they are tractable for certain probabilistic queries. For example, there are algorithms for
learning ACs of Bayesian networks [Lowd and Domingos, 2008], ACs of Markov networks [Lowd
and Rooshenas, 2013, Bekker et al., 2015] and Sum-Product Networks (SPNs) [Poon and Domingos,
2011], among other related representations.1

Depending on their properties, different classes of ACs are tractable for different queries and opera-
tions. Among these queries are maximum a posteriori (MAP) inference,2 which is an NP-complete
problem, and evaluating the partition function, which is a PP-complete problem (more intractable).
Among operations, the multiplication of two ACs stands out as particularly important, being a primi-
tive operation in some approaches to incremental or adaptive inference [Delcher et al., 1995, Acar
et al., 2008], bottom-up compilation of probabilistic graphical models [Choi et al., 2013], and some
search-based approaches to structure learning [Bekker et al., 2015].

1SPNs can be converted into ACs (and vice-versa) with linear size and time [Rooshenas and Lowd, 2014].
2This is also known as most probable explanation (MPE) inference [Pearl, 1988].
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In this paper, we investigate the tractability of two fundamental operations on arithmetic circuits:
multiplying two ACs and summing out a variable from an AC. We show that both operations are
intractable for some influential ACs that have been employed in the probabilistic reasoning and
learning literatures. We then consider a recently proposed sub-class of ACs, called the Probabilistic
Sentential Decision Diagram (PSDD) [Kisa et al., 2014]. We show that PSDDs support a polytime
multiplication operation, which makes them suitable for a broader class of applications. We also show
that PSDDs do not support a polytime summing-out operation (a primitive operation for message-
passing inference algorithms). We empirically illustrate the advantages of PSDDs compared to
other AC representations, for compiling probabilistic graphical models. Previous approaches for
compiling probabilistic models into ACs are based on encoding these models into auxiliary logical
representations, such as a Sentential Decision Diagram (SDD) or a deterministic DNNF circuits,
which are then converted to an AC [Chavira and Darwiche, 2008, Choi et al., 2013]. PSDDs are
a direct representation of probability distributions, bypassing the overhead of intermediate logical
representations, and leading to more efficient compilations in some cases. Most importantly though,
this approach lends itself to a significantly simpler compilation algorithm: represent each factor of a
given model as a PSDD, and then multiply the factors using PSDD multiplication.

This paper is organized as follows. In Section 2, we review arithmetic circuits (ACs) as a representa-
tion of probability distributions, including PSDDs in particular. In Section 3, we introduce a polytime
multiplication operator for PSDDs, and in Section 4, we show that there is no polytime sum-out
operator for PSDDs. In Section 5, we propose a simple compilation algorithm for PSDDs based
on the multiply operator, which we evaluate empirically. We discuss related work in Section 6 and
finally conclude in Section 7. Proofs of theorems are available in the Appendix.

2 Representing Distributions Using Arithmetic Circuits

We start with the definition of factors, which include distributions as a special case.

Definition 1 (Factor) A factor f(X) over variables X maps each instantiation x of variables X

into a non-negative number f(x). The factor represents a distribution when

P
x

f(x) = 1.

We define the value of a factor at a partial instantiation y, where Y ✓ X, as f(y) =

P
z

f(yz),
where Z = X \Y. When the factor is a distribution, f(y) corresponds to the probability of evidence
y. We also define the MAP instantiation of a factor as argmax

x

f(x), which corresponds to the most
likely instantiation when the factor is a distribution.

The classical, tabular representation of a factor f(X) is exponential in the number of variables X.
However, one can represent such factors more compactly using arithmetic circuits.

Definition 2 (Arithmetic Circuit) An arithmetic circuit AC(X) over variables X is a rooted DAG

whose internal nodes are labeled with + or ⇤ and whose leaf nodes are labeled with either indicator

variables �
x

or non-negative parameters ✓. The value of the circuit at instantiation x, denoted

AC(x), is obtained by assigning indicator �
x

the value 1 if x is compatible with instantiation x and

0 otherwise, then evaluating the circuit in the standard way. The circuit AC(X) represents factor

f(X) iff AC(x) = f(x) for each instantiation x.

A tractable arithmetic circuit allows one to efficiently answer certain queries about the factor it
represents. We next discuss two properties that lead to tractable arithmetic circuits. The first is
decomposability [Darwiche, 2001b], which was used for probabilistic reasoning in [Darwiche, 2003].

Definition 3 (Decomposability) Let n be a node in an arithmetic circuit AC(X). The variables of

n, denoted vars(n), are the variables X 2 X with some indicator �
x

appearing at or under node

n. An arithmetic circuit is decomposable iff every pair of children c1 and c2 of a ⇤-node satisfies

vars(c1) \ vars(c2) = ;.

The second property is determinism [Darwiche, 2001a], which was also employed for probabilistic
reasoning in Darwiche [2003].

Definition 4 (Determinism) An arithmetic circuit AC(X) is deterministic iff each +-node has at

most one non-zero input when the circuit is evaluated under any instantiation x of the variables X.
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A third property called smoothness is also desirable as it simplifies the statement of certain AC
algorithms, but is less important for tractability as it can be enforced in polytime [Darwiche, 2001a].

Definition 5 (Smoothness) An arithmetic circuit AC(X) is smooth iff it contains at least one indi-

cator for each variable in X, and for each child c of +-node n, we have vars(n) = vars(c).

Decomposability and determinism lead to tractability in the following sense. Let Pr(X) be a
distribution represented by a decomposable, deterministic and smooth arithmetic circuit AC(X).
Then one can compute the following queries in time that is linear in the size of circuit AC(X): the
probability of any partial instantiation, Pr(y), where Y ✓ X [Darwiche, 2003] and the most likely
instantiation, argmax

x

Pr(x) [Chan and Darwiche, 2006]. The decision problems of these queries
are known to be PP-complete and NP-complete for Bayesian networks [Roth, 1996, Shimony, 1994].

**
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Figure 1: An AC for a Bayesian network A ! B.

A number of methods have been proposed for
compiling a Bayesian network into a decompos-
able, deterministic and smooth AC that repre-
sents its distribution [Darwiche, 2003]. Figure 1
depicts such a circuit that represents the distribu-
tion of Bayesian network A ! B. One method
ensures that the size of the AC is proportional to
the size of a jointree for the network. Another
method yields circuits that can sometimes be ex-
ponentially smaller, and is implemented in the
publicly available ace system [Chavira and Dar-
wiche, 2008]; see also Darwiche et al. [2008].

Additional methods are discussed in Darwiche [2009, chapter 12].

This work is motivated by the following limitation of these tractable circuits, which may narrow their
applicability in probabilistic reasoning and learning.

Definition 6 (Multiplication) The product of two arithmetic circuits AC1(X) and AC2(X) is an

arithmetic circuit AC(X) such that AC(x) = AC1(x)AC2(x) for every instantiation x.

Theorem 1 Computing the product of two decomposable ACs is NP-hard if the product is also

decomposable. Computing the product of two decomposable and deterministic ACs is NP-hard if the

product is also decomposable and deterministic.

We now investigate a newly introduced class of tractable ACs, called the Probabilistic Sentential
Decision Diagram (PSDD) [Kisa et al., 2014]. In particular, we show that this class of circuits admits
a tractable product operation and then explore an application of this operation to exact inference in
probabilistic graphical models.

PSDDs were motivated by the need to represent probability distributions Pr(X) with many instantia-
tions x attaining zero probability, Pr(x) = 0. Consider the distribution Pr(X) in Figure 2(a) for an
example. The first step in constructing a PSDD for this distribution is to construct a special Boolean
circuit that captures its zero entries; see Figure 2(b). The Boolean circuit captures zero entries in the
following sense. For each instantiation x, the circuit evaluates to 0 at instantiation x iff Pr(x) = 0.
The second and final step of constructing a PSDD amounts to parameterizing this Boolean circuit
(e.g., by learning them from data), by including a local distribution on the inputs of each or-gate; see
Figure 2(c).

The Boolean circuit underlying a PSDD is known as a Sentential Decision Diagram (SDD) [Darwiche,
2011]. These circuits satisfy specific syntactic and semantic properties based on a binary tree, called
a vtree, whose leaves correspond to variables; see Figure 2(d). The following definition of SDD
circuits is a based on the one given by Darwiche [2011] and uses a different notation.

Definition 7 (SDD) An SDD normalized for a vtree v is a Boolean circuit defined as follows. If v is

a leaf node labeled with variable X , then the SDD is either X , ¬X , ? or an or-gate with inputs X
and ¬X . If v is an internal vtree node, then the SDD has the structure in Figure 3, where p1, . . . , pn
are SDDs normalized for the left child vl and s1, . . . , sn are SDDs normalized for the right child vr.

Moreover, the circuits p1, . . . , pn are consistent, mutually exclusive and exhaustive.
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A B C Pr
0 0 0 0.2
0 0 1 0.2
0 1 0 0.0
0 1 1 0.1
1 0 0 0.0
1 0 1 0.3
1 1 0 0.1
1 1 1 0.1
(a) Distribution
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Figure 2: A probability distribution and its SDD/PSDD representation. Note that the numbers
annotating or-gates in (b) & (c) correspond to vtree node IDs in (d). Further, note that while the
circuit appears to be a tree, the input variables are shared and hence the circuit is not a tree.
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is called an element of the
or-gate, where the p

i

’s are
called primes and the s

i

’s
are called subs. Moreover,P

i

↵
i

= 1 and exactly one
p
i

evaluates to 1 under any
circuit input.

SDD circuits alternate between or-gates and and-gates. Their and-
gates have two inputs each. The or-gates of these circuits are such
that at most one input will be high under any circuit input. An SDD
circuit may produce a 1-output for every possible input (i.e., the circuit
represents the function true). These circuits arise when representing
strictly positive distributions (with no zero entries).

A PSDD is obtained by including a distribution ↵1, . . . ,↵n

on the
inputs of each or-gate; see Figure 3. The semantics of PSDDs are
given in [Kisa et al., 2014].3 We next provide an alternative semantics,
which is based on converting a PSDD into an arithmetic circuit.

Definition 8 (ACs of PSDDs) The arithmetic circuit of a PSDD is

obtained as follows. Leaf nodes x and ? are converted into �
x

and 0,

respectively. Each and-gate is converted into a ⇤-node. Each or-node

with children c1, . . . , cn and corresponding parameters ↵1, . . . ,↵n

is

converted into a +-node with children ↵1 ⇤ c1, . . . , ↵
n

⇤ c
n

.

Theorem 2 The arithmetic circuit of a PSDD represents the distribu-

tion induced by the PSDD. Moreover, the arithmetic circuit is decom-

posable and deterministic.

4

The PSDD is a complete and canonical representation of probability
distributions. That is, PSDDs can represent any distribution, and there is a unique PSDD for that distri-
bution (under some conditions). A variety of probabilistic queries are tractable on PSDDs, including
that of computing the probability of a partial variable instantiation and the most likely instantiation.
Moreover, the maximum likelihood parameter estimates of a PSDD are unique given complete data,
and these parameters can be computed efficiently using closed-form estimates; see [Kisa et al.,
2014] for details. Finally, PSDDs have been used to learn distributions over combinatorial objects,

including rankings and permutations [Choi et al., 2015], paths and games [Choi et al., 2016]. In these
applications, the Boolean circuit underlying a PSDD captures variable instantiations that correspond
to combinatorial objects, while its parameterization induces a distribution over these objects.

As a concrete example, PSDDs were used to induce distributions over the permutations of n items as
follows. We have a variable X

ij

for each i, j 2 {1, . . . , n} denoting that item i is at position j in the
permutation. Clearly, not all instantiations of these variables correspond to (valid) permutations. An
SDD circuit is then constructed, which outputs 1 iff the corresponding input corresponds to a valid
permutation. Each parameterization of this SDD circuit leads to a distribution on permutations and
these parameterizations can be learned from data; see Choi et al. [2015].

3Let x be an instantiation of PSDD variables. If the SDD circuit outputs 0 at input x, then Pr(x) = 0.
Otherwise, traverse the circuit top-down, visiting the (unique) high input of each visited or-node, and all inputs
of each visited and-node. Then Pr(x) is the product of parameters visited during the traversal process.

4The arithmetic circuit also satisfies a minor weakening of smoothness with the same effect as smoothness.
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3 Multiplying Two PSDDs

Factors and their operations are fundamental to probabilistic inference, whether exact or approximate
[Darwiche, 2009, Koller and Friedman, 2009]. Consider two of the most basic operations on factors:
(1) computing the product of two factors and (2) summing out a variable from a factor. With these
operations, one can directly implement various inference algorithms, including variable elimination,
the jointree algorithm, and message-passing algorithms such as loopy belief propagation. Typically,
tabular representations (and their sparse variations) are used to represent factors and implement
the above algorithms; see Larkin and Dechter [2003], Sanner and McAllester [2005], Chavira and
Darwiche [2007] for some alternatives.

More generally, factor multiplication is useful for online or incremental reasoning with probabilistic
models. In some applications, we may not have access to all factors of a model beforehand, to
compile as a jointree or an arithmetic circuit. For example, when learning the structure of a Markov
network from data [Bekker et al., 2015], we may want to introduce and remove candidate factors from
a model, while evaluating the changes to the log likelihood. Certain realizations of generalized belief
propagation also require the multiplication of factors [Yedidia et al., 2005, Choi and Darwiche, 2011].
In these realizations, one can use factor multiplication to enforce dependencies between factors that
have been relaxed to make inference more tractable, albeit less accurate.

We next discuss PSDD multiplication, while deferring summing out to the following section.

Algorithm 1 Multiply(n1, n2, v)

input: PSDDs n1, n2 normalized for vtree v

output: PSDD n and constant 
main:
1: n, k  cachem(n1, n2), cachec(n1, n2) . check if previously computed
2: if n 6= null then return (n, k) . return previously cached result
3: else if v is a leaf then (n,) BaseCase(n1, n2) . n1, n2 are literals, ? or simple or-gates
4: else . n1 and n2 have the structure in Figure 3
5: �, {}, 0 . initialization
6: for all elements (p, s,↵) of n1 do . see Figure 3
7: for all elements (q, r,�) of n2 do . see Figure 3
8: (m1, k1) Multiply(p, q, vl) . recursively multiply primes p and q
9: if k1 6= 0 then . if (m1, k1) is not a trivial factor

10: (m2, k2) Multiply(s, r, vr) . recursively multiply subs s and r
11: ⌘  k1 · k2 · ↵ · � . compute weight of element (m1,m2)
12:  + ⌘ . aggregate weights of elements
13: add (m1,m2, ⌘) to �

14: �  {(m1,m2, ⌘/) | (m1,m2, ⌘) 2 �} . normalize parameters of �
15: n unique PSDD node with elements � . cache lookup for unique nodes
16: cachem(n1, n2) n
17: cachec(n1, n2)  . store results in cache
18: return (n,)

Our first observation is that the product of two distributions is generally not a distribution, but a factor.
Moreover, a factor f(X) can always be represented by a distribution Pr(X) and a constant  such
that f(x) =  · Pr(x). Hence, our proposed multiplication method will output a PSDD together
with a constant, as given in Algorithm 1. This algorithm uses three caches, one for storing constants
(cachec), another for storing circuits (cachem), and a third used to implement Line 15.5 This line
ensures that the PSDD has no duplicate structures of the form given in Figure 3. The description
of function BaseCase() on Line 3 is available in the Appendix. It appears inside the proof of the
following theorem, which establishes the soundness and complexity of the given algorithm.

Theorem 3 Algorithm 1 outputs a PSDD n normalized for vtree v. Moreover, if Pr1(X) and Pr2(X)

are the distributions of input PSDDs n1 and n2, and Pr(X) is the distribution of output PSDD n,

then Pr1(x)Pr2(x) =  · Pr(x) for every instantiation x. Finally, Algorithm 1 takes time O(s1s2),
where s1 and s2 are the sizes of input PSDDs.

5The cache key of a PSDD node in Figure 3 is based on the (unique) ID’s of nodes pi/si and parameters ↵i.
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We will later discuss an application of PSDD multiplication to probabilistic inference, in which we
cascade these multiplication operations. In particular, we end up multiplying two factors f1 and f2,
represented by PSDDs n1 and n2 and the corresponding constants 1 and 2. We use Algorithm 1
for this purpose, multiplying PSDDs n1 and n2 (distributions), to yield a PSDD n (distribution) and
a constant . The factor f1f2 will then correspond to PSDD n and constant  · 1 · 2.

A

G F K

E C

B J H

I D

A

G K H D

A

G

B

H D

Figure 4: A vtree and two of its projections.

Another observation is that Algorithm 1 assumes
that the input PSDDs are over the same vtree and,
hence, same set of variables. A more detailed ver-
sion of this algorithm can multiply two PSDDs
over different sets of variables as long as the PS-
DDs have compatible vtrees. We omit this version
here to simplify the presentation, but mention that
it has the same complexity as Algorithm 1.

Two vtrees over variables X and Y are compatible
iff they can be obtained by projecting some vtree
on variables X and Y, respectively.

Definition 9 (Vtree Projection) Let v be a vtree

over variables Z. The projection of v on variables

X ✓ Z is obtained as follows. Successively remove every maximal subtree v0 whose variables are

outside X, while replacing the parent of v0 with its sibling.

Figure 4 depicts a vtree and two of its projections. When compiling a probabilistic graphical model
into a PSDD, we first construct a vtree v over all variables in the model. We then compile each factor
f(X) into a PSDD, using the projection of v on variables X. We finally multiply the PSDDs of these
factors. We will revisit these steps later.

4 Summing-Out a Variable in a PSDD

We now discuss the summing out of variables from distributions represented by arithmetic circuits.

Definition 10 (Sum Out) Summing-out a variable X 2 X from factor f(X) results in another fac-

tor over variables Y = X \ {X}, denoted by

P
X

f and defined as:

⇣P
X

f
⌘
(y)

def
=

P
x

f(x,y).

When the factor is a distribution (i.e., normalized), the sum out operation corresponds to marginaliza-
tion. Together with multiplication, summing out provides a direct implementation of algorithms such
as variable elimination and those based on message passing.

Just like multiplication, summing out is also intractable for a common class of arithmetic circuits.

Theorem 4 The sum-out operation on decomposable and deterministic ACs is NP-hard, assuming

the output is also decomposable and deterministic.

This theorem does not preclude the possibility that the resulting AC is of polynomial size with respect
to the size of the input AC—it just says that the computation is intractable. Summing out is also
intractable on PSDDs, but the result is stronger here as the size of the output can be exponential.

Theorem 5 There exists a class of factors f(X) and variable X 2 X, such that n = |X| can be

arbitrarily large, f(X) has a PSDD whose size is linear in n, while the PSDD of

P
X

f has size

exponential in n for every vtree.

Only the multiplication operation is needed to compile probabilistic graphical models into arithmetic
circuits. Even for inference algorithms that require summing out variables, such as variable elimina-
tion, summing out can still be useful, even if intractable, since the size of resulting arithmetic circuit
will not be larger than a tabular representation.
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5 Compiling Probabilistic Graphical Models into PSDDs

Even though PSDDs form a strict subclass of decomposable and deterministic ACs (and satisfy
stronger properties), one can still provide the following classical guarantee on PSDD size.

Theorem 6 The interaction graph of factors f1(X1), . . . , fn(Xn

) has nodes corresponding to vari-

ables X1 [ . . . [X

n

and an edge between two variables iff they appear in the same factor. There is

a PSDD for the product f1 . . . fn whose size is O(m · exp(w)), where m is the number of variables

and w is its treewidth.

This theorem provides an upper bound on the size of PSDD compilations for both Bayesian and
Markov networks. An analogous guarantee is available for SDD circuits of propositional models,
using a special type of vtree known as a decision vtree [Oztok and Darwiche, 2014]. We next discuss
our experiments, which focused on the compilation of Markov networks using decision vtrees.

To compile a Markov network, we first construct a decision vtree using a known technique.6 For each
factor of the network, we project the vtree on the factor variables, and then compile the factor into
a PSDD. This can be done in time linear in the factor size, but we omit the details here. We finally
multiply the obtained PSDDs. The order of multiplication is important to the overall efficiency of the
compilation approach. The order we used is as follows. We assign each PSDD to the lowest vtree
node containing the PSDD variables, and then multiply PSDDs in the order that we encounter them
as we traverse the vtree bottom-up (this is analogous to compiling CNFs in Choi et al. [2013]).

Table 1 summarizes our results. We compiled Markov networks into three types of arithmetic circuits.
The first compilation (AC1) is to decomposable and deterministic ACs using ace [Chavira and
Darwiche, 2008].7 The second compilation (AC2) is also to decomposable and deterministic ACs, but
using the approach proposed in Choi et al. [2013]. The third compilation is to PSDDs as discussed
above. The first two approaches are based on reducing the inference problem into a weighted model
counting problem. In particular, these approaches encode the network using Boolean expressions,
which are compiled to logical representations (d-DNNF or SDD), from which an arithmetic circuit is
induced. The systems underlying these approaches are quite complex and are the result of many years
of engineering. In contrast, the proposed compilation to PSDDs does not rely on an intermediate
representation or additional boxes, such as d-DNNF or SDD compilers.

The benchmarks in Table 1 are from the UAI-14 Inference Competition.8 We selected all networks
over binary variables in the MAR track, and report a network only if at least one approach successfully
compiled it (given time and space limits of 30 minutes and 16GB). We report the size (the number
of edges) and time spent for each compilation. First, we note that for all benchmarks that compiled
to both PSDD and AC2 (based on SDDs), the PSDD size is always smaller. This can be attributed
in part to the fact that reductions to weighted model counting represent parameters explicitly as
variables, which are retained throughout the compilation process. In contrast, PSDD parameters are
annotated on its edges. More interestingly, when we multiply two PSDD factors, the parameters of
the inputs may not persist in the output PSDD. That is, the PSDD only maintains enough parameters
to represent the resulting distribution, which further explains the size differences.

In the Promedus benchmarks, we also see that in all but 5 cases, the compiled PSDD is smaller than
AC1. However, several Grids benchmarks were compilable to AC1, but failed to compile to AC2
or PSDD, given the time and space limits. On the other hand, we were able to compile some of the
relational benchmarks to PSDD, which did not compile to AC1 and compiled partially to AC2.

6 Related Work

Tabular representations and their sparse variations (e.g., Larkin and Dechter [2003]) are typically
used to represent factors for probabilistic inference and learning. Rules and decision trees are more
succinct representations for modeling context-specific independence, although they are not much more
amenable to exact inference compared to tabular representations [Boutilier et al., 1996, Friedman and
Goldszmidt, 1998]. Domain specific representations have been proposed, e.g., in computer vision

6We used the minic2d package which is available at reasoning.cs.ucla.edu/minic2d/.
7The ace system is publicly available at http://reasoning.cs.ucla.edu/ace/.
8
http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html
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Table 1: AC compilation size (number of edges) and time (in seconds)
compilation size compilation time

network AC1 AC2 psdd AC1 AC2 psdd
Alchemy_11 12,705,213 - 13,715,906 130.83 - 300.80
Grids_11 81,074,816 - - 271.97 - -
Grids_12 232,496 457,529 201,250 0.93 1.12 1.68
Grids_13 81,090,432 - - 273.88 - -
Grids_14 83,186,560 - - 279.12 - -

Segmentation_11 20,895,884 41,603,129 30,951,708 72.39 204.54 223.60
Segmentation_12 15,840,404 41,005,721 34,368,060 51.27 209.03 283.79
Segmentation_13 33,746,511 78,028,443 33,726,812 117.46 388.97 255.29
Segmentation_14 16,965,928 48,333,027 46,363,820 62.31 279.19 639.07
Segmentation_15 29,888,972 - 33,866,332 107.87 - 273.67
Segmentation_16 18,799,112 54,557,867 19,935,308 65.64 265.07 163.38
relational_3 - 183,064 41,070 - 1.21 10.43
relational_5 - - 217,696 - - 594.68
Promedus_11 67,036 174,592 30,542 6.80 1.88 2.28
Promedus_12 45,119 349,916 48,814 0.91 5.81 2.46
Promedus_13 42,065 83,701 26,100 0.80 0.23 3.94
Promedus_14 2,354,180 3,667,740 749,528 21.64 33.27 24.90
Promedus_15 14,363 31,176 9,520 0.95 0.10 1.52
Promedus_16 45,935 154,467 29,150 1.35 0.40 2.06
Promedus_17 3,336,316 9,849,598 1,549,170 68.08 48.47 50.22

compilation size compilation time
network AC1 AC2 psdd AC1 AC2 psdd

Promedus_18 3,006,654 762,247 539,478 20.46 18.38 21.20
Promedus_19 796,928 1,171,288 977,510 6.80 25.01 68.62
Promedus_20 70,422 188,322 70,492 0.96 3.24 3.46
Promedus_21 17,528 31,911 10,944 0.62 0.18 1.78
Promedus_22 26,010 39,016 33,064 0.63 0.10 1.58
Promedus_23 329,669 1,473,628 317,514 3.29 17.77 10.88
Promedus_24 4,774 9,085 1,960 0.45 0.05 0.80
Promedus_25 556,179 3,614,581 407,974 7.66 32.90 6.78
Promedus_26 57,190 24,578 5,146 0.71 198.74 2.72
Promedus_27 33,611 52,698 19,434 0.73 0.55 1.16
Promedus_28 24,049 46,364 17,084 1.04 0.30 1.59
Promedus_29 10,403 20,600 4,828 0.54 0.08 1.88
Promedus_30 9,884 21,230 6,734 0.50 0.07 1.23
Promedus_31 17,977 31,754 10,842 0.57 0.12 1.96
Promedus_32 15,215 33,064 8,682 0.59 0.11 1.77
Promedus_33 10,734 18,535 4,006 0.59 0.07 1.57
Promedus_34 38,113 54,214 21,398 0.87 0.78 1.78
Promedus_35 18,765 31,792 11,120 0.68 0.13 1.79
Promedus_36 19,175 31,792 11,004 1.22 0.12 1.91
Promedus_37 77,088 144,664 79,210 1.49 3.50 6.15
Promedus_38 177,560 593,675 123,552 1.67 17.19 8.09

[Felzenszwalb and Huttenlocher, 2006], to allow for more efficient factor operations. Algebraic
Decision Diagrams (ADDs) and Algebraic Sentential Decision Diagrams (ASDDs) can also be used
to multiply two factors in polytime [Bahar et al., 1993, Herrmann and de Barros, 2013], but their sizes
can grow quickly with repeated multiplications: ADDs have a distinct node for each possible value
of a factor/distribution. Since ADDs also support a polytime summing-out operation, ADDs are more
commonly used in the context of variable elimination [Sanner and McAllester, 2005, Chavira and
Darwiche, 2007], and in message passing algorithms [Gogate and Domingos, 2013]. Probabilistic
Decision Graphs (PDGs) and AND/OR Multi-Valued Decision Diagrams (AOMDD) support a
polytime multiply operator, and also have treewidth upper bounds when compiling probabilistic
graphical models [Jaeger, 2004, Mateescu et al., 2008]. Both PDGs and AOMDDs can be viewed as
sub-classes of PSDDs that branch on variables instead of sentences as is the case with PSDDs—this
distinction can lead to exponential reductions in size [Xue et al., 2012, Bova, 2016].

7 Conclusion

We considered the tractability of multiplication and summing-out operators for arithmetic circuits
(ACs), as tractable representations of factors and distributions. We showed that both operations are
intractable for deterministic and decomposable ACs (under standard complexity theoretic assump-
tions). We also showed that for a sub-class of ACs, known as PSDDs, a polytime multiplication
operator is supported. Moreover, we showed that PSDDs do not support summing-out in polytime
(unconditionally). Finally, we illustrated the utility of PSDD multiplication, providing a relatively
simple but effective algorithm for compiling probabilistic graphical models into PSDDs.
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