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Abstract

We consider the problem of learning Bayesian networks optimally, when subject
to background knowledge in the form of ancestral constraints. Our approach is
based on a recently proposed framework for optimal structure learning based on
non-decomposable scores, which is general enough to accommodate ancestral
constraints. The proposed framework exploits oracles for learning structures using
decomposable scores, which cannot accommodate ancestral constraints since they
are non-decomposable. We show how to empower these oracles by passing them
decomposable constraints that they can handle, which are inferred from ancestral
constraints that they cannot handle. Empirically, we demonstrate that our approach
can be orders-of-magnitude more efficient than alternative frameworks, such as
those based on integer linear programming.

1 Introduction

Bayesian networks learned from data are broadly used for classification, clustering, feature selection,
and to determine associations and dependencies between random variables, in addition to discovering
causes and effects; see, e.g., [Darwiche, 2009, Koller and Friedman, 2009, Murphy, 2012].

In this paper, we consider the task of learning Bayesian networks optimally, subject to background
knowledge in the form of ancestral constraints. Such constraints are important in practice as they
allow one to assert direct or indirect cause-and-effect relationships (or lack thereof) between random
variables. Further, one expects that their presence should improve the efficiency of the learning
process as they reduce the size of the search space. However, nearly all mainstream approaches for
optimal structure learning make a fundamental assumption, that the scoring function (i.e., the prior
and likelihood) is decomposable. This in turn limits their ability to integrate ancestral constraints,
which are non-decomposable. Such approaches only support structure-modular constraints such
as the presence or absence of edges, or order-modular constraints such as pairwise constraints on
topological orderings; see, e.g., [Koivisto and Sood, 2004, Parviainen and Koivisto, 2013].

Recently, a new framework has been proposed for optimal Bayesian network structure learning [Chen
et al., 2015], but with non-decomposable priors and scores. This approach is based on navigating the
seemingly intractable search space over all network structures (i.e., all DAGs). This intractability can
be mitigated however by leveraging an omniscient oracle that can optimally learn structures with
decomposable scores. This approach led to the first system for finding optimal DAGs (i.e., model
selection) given order-modular priors (a type of non-decomposable prior) [Chen et al., 2015]. The
approach was also applied towards the enumeration of the k-best structures [Chen et al., 2015, 2016],
where it was orders-of-magnitude more efficient than the existing state-of-the-art [Tian et al., 2010,
Cussens et al., 2013, Chen and Tian, 2014].
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In this paper, we show how to incorporate non-decomposable constraints into the structure learning
approach of Chen et al. [2015, 2016]. We consider learning with ancestral constraints, and inferring
decomposable constraints from ancestral constraints to empower the oracle. In principle, structure
learning approaches based on integer linear programming (ILP) and constraint programming (CP)
can also represent ancestral constraints (and other non-decomposable constraints) [Jaakkola et al.,
2010, Bartlett and Cussens, 2015, van Beek and Hoffmann, 2015].1 We empirically evaluate the
proposed approach against those based on ILP, showing orders of magnitude improvements.

This paper is organized as follows. In Section 2, we review the problem of Bayesian network structure
learning. In Section 3, we discuss ancestral constraints and how they relate to existing structure
learning approaches. In Section 4, we introduce our approach for learning with ancestral constraints.
In Section 5, we show how to infer decomposable constraints from non-decomposable ancestral
constraints. We evaluate our approach empirically in Section 6, and conclude in Section 7.

2 Technical preliminaries

We use upper case letters X to denote variables and bold-face upper case letters X to denote sets of
variables. We use X to denote a variable in a Bayesian network and U to denote its parents.

In score-based approaches to structure learning, we are given a complete dataset D and want to learn
a DAG G that optimizes a decomposable score, which aggregates scores over the DAG families XU:

score(G | D) =
∑

XU score(XU | D) (1)
The MDL and BDeu scores are examples of decomposable scores; see, e.g., Darwiche [2009], Koller
and Friedman [2009], Murphy [2012]. The seminal K2 algorithm is one of the first algorithms to
exploit decomposable scores [Cooper and Herskovits, 1992]. The K2 algorithm optimizes Equation 1,
but assumes that a DAG G is consistent with a given topological ordering σ. This assumption
decomposes the structure learning problem into independent sub-problems, where we find the optimal
set of parents for each variable X , from those variables that precede X in ordering σ.

We can find the DAG G that optimizes Equation 1 by running the K2 algorithm on all n! variable
orderings σ, and then take the DAG with the best score. Note that these n! instances share many
computational sub-problems: finding the optimal set of parents for some variable X . One can
aggregate these common sub-problems, leaving us with only n · 2n−1 unique sub-problems. This
technique underlies a number of modern approaches to score-based structure learning, including
some based on dynamic programming [Koivisto and Sood, 2004, Singh and Moore, 2005, Silander
and Myllymäki, 2006], and related approaches based on heuristic search methods such as A* [Yuan
et al., 2011, Yuan and Malone, 2013]. This aggregation of K2 sub-problems also corresponds to a
search space called the order graph [Yuan et al., 2011, Yuan and Malone, 2013].

Bayesian network structure learning can also be formulated using integer linear programming (ILP),
with Equation 1 as the linear objective function of an ILP. Further, for each variable X and candidate
parent set U, we introduce an ILP variable I(X,U) ∈ {0, 1} to represent the event that X has
parents U when I(X,U) = 1, and I(X,U) = 0 otherwise. We then assert constraints that each
variable X has a unique set of parents,

∑
U I(X,U) = 1. Another set of constraints ensure that

all variables X and their parents U must yield an acyclic graph. One approach is to use cluster
constraints [Jaakkola et al., 2010], where for each cluster C ⊆ X, at least one variable X in C has
no parents in C,

∑
X∈C

∑
U∩C=∅ I(X,U) ≥ 1. Finally, we have the objective function of our ILP,∑

X∈X
∑

U⊆X\X score(XU | D) · I(X,U), which corresponds to Equation 1.

3 Ancestral constraints

An ancestral constraint specifies a relation between two variables X and Y in a DAG G. If X is an
ancestor of Y , then there is a directed path connecting X to Y in G. If X is not an ancestor of Y ,
then there is no such path. Ancestral constraints can be used, for example, to express background
knowledge in the form of cause-and-effect relations between variables. When X is an ancestor of Y ,
we have a positive ancestral constraint, denoted X  Y . When X is not an ancestor of Y , we have a

1To our knowledge, however, the ILP and CP approaches have not been previously evaluated, in terms of
their efficacy in structure learning with ancestral constraints.

2



X1

. . .

X1

X1

X1 X1 X1 X1 X1

G0

X2

X2 X2 X2 X2 X2 X2

X1 X1 X1 X1 X1

X3

X3 X3 X3 X3 X3 X3

X2 X3 X3 X3 X3 X3 X3X2 X2 X2 X2 X2

15年6月12⽇日星期五

(a) A BN graph

X1

. . .

P0

X2

X1 X2 X1 X2

X3

X2 X3 X2 X3 X1 X3 X1 X3

X1 X1 X1 X1 X1X2 X3 X3 X3 X3 X3X2 X2 X2 X2

15�11�16����

(b) A EC Tree

Figure 1: Bayesian network search spaces for the set of variables X = {X1, X2, X3}.

negative ancestral constraint, denoted X 6 Y . In this case, there is no directed path from X to Y ,
but there may still be a directed path from Y to X . Positive ancestral constraints are transitive, i.e., if
X  Y and Y  Z then X  Z. Negative ancestral constraints are not transitive.

Ancestral constraints are non-decomposable since we cannot in general check whether an ancestral
constraint is satisfied or violated by independently checking the parents of each variable. For example,
consider an optimal DAG, compatible with ordering 〈X1, X2, X3〉, from the family scores:

X U score X U score X U score
X1 {} 1 X2 {}, {X1} 1, 2 X3 {}, {X1}, {X2}, {X1, X2} 10, 10, 1, 10

The optimal DAG (with minimal score) in this case is X1 X2 → X3 . If we assert the ancestral
constraint X1  X3, then the optimal DAG is X1 → X2 → X3 . Yet, we cannot enforce this
ancestral constraints using independent, local constraints on the parents that each variable can take.
In particular, the choice of parents for variable X2 and the choice of parents for variable X3 will
jointly determine whether X1 is an ancestor of X3. Hence, the K2 algorithm and approaches based
on the order graph (dynamic programming and heuristic search) cannot enforce ancestral constraints.

These approaches, however, can enforce decomposable constraints, such as the presence or absence
of an edge U → X , or a limit on the size of a family XU. Interestingly, one can infer some
decomposable constraints from non-decomposable ones. We discuss this technique extensively later,
showing how it can lead to significant impact on the efficiency of structure search.

Structure learning approaches based on ILP can in principle enforce non-decomposable constraints,
when they can be encoded as linear constraints. In fact, ancestral relations have been employed
in ILPs and other formalisms to enforce a graph’s acyclicity; see, e.g., [Cussens, 2008]. However,
to our knowledge, these approaches have not been evaluated for learning structures with ancestral
constraints. We provide such an empirical evaluation in Section 6.2

4 Learning with constraints

In this section, we review two recently proposed search spaces for learning Bayesian networks: the
BN graph and the EC tree [Chen et al., 2015, 2016]. We subsequently show how we can adapt the
EC tree to facilitate the learning of Bayesian network structures under ancestral constraints.

4.1 BN graphs

The BN graph is a search space for learning structures with non-decomposable scores [Chen et al.,
2015]. Figure 1(a) shows a BN graph over 3 variables, where nodes represent DAGs over different
subsets of variables. A directed edge Gi

XU−−→ Gj from a DAG Gi to a DAG Gj exists in the BN
graph iff Gj can be obtained from Gi by adding a leaf node X with parents U. Each edge has a cost,
corresponding to the score of the family XU, as in Equation 1. Hence, a path from the root G0 to a
DAG Gn yields the score of the DAG, score(Gn | D). As a result, the shortest path in the BN graph
(the one with the lowest score) corresponds to an optimal DAG, as in Equation 1.

2We also make note of Borboudakis and Tsamardinos [2012], which uses ancestral constraints (path con-
straints) for constraint-based learning methods, such as the PC algorithm. Borboudakis and Tsamardinos [2013]
further proposes a prior based on path beliefs (soft constraints), and evaluated using greedy local search.
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Unlike the order graph, the BN graph explicitly represents all possible DAGs. Hence, ancestral
constraints can be easily integrated by pruning the search space, i.e., by pruning away those DAGs
that do not satisfy the given constraints. Consider Figure 1(a) and the ancestral constraint X1  X2.
Since the DAG X1 X2 violates the constraint, we can prune this node, along with all of its
descendants, as the descendants must also violate an ancestral constraint (adding new leaves to a
DAG will not undo a violated ancestral constraint). Finding a shortest path in this pruned search
space will yield an optimal Bayesian network satisfying a given set of ancestral constraints.

We can use A* search to find a shortest path in a BN graph. A* is a best-first search algorithm
that uses an evaluation function f to guide the search. For a given DAG G, we have the evaluation
function f(G) = g(G) + h(G), where g(G) is the actual cost to reach G from the root G0, and
h(G) is the estimated cost to reach a leaf from G. A* search is guaranteed to find a shortest path
when the heuristic function h is admissible, i.e., it does not over-estimate. Chen et al. [2015, 2016]
showed that a heuristic function can be induced by any learning algorithm that takes a (partial) DAG
as input, and returns an optimal DAG that extends it. Learning systems based on the order graph fall
in this category and can be viewed as powerful oracles that help us to navigate the DAG graph. We
employed URLEARNING as an oracle in our experiments [Yuan and Malone, 2013]. We will later
show how to empower this oracle by passing it decomposable constraints that we infer from a set of
non-decomposable ancestral constraints—the impact of this empowerment turns out to be dramatic.

4.2 EC trees

The EC tree is a recently proposed search space that improves the BN graph along two dimensions
[Chen et al., 2016]. First, it merges Markov-equivalent nodes in the BN graph. Second, it canonizes
the resulting EC graph into a tree, where each node is reachable by a unique path from the root.
Two network structures are Markov equivalent iff they have the same undirected skeleton and the
same v-structures. A Markov equivalence class can be represented by a completed, partially directed
acyclic graph (CPDAG). The set of structures represented by a CPDAG P is denoted by class(P )
and may contain exponentially many Markov equivalent structures.

Figure 1(b) illustrates an EC tree over 3 variables, where nodes represent CPDAGs over different
subsets of variables. A directed edge Pi

XU−−→ Pj from a CPDAG Pi to a CPDAG Pj exists in the
EC tree iff there exists a DAG Gj ∈ class(Pj) that can be obtained from a DAG Gi ∈ class(Pi) by
adding a leaf node X with parents U, but where X must be the largest variable in Gj (according to
some canonical ordering). Each edge of an EC tree has a cost score(XU | D), so the shortest path in
the EC tree corresponds to an optimal equivalence class of Bayesian networks.

4.3 EC trees and ancestral constraints

A DAG G satisfies a set of ancestral constraintsA (both over the same set of variables) iff the DAG G
satisfies each constraint inA. Moreover, a CPDAG P satisfiesA iff there exists a DAG G ∈ class(P )
that satisfiesA. We enforce ancestral constraints by pruning a CPDAG node P from an EC tree when
P does not satisfy the constraints A. First, consider an ancestral constraint X1 6 X2. A CPDAG
P containing a directed path from X1 to X2 violates the constraint, as every structure in class(P )
contains a path from X1 to X2. Next, consider an ancestral constraint X1  X2. A CPDAG P with
no partially directed paths from X1 to X2 violates the given constraint, as no structure in class(P )
contains a path from X1 to X2.3 Given a CPDAG P , we first test for these two cases, which can be
done efficiently. If these tests are inconclusive, we exhaustively enumerate the structures of class(P ),
to check if any of them satisfies the given constraints. If not, we can prune P and its descendants
from the EC tree. The soundness of this pruning step is due to the following.

Theorem 1 In an EC tree, a CPDAG P satisfies ancestral constraints A, both over the same set of
variables X, iff its descendants satisfy A.

5 Projecting constraints

In this section, we show how one can project non-decomposable ancestral constraints onto decompos-
able edge and ordering constraints. For example, if G is a set of DAGs satisfying a set of ancestral

3A partially directed path from X to Y consists of undirected edges and directed edges oriented towards Y .
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constraints A, we want to find the edges that appear in all DAGs of G. These projected constraints
can be then used to improve the efficiency of structure learning. Recall (from Section 4.1) that our
approach to structure learning uses a heuristic function that utilizes an optimal structure learning
algorithm for decomposable scores (the oracle). We tighten this heuristic (empower the oracle) by
passing to it projected edge and ordering constraints, leading to a more efficient search when we are
subject to non-decomposable ancestral constraints.

Given a set of ancestral constraints A, we shall show how to infer new edge and ordering constraints,
that we can utilize to empower our oracle. For the case of edge constraints, we propose a simple
algorithm that can efficiently enumerate all inferrable edge constraints. For the case of ordering
constraints, we propose a reduction to MaxSAT, that can find a maximally large set of ordering
constraints that can be jointly inferred from ancestral constraints.

5.1 Edge constraints

We now propose an algorithm for finding all edge constraints that can be inferred from a set of
ancestral constraints A. We consider (decomposable) constraints on the presence of an edge, or the
absence of an edge. We refer to edge presence constraints as positive constraints, denoted by X → Y ,
and refer to edge absence constraints as negative constraints, denoted by X 6→ Y .

We let E denote a set of edge constraints. We further let G(A) denote the set of DAGs G over the
variables X that satisfy all ancestral constraints in the set A, and let G(E) denote the set of DAGs G
that satisfy all edge constraints in E . Given a set of ancestral constraints A, we say that A entails
a positive edge constraint X → Y iff G(A) ⊆ G(X → Y ), and that A entails a negative edge
constraint X 6→ Y iff G(A) ⊆ G(X 6→ Y ). For example, consider the four DAGs over the variables
X,Y and Z that satisfy ancestral constraints X 6 Z and Y  Z.

Y Z X Y Z X Y Z X Y Z X

First, we note that no DAG above contains the edge X → Z, since this would immediately violate the
constraint X 6 Z. Next, no DAG above contains the edge X → Y . Suppose instead that this edge
appeared; since Y  Z, we can infer X  Z, which contradicts the existing constraint X 6 Z.
Hence, we can infer the negative edge constraint X 6→ Y . Finally, no DAG above contains the edge
Z → Y , since this would lead to a directed cycle with the constraint Y  Z.

Before we present our algorithm for inferring edge constraints, we first revisit some properties of
ancestral constraints that we will need. Note that given a set of ancestral constraints, we may be
able to infer additional ancestral constraints. First, given two constraints X  Y and Y  Z, we
can infer an additional ancestral constraint X  Z (by transitivity of ancestral relations). Second,
if adding a path X  Y would create a directed cycle (e.g., if Y  X exists in A), or if it would
violate an existing negative ancestral constraints (e.g., if X 6 Z and Y  Z exists in A), then we
can infer a new negative constraint X 6 Y . By using a few rules based on the examples above, we
can efficiently enumerate all of the ancestral constraints that are entailed by a given set of ancestral
constraints (details omitted for space). Hence, we shall subsequently assume that a given set of
ancestral constraints A will already include all ancestral constraints that can be entailed from it. We
then refer to A as a maximum set of ancestral constraints.

We now consider how to infer edge constraints from a (maximum) set of ancestral constraints A.
First, let α(X) be the set that consists of X and every X ′ such that X ′  X ∈ A, and let β(X)
be the set that consists of X and every X ′ such that X  X ′ ∈ A. In other words, α(X) contains
X and all nodes that are constrained to be ancestors of X by A, i.e., each X ′ ∈ α(X) is either X
or an ancestor of X, for all DAGs G ∈ G(A). Similarly, β(X) contains X and all nodes that are
constrained to be descendants of X by A.

First, we can check if a negative edge constraint X 6→ Y is entailed byA by enumerating all possible
Xa 6 Yb for all Xa ∈ α(X) and all Yb ∈ β(Y ). If any Xa 6 Yb is in A then we know that A
entails X 6→ Y . That is, since Xa  X and Y  Yb, then if there was a DAG G ∈ G(A) with the
edge X → Y , then G would also have a path from Xa to Yb. Hence, we can infer X 6→ Y . This idea
is summarized by the following theorem:
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Theorem 2 Given a maximum set of ancestral constraints A, then A entails the negative edge
constraint X 6→ Y iff Xa 6 Yb, where Xa ∈ α(X) and Yb ∈ β(Y ).

Next, suppose that both (1) A dictates that X can reach Y , and that (2) A dictates that there is no
path from X to Z to Y , for any other variable Z. In this case, we can infer a positive edge constraint
X → Y . We can again verify if X → Y is entailed by A by enumerating all relevant candidates Z,
based on the following theorem.

Theorem 3 Given a maximum set of ancestral constraints A, then A entails the positive edge
constraint X → Y iff A contains X  Y and for all Z 6∈ α(X) ∪ β(Y ), the set A contains a
constraint Xa 6 Zb or Za 6 Yb, where Xa ∈ α(X), Zb ∈ β(Z), Za ∈ α(Z) and Yb ∈ β(Y ).

5.2 Topological ordering constraints

We next consider constraints on the topological orderings of a DAG. An ordering satisfies a constraint
X < Y iff X appears before Y in the ordering. Further, an ordering constraint X < Y is compatible
with a DAG G iff there exists a topological ordering of DAG G that satisfies the constraint X < Y .
The negation of an ordering constraint X < Y is the ordering constraint Y < X . A given ordering
satisfies either X < Y or Y < X , but not both at the same time. A DAG G may be compatible with
both X < Y and Y < X through two different topological orderings.

We let O denote a set of ordering constraints, and let G(O) denote the set of DAGs G that are
compatible with each ordering constraint in O. The task of determining whether a set of ordering
constraints O is entailed by a set of ancestral constraints A, i.e., whether G(A) ⊆ G(O), is more
subtle than the case of edge constraints. For example, consider the set of ancestral constraints
A = {Z 6 Y,X 6 Z}. We can infer the ordering constraint Y < Z from the first constraint
Z 6 Y , and Z < X from the second constraint X 6 Z.4 If we were to assume both ordering
constraints, we could infer the third ordering constraint Y < X , by transitivity. However, consider the
following DAG G which satisfies A: X → Y Z . This DAG is compatible with the constraint
Y < Z as well as the constraint Z < X , but it is not compatible with the constraint Y < X . Consider
the three topological orderings of the DAG G: 〈X,Y, Z〉, 〈X,Z, Y 〉 and 〈Z,X, Y 〉. We see that none
of the orderings satisfy both ordering constraints at the same time. Hence, if we assume both ordering
constraints at the same time, it eliminates all topological orderings of the DAG G, and hence the DAG
itself. Consider another example over variables W,X, Y and Z with a set of ancestral constraints
A = {W 6 Z, Y 6 X}. The following DAG G satisfies A: W → X Y → Z . However,
inferring the ordering constraints Z < W and X < Y from each ancestral constraint of A leads to a
cycle in the above DAG (W < X < Y < Z < W ), hence eliminating the DAG.

Hence, for a given set of ancestral constraints A, we want to infer from it a set O of ordering
constraints that is as large as possible, but without eliminating any DAGs satisfying A. Roughly, this
involves inferring ordering constraints X < Y from ancestral constraints Y 6 X , as long as the or-
dering constraints do not induce a cycle. We propose to encode the problem as an instance of MaxSAT
[Li and Manyà, 2009]. Given a maximum set of ancestral constraints A, we construct a MaxSAT
instance where propositional variables represent ordering constraints and ancestral constraints (true if
the constraint is present, and false otherwise). The clauses encode the ancestral constraints, as well as
constraints to ensure acyclicity. By maximizing the set of satisfied clauses, we then maximize the set
of constraints X < Y selected. In turn, the (decomposable) ordering constraints can be to empower
an oracle during structure search. Our MaxSAT problem includes hard constraints (1-3), as well as
soft constraints (4):

1. transitivity of orderings: for all X < Y , Y < Z: (X < Y ) ∧ (Y < Z)⇒ (X < Z)

2. a necessary condition for orderings: for all X < Y : (X < Y )⇒ (Y 6 X)

3. a sufficient condition for acyclicity: for all X < Y and Z < W : (X < Y ) ∧ (Z <
W )⇒ (X  Y ) ∨ (Z  W ) ∨ (X  Z) ∨ (Y  W ) ∨ (X  W ) ∨ (Y 6 Z)

4. infer orderings from ancestral constraints: for all X 6 Y inA: (X 6 Y )⇒ (Y < X)

4To see this, consider any DAG G satisfying Z 6 Y . We can construct another DAG G′ from G by adding
the edge Y → Z, since adding such an edge does not introduce a directed cycle. As a result, every topological
ordering of G′ satisfies Y < Z, and G(Z 6 Y ) ⊆ G(Y < Z).
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n = 10 n = 12 n = 14
N 512 2048 8192 512 2048 8192 512 2048 8192
p EC GOB EC GOB EC GOB EC GOB EC GOB EC GOB EC GOB EC GOB EC GOB

0.00 < 7.81 < 112.98 < 19.70 0.01 70.85 0.02 98.28 0.02 144.21 0.06 625.081 0.07 839.46 0.09 1349.24
0.01 < 9.61 < 15.41 < 23.58 0.01 73.39 0.01 99.46 0.01 145.75 0.05 673.003 0.06 901.50 0.08 1356.63
0.05 < 11.56 < 14.54 < 19.85 0.02 60.16 0.01 75.40 0.27 95.11 0.08 243.681 0.05 287.45 0.04 411.22
0.10 < 10.74 < 11.60 < 13.87 0.21 52.02 0.10 53.29 0.36 59.42 0.58 176.500 1.26 198.18 0.03 218.94
0.25 0.01 4.04 < 3.43 < 3.37 4.91 22.47 0.18 20.88 0.17 19.68 55.07 126.312 0.91 112.80 0.02 107.44
0.50 < 0.87 < 0.71 < 0.72 0.51 6.11 0.03 6.10 0.01 5.85 0.48 73.236 0.02 67.29 < 62.60
0.75 < 0.31 < 0.75 < 0.30 < 2.66 < 2.62 < 2.57 < 44.074 < 42.95 < 41.21
1.00 < 0.21 < 0.31 < 0.21 < 2.29 < 2.30 < 2.27 < 39.484 < 39.67 < 37.78

Table 1: Time (in sec) used by EC tree and GOBNILP to find optimal networks. < is less than 0.01 sec. n is the
variable number, N is the dataset size, p is the percentage of the ancestral constraints.

n = 12 n = 14
N 512 2048 8192 512 2048 8192
p EC (t/s) GOB EC (t/s) GOB EC (t/s) GOB EC (t/s) GOB EC (t/s) GOB EC (t/s) GOB

0.01 0.01 1 63.53 0.01 1 83.59 0.02 1 128.23 0.01 1 634.19 0.123 1 738.25 0.12 1 1295.90
0.05 0.06 1 55.20 0.03 1 70.20 1.18 1 90.59 0.06 1 228.57 0.868 1 276.68 0.18 1 404.35
0.10 2.56 1 50.33 2.36 1 52.80 0.91 1 57.66 2.54 1 174.70 34.979 0.98 183.93 0.60 1 210.12
0.25 70.19 0.98 23.29 4.57 1 20.74 1.63 1 21.16 280.59 0.84 137.67 88.80 1 126.80 1.85 1 126.24
0.50 137.31 1 7.74 15.53 1 7.80 1.43 1 7.36 609.18 0.88 90.92 35.62 1 85.58 4.74 1 83.81
0.75 21.86 1 4.38 1.73 1 4.39 0.50 1 4.30 258.80 1 64.51 6.49 1 63.68 2.28 1 64.04
1.00 2.31 1 4.10 0.35 1 4.07 0.15 1 4.02 21.18 1 61.44 1.39 1 60.56 0.54 1 61.06

Table 2: Time t (in sec) used by EC tree and GOBNILP to find optimal networks, without any projected
constraints, using a 32G memory and 2 hour time limit. s is the percentage of test cases that finish.

We remark that the above constraints are sufficient for finding a set of ordering constraints O that are
entailed by a set of ancestral constraints A, which is formalized in the following theorem.

Theorem 4 Given a maximum set of ancestral constraints A, and let O be a closed set of ordering
constraints. The set O is entailed by A if O satisfies the following two statements:

1. for all X < Y in O, A contains Y 6 X

2. for all X < Y and Z < W in O, where X,Y, Z and W are distinct, A contains at least
one of X  Y, Z  W,X  Z, Y  W,X  W,Y 6 Z.

6 Experiments

We now empirically evaluate the effectiveness of our approach to learning with ancestral constraints.
We simulated different structure learning problems from standard Bayesian network benchmarks5

ALARM, ANDES, CHILD, CPCS54, and HEPAR2, by (1) taking a random sub-network N of a given
size6 (2) simulating a training dataset from N of varying sizes (3) simulating a set of ancestral
constraints of a given size, by randomly selecting ordered pairs whose ground-truth ancestral relations
in N were used as constraints. In our experiments, we varied the number of variables in the learning
problem (n), the size of the training dataset (N ), and the percentage of the n(n− 1)/2 total ancestral
relations that were given as constraints (p). We report results that were averaged over 50 different
datasets: 5 datasets were simulated from each of 2 different sub-networks, which were taken from
each of the 5 original networks mentioned above. Our experiments were run on a 2.67GHz Intel Xeon
X5650 CPU. We assumed BDeu scores with an equivalent sample size of 1. We further pre-computed
the scores of candidate parent sets, which were fed as input into each system evaluated. Finally, we
used the EVASOLVER partial MaxSAT solver, for inferring ordering constraints.7

In our first set of experiments, we compared our approach with the ILP-based system of GOBNILP,8
where we encoded ancestral constraints using linear constraints, based on [Cussens, 2008]; note
again that both are exact approaches for structure learning. In Table 1, we supplied both systems
with decomposable constraints inferred via projection (which empowers the oracle for searching
the EC tree, and provides redundant constraints for the ILP). In Table 2, we withheld the projected

5The networks used in our experiments are available at http://www.bnlearn.com/bnrepository
6We select random sets of nodes and all their ancestors, up to a connected sub-network of a given size.
7Available at http://www.maxsat.udl.cat/14/solvers/eva500a__
8Available at http://www.cs.york.ac.uk/aig/sw/gobnilp
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n = 18 n = 20
N 512 2048 8192 512 2048 8192
p t s ∆ t s ∆ t s ∆ t s ∆ t s ∆ t s ∆
0.00 2.25 1 16.74 2.78 1 8.32 3.11 1 7.06 19.40 1 23.44 20.62 1 10.60 28.22 1 7.22
0.01 2.22 1 16.58 3.46 1 8.60 3.63 1 7.38 30.38 1 23.67 30.46 1 10.53 34.34 1 7.09
0.05 41.15 0.96 15.02 2.91 0.98 6.96 2.12 1 5.56 87.74 0.96 18.44 39.25 1 8.20 17.40 1 5.00
0.10 149.40 0.94 12.72 73.03 0.96 5.81 7.35 1 3.78 492.59 0.82 14.67 185.82 0.94 7.21 24.46 0.98 3.94
0.25 251.74 0.78 6.33 338.10 0.94 3.79 30.90 0.96 1.96 507.02 0.58 6.17 572.68 0.88 4.46 153.81 0.96 2.28
0.50 95.18 0.98 5.49 13.92 0.98 2.69 116.29 0.98 1.24 163.19 0.88 6.36 46.43 0.96 2.19 70.15 1 1.07
0.75 9.07 1 3.30 5.83 1 1.66 0.72 1 0.72 1.47 1 4.49 0.28 1 1.36 0.38 1 0.60
1.00 < 1 0.72 < 1 0.48 < 1 0.26 < 1 2.02 < 1 0.47 < 1 0.18

Table 3: Time t (in sec) used by EC tree to find optimal networks, with a 32G memory, a 2 hour time limit. < is
less than 0.01 sec. n is the variable number, N is the dataset size, p is the percentage of the ancestor constraints,
s is the percentage of test cases that finish, ∆ is the edge difference of the learned and true networks.

constraints. In Table 1, our approach is consistently orders-of-magnitude faster than GOBNILP, for
almost all values of n, N and p that we varied. This difference increased with the number of variables
n.9 When we compare Table 2 to Table 1, we see that for the EC tree, the projection of constraints
has a significant impact on the efficiency of learning (often by several orders of magnitude). For ILP,
there is some mild overhead with a smaller number of variables (n = 12), but with a larger number
of variables (n = 14), there were consistent improvements when projected constraints are used.

Next, we evaluate (1) how introducing ancestral constraints effects the efficiency of search, and (2)
how scalable our approach is as we increase the number of variables in the learning problem. In
Table 3, we report results where we varied the number of variables n ∈ {16, 18, 20}, and asserted
a 2 hour time limit and a 32GB memory limit. First, we observe an easy-hard-easy trend as we
increase the proportion p of ancestral constraints. When p is small, the learning problem is close
to the unconstrained problem, and our oracle serves as an accurate heuristic. When p is large, the
problem is highly constrained, and the search space is significantly reduced. In contrast, the ILP
approach more consistently became easier as more constraints were provided (from Table 1). As
expected, the learning problem becomes more challenging when we increase the number of variables
n, and when less training data is available. We note that our approach scales to n = 20 variables here,
which is comparable to the scalability of modern score-based approaches reported in the literature (for
BDeu scores); e.g., Yuan and Malone [2013] reported results up to 26 variables (for BDeu scores).

Table 3 also reports the average structural Hamming distance ∆ between the learned network and the
ground-truth network used to generate the data. We see that as the dataset size N and the proportion
p of constraints available increases, the more accurate the learned model becomes.10 We remark
that a relatively small number of ancestral constraints (say 10%–25%) can have a similar impact
on the quality of the observed network (relative to the ground-truth), as increasing the amount of
data available from 512 to 2048, or from 2048 to 8192. This highlights the impact that background
knowledge can have, in contrast to collecting more (potentially expensive) training data.

7 Conclusion

We proposed an approach for learning the structure of Bayesian networks optimally, subject to
ancestral constraints. These constraints are non-decomposable, posing a particular difficulty for
learning approaches for decomposable scores. We utilized a search space for structure learning with
non-decomposable scores, called the EC tree, and employ an oracle that optimizes decomposable
scores. We proposed a sound and complete method for pruning the EC tree, based on ancestral
constraints. We also showed how the employed oracle can be empowered by passing it decomposable
constraints inferred from the non-decomposable ancestral constraints. Empirically, we showed that
our approach is orders-of-magnitude more efficient compared to learning systems based on ILP.
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9When no limits are placed on the sizes of families (as was done here), heuristic-search approaches (like
ours) have been observed to scale better than ILP approaches [Yuan and Malone, 2013, Malone et al., 2014].

10∆ can be greater than 0 when p = 1, as there may be many DAGs that respect a set of ancestral constraints.
For example, DAG X → Y → Z expresses the same ancestral relations, after adding edge X → Z.
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