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Abstract

We describe a system for exact inference with relational Bayesian retvag defined in the
publicly available RIMULA tool. The system is based on compiling propositional instances of
relational Bayesian networks into arithmetic circuits and then performing omifieeence by
evaluating and differentiating these circuits in time linear in their size. We repoexperi-
mental results showing the successful compilation, and efficient inferencaelational Bayesian
networks whose RIMULA—generated propositional instances have thousands of variables, and
whose jointrees have clusters with hundreds of variables.

1 Introduction mial in the number of objects) has been constructed
for a propositional instance, this model will often be
Relational probabilistic models extend Bayesianinaccessible to standard algorithms for exact infer-
network models by representing objects, their atence, because its global structure does not lead to
tributes and their relations with other objects. Thetractable jointrees.
standard approach for inference with a relational Even though the constructed networks may lack
model is based on the generation of a propositionathe global structure that would make them accessi-
instance of the model in the form of a classicalble to standard inference techniques, they may very
Bayesian network, and then using classical algowell exhibit abundant local structure in the form
rithms, such as the jointree (Jensen et al., 1990), tof determinism and context—specific independence
compute answers to queries. (Boutilier et al., 1996). The objective of this paper
The propositional instance of a relational modelis to describe a system for inference with proposi-
includes one Boolean random variable for eacHional instances of relational models which can ex-
ground relational atom. For example, if we haveploit this local structure, allowing us to reason very
n objectsoq,...,0, in the domain, and a bi- efficiently with relational models whose proposi-
nary relationR(.,.), we will generate a proposi- tional instances may look quite formidable at first.
tional variable for each instance of the relation: Specifically, we will employ the approach proposed
R(o01,01), R(01,02),...,R(0n,0,). The first task by (Darwiche, 2003) to compile propositional in-
in making Bayesian networks over these randonstances of relational models into arithmetic circuits,
variables tractable for inference is to ensure that th@nd then perform online inference by simply eval-
size of the Bayesian network representation doegating and differentiating the compiled circuits in
not show exponential growth in the numberof  time linear in their size. As our experimental re-
domain objects (as can easily happen due to nodegllts illustrate, this approach efficiently handles re-
whose in-degree grows as a functiomf This can  lational models whose®MULA—generated propo-
often be achieved by decomposing nodes with higlsitional instances are quite masstve.
in-degree m.to suitable, sparsely Cor_",]eCted sub- 'Some may recall the technique of zero—compression which
networks using a number of new, auxiliary nodes.can be used to exploit determinism in the jointree framework
This approach is systematically employed in the(Jensen and Andersen, 1990). This technique, however, re-
PRIMULA system. Even when a reasonably Com_qwres t_hat one do inference on the original jointree before |t_
is zero—compressed, making almost all of our data sets inac
pact Bayesian network representation (i.e. polynoeessible to this method.



This paper is structured as follows. We start inbility distribution over all R”-structures as output.

Section 2 with a review of relational models in gen-I witivel b td B obiect
eral and the specific formalization used in this paper.n 3' Ve yiomen(;sersdoR omal rteprleien tjr::‘CtS,
We then discuss in Section 3 th@ muLA system, and members & andh representreiations that can

which implements this formalization together with a .hOId on these objects. These reIa_nong can be unary
n which case they are called objeattributes. A

method for generating propositional instances in thé . . . )
form of Bayesian networks. Section 4 is then dedi-">¢" would tyglca”y define the refations & (by
cated to our proposed approach for compiling relaprgwdmg ans —strl_Jctu_re),_ an_d then use aRSM.
tional models. We then provide experimental resultd® induce a probability distribution over the possible

. -y . . D_
in Section 5, and finally close with some concludingde:'ng'onstﬁaf‘;gla“tonst i (R StrUCt:jJ;iS)l' tWe
remarks in Section 6. note here —structures correspond séeleton

structuresin (Friedman et al., 1999).
2 Relational Models We now describe threerswms that will be used

in our experiments. These models have been im-
Relational or first-order probabilistic models extendplemented in RiMuLA, which provides a syntax
propositional modeling supported by Bayesian netfor specifyingRrRsMs, and can be obtained from
works by allowing one to represent objects eXIO”C-http://www.cs.ucla.edulchavira/pgm04
itly, and to define relations over these objects. Most Random Blocks. This is a model for the random
of the early work on such generic models, whichpjacement of blocks, which serve as obstacles, on
has been subsumed under the titeowledge- he |ocations of a map, and the resulting accessibil-
based model constructiofsee e.g. (Breese et al., ity relation among the locations. The input struc-
1994)), combines elements of logic—programmingyres consist of a particular gridmap, and a set of
with Bayesian networks. —Today one can dis-pjocks. This is represented using a set of prede-
tinguish several distinct representation paradigmsined relationsS — {location,block, leftof, belowf
for relational and first-order models: (inductive) hereocation and block are attributes that parti-
logic-programming based approaches (Sato, 199%jgp the domain into the two types of objects, and
Muggleton, 1996; Kersting and de Raedt, 2001),eftof and belowof are binary relations that deter-

network fragments (Laskey and Mahoney, 1997)mine the spatial relationship among locations. Fig-
frame-based representations (Koller and Pfefferyre 1 shows an inpu?—structure.

1998; Friedman etal., 1999), and probabilistic pred- 5,4 of the probabilistic relations iR for this
icate logic formulas (Jaeger, 1997).

We will use in this paper the language i@fia-
tional Bayesian networkSaeger, 1997) to represent

relational mode.ls, as implemented in thRIRULA  yeen pairs of locations which describes whether,
system  (http://www.cs.auc.dkfaeger/Primula).  afier the placement of the blocks, there is an un-

The formal semantics of the language is based oR|qcked path betweeh andl,. A probabilistic
Random Relational Structure ModeIRRSMS),  query might be the probability that there is an un-
which we define next. blocked path between two locatiohsand!s, given

Definition 1 Given (1) a set of relational symbols the observed locations of some blocks (but uncer-
S, called predefined relation$2) a set of relational ~ tainty about the placement of the remaining ones).
symbolsR, called probabilistic relations and (3) We will experiment with different versions of this

a finite setD, called the domain we define an relational model, blockmap—b, where! is the num-
SP-structureto be an interpretation of relation§  ber of locations and the number of blocks.

over domainD, that is, a function which maps ev-  Mastermind. In the game of Mastermind, Player
ery ground atoms(d) (s € S, d C D) to either 1 arranges a hidden sequence of colored pegs.
true or false. We also define a Random Relational Player 2 guesses the exact sequence of colors by
Structure Mode(RRSM) as a partial function which arranging guessed sequences of colored pegs. To
takes anS”-structure as input, and returns a proba- each guessed sequence, Player 1 responds by stating

model is the binary relatiotl ocks(b,1) which
represents the random placement of a bléabn
some locatiori. Another isconnect ed(ly,l2) be-




X [X] oo allows users to encodersMs using the language

B1 B2 of relational Bayesian networks (Jaeger, 1997), and
outputs the distribution orRP”—structures in the
belowor form of a standard Bayesian network.

Locations : !

3.1 SpecifyingRRSMs usingPRIMULA
leftof

We will now provide an example of specifying an
Figure 1: InputS”—structure. RRSM using RRIMULA. Consider a relational ver-

sion of the well known domain involving individu-
how many pegs in the guess match pegs in his hid:ills, their alarms, neighbors (who can be pranksters),

: L . and whether they receive calls from these neigh-

den sequence bothin colora_md position (white feeo‘bors when their alarm is set off. The domain
back), and how many pegs in the guess match pegs, . individuals, and the set of predefined re-
in the hidden sequence only in color (black feeOI'IationsS contains a unary relatiorprankster in
back). This feedback is provided by placing white ddition to a binary relatiomeighbor. There are
and black feedback pegs in a sequence. Player )

L . o our probabilistic relations inR for this domain.
wins if he guesses the hidden sequence within ACeL o fict iscalls(v, w): whethery callsw in or-
tain number of rounds. L

der to warnw that his alarm went off. The proba-
The game can be represented aRrasM where

: . : bility of calls(v,w) is defined conditional on the
the domainD consists of objects of typgmg color, . ) . o
. : predefinecheighborandpranksterrelations (it is O
and round specified by corresponding unary rela- . .
. . . . if v andw are not neighbors), and on the proba-
tions in .S, as well as binary relationgeg-ordand

. ) bilistic al ar m(v) relation: whether the alarm of
round-ordin S that impose orders on the peg and _ ,

. . - went off. We also have another probabilistic relation
round objects, respectively. The probabilistic rela-

. : i al ar med(v): whetherv has been alarmed (called
tions R in the model represent the game configura- . N
: by at least one neighbor). The last probabilistic re-
tions after a number of roundsr ue- col or (p, ¢)

represents that is the color of the hidden peg lation isbur gl ar y(v): whethery’s home has been

. burglarized.
guessed- col or (p, ¢, ) represents that in round g

colore was placed in ition in the quess. Sim- This RRSM is specified in RIMULA as given
1 colorcwas placedin position guess. in Table 1, which provides the probability distri-

ilarly, the arrangement of the feedback pegs can be . e . . .
o L ution on probabilistic relations usingrobability
encoded. The probabilistic model specifies that al .
ormulas. These formulas can be seen either as

color sequences are equiprobable, but can also SP&Sobabilistic analogues of predicate logic formu-
ify a distribution on the choice of hidden colors. b g b g

. . . : . las, or as expressions in a functional programming
We will experiment with different versions of this S i
. . language. A probability formula defines both the
model, mastermind=—g—p, wherec is the number

. dependency structure between ground probabilistic
of colors, g is the number of guesses, apds the . . .
atoms (which will depend on the predefined rela-
number of pegs.

Student 4 Prof We refer th q tions in the input structure), and the exact condi-
udents and FrOTessors. We Teter Ine reader: 4,4 probabilities, given the truth values of parent
to http://www.cs.ucla.edw/chavira/pgmO4for the toms
definition of this last model used in our experiments, '
which is a variation on the model used by (Pasulabur gl ary(v) = 0.005;
al ar mv) = (bur gl ar y(v):0.95,0.01);

and Russell, 2001) to investigate approximate infer_ ", s(vw) = (neighbotv.w)-

ence for relational models. (prankste(v)):
(al ar mw):0.9,0.05),
3 ThePRIMULA System (al ar mw):0.9,0)),0);

al ar med(v)=n-or{ cal | s(w,v)|w:neighbofw,v)}
The RRSM is an abstraction of probabilistic rela-
tional models. For a practical system, one needs a Table 1: Specifying aRRSMusing RRIMULA.
specific syntax for specifying aRRsSM. PRIMULA



3.2 From relational to propositional networks lead to substantial gains in practice.

. . : . : A high-level inference technique that aims at
To instantiate a generic relational model as in Ta-_ , . . S
: : _— achieving such gains in average-case performance
ble 1 in RRIMULA, one must provide a definition of

an inputSP—structure. That is, one must define thehas recently been described by Poole (Poole, 2003).

L ) ! The potential advantage of this and similar infer-
set of individuals in domaiD, and then one must P 9

' L ence techniques seems to be restricted, however, to
define who of these individuals are pranksters (by g

. ) : relational models where individual model instances
defining the attributpransktejy, and who are neigh- . : .
.- L are given by relatively unstructured input structures,
bors of whom (by defining the relatiomeighbo).

. . N i.e. input structures containing large numbers of in-
biisic retadons can be representac, as descrved f1SiNOuishable objecis. The potentil of igh-fevel
Section 1, using a standard Bayesiém network Withlnference techniques lies in their ability to deal with

’ o such sets of objects without explicitly naming each
a node for each ground probabilistic atom. Our ex'object individually. However, in the type of rela-
ample also illustrates how the in-degree of a nOd(?ional models we.are here (,:onsidering the input
can grow as a function of the number of domain ob- ’

. g . . structures consist of mostly unigque objects (in Ran-
jects: the nodelarmed(Holmes, for instance, wil dom Blocks, for instance, the block objects are in-
depend Oncalls(w? Holmes for. all-of HoIrr_1es§ distinguishable, but all location objects have unique
neighborsw (of which there might be arbitrarily properties defined by thbelowof and leftof re-
many). lations). We can identify an input structure with
The FRIMULA system employs the general ihe complete ground propositional theory that de-
method described in (Jaeger, 2001) to decomyines it (for the structure of Figure 1 this would be
pose the dependency of a node on multiple pary,e theoryblock(B1) A —location(BL)A ... A
ents. This method consists of an iterative algo-leftof(Q 3)A ... A —belowot(5,5)), and, infor-
rithm that takes the probability formula defining the mally, characterize highly structured input struc-

distribution of a node, decomposes it into its t0P—yres as those for which this propositional theory
level subformulas—Dby introducing one new auxil- 5qmits no simple first-order abstractidrWhen a

iary node for each of these subformulas—and dege|ational model instance, now, is given by an in-
fines the probability of the original node condi- ¢ structure that cannot be succinctly encoded in
tional only on the new auxiliary nodes. This methody, apstract, first-order style representation, chances
can be applied to any relational Bayesian networkye very small that probabilistic inference for this

that only contains multi-linear combination func- ,odel instance can gain much efficiency by operat-
tions (which includenoisy-orandmear), and then ing on a non-propositional level.

yields a Bayesian network in which the number of It thus appears that at least for a fairly large

parents is bounded by 3 for aI.I nodes. _ class of interesting models more advantages might
Even whc_an one succeeds in constructing a stalhe gained by optimizing inference techniques

dard Bayesian network of a manageable representgor ground propositional models, than by non-

tion size, inference in this network may be computa-propositional inference techniques.

tionally very hard. Itis a long-standing open prob- 1ap16 5 gepicts the relational models we experi-

lem in first-order and relational modeling whethermented with, together with the size of correspond-

one might not design inference techniques thaf,, 1ohositional Bayesian networks generated by
avoid these complexities of inference in the groundl;,RIMUI_A 's decomposition method. The table also

propositional instances by performing inference di-gn4115 the size of largest cluster in the jointree

rectly on the Iev_el of the _relatlonal_ representat'_on’constructed for these networks. Obviously, most
perhaps employing techniques of first-order logicalyt these networks are inaccessible to mainstream,

inference.  Complexity results derived in (Jaegergy cyyre_based algorithms for exact inference. Yet,
2000) show that one cannot hope for a better worst-

case performance with such inference techniques. 2o maily one would define the 'structuredness’ of an input

This still leaves the possibility that they could often structure in terms of the number of its automorphisms.



° Propositional theory: Multi-linear function:
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Figure 2: A Bayesian net with one of its CPTs.

we will show later that all of these models can k|, Y b/ /\1

handled efficiently using the compilation approac b b

we propose in this paper. Va =V, a 1
Smooth d-DNNF Arithmetic Circuit

4 Compiling Relational Models
Figure 3: Factoring multi-linear functions into
We describe in this section the approach we use t@rithmetic circuits.

perform exact inference on propositional instances

of relational models, which is based on compil- . . . .
P AaAgAatlaby|z0za. Given this multi-linear function

ing Bayesian networks into arithmetic circuits (Dar- ) ) :
wiche, 2003). Inference can then be performed usf’ we can answer standard queries with respect to its

ing a simple two—pass procedure in which the Circuitcorrespondmg Bayesian network by simply evaluat-

is evaluated and differentiated given evidence. Ing and dlffere_ntlatlng this function; see (Darwiche,
2003) for details.

4.1 Bayesian networks as polynomials The ability to compute answers to probabilistic

The compilation approach we adopt is based OIgueries directly from the derivatives gfis inter-

viewing each Bayesian network as a very large IOOIy_estlng semantically, but one must realize that the

nomial (multi-linear function in particular), which size of function is exponential in the number of

may be compactly represented using an arithmeti?hetwfork ;/_arlabltzls. Yet, onte_tmay be able tot:‘actor
circuit. The function itself contains two types of IS function and represent it more compactly us-

variable® For each valuer of each variableX ing an arithmetic circuitAn arithmetic circuitis a
in the nétwork we have a variable, called an rooted DAG, in which each leaf represents a vari-

evidence indicator. For each instantiationu of able or constant and each internal node represents

each variableX and its parentdJ in the network, the product or sum of its children; see Figure 3. If
we have a variablé,, called a network parame- we can represent the network polynomial efficiently

ter. The multilinear function has a term for eachusing an arithmetic circuit, then inference can be

instantiation of the network variables, which is con-done_In time I|_near |r_1 th? size of such cwcwts,_smt_ze
structed by multiplying all evidence indicators andthe (first) partial derlvgtlves of an arljthrr.\etlc.cwcw_t
network parameters that are consistent with that incan a_‘” b? cqmputed s_lmultaneously intime linear in
stantiation. For example, the multi—linear functionthe circuit size (Darwiche, 2003).
of the network in Figure 2 ha&terms correspond-
ing to the 8 instantiations of variablesA, B, C:

[ = >\a)\b>\00a9b\aec|a+ )\a>\b)\69a0b|a96\a+ ceet

4.2 Compiling the network polynomial into an
arithmetic circuit

We now turn to the approach for compil-
*We are using the standard notation: variables are denotefhg/factoring network polynomials into arithmetic

by upper—case lettersAj and their values by lower—case let- .~ . . . . _
ters @). Sets of variables are denoted by bold—face upper—casglrcu'ts’ which is based on reducing the factor

letters (A) and their instantiations are denoted by bold—faceing problem to one of logical reasoning (Darwiche,
lower—case lettersaj. For a variableA with valuestrue and - 2002). This approach is based on three concep-
false, we usea to denoteA= true anda to denoteA= false. | h in Ei 3. First. th ¢ K
Finally, for a variableX and its parentdJ, we used,, to de- tual steps, as shown in Figure 3. First, the networ
note the CPT entry corresponding®e (x | u). polynomial is encoded using a propositional theory.



Next, the propositional theory is factored by con-ism), and (3) disjuncts must be over the same vari-
verting it to a special logical form. Finally, an arith- ables (smoothness). The NNF in Figure 3 satisfies
metic circuit is extracted from the factored proposi-the above properties, and encodes the multi-linear
tional theory. function shown in the same figure. In our experi-

Step 1: Encoding a multi-linear function using  mental results, we use a second generation compiler
a propositional theory. The purpose of this step is for converting CNFs to NNFs that are decompos-
to specify the network polynomial using a proposi-able, deterministic and smooth (smooth d-DNNF)
tional theory. To illustrate how a multi-linear func- (Darwiche, 2004).
tion can be specified using a propositional theory, Step 3: Extracting an arithmetic circuit. The
consider the following functiorf = ac + abc + ¢  purpose of this last step is to extract an arithmetic
over real-valued variables b, c. The basic idea is circuit for the polynomial encoded by an NNF. If
to specify this multi-linear function using a propo- Ay is an NNF that encodes a network polynomial
sitional theory that has exactly three models, wheref, and if Ay is a smooth d-DNNF, then an arith-
each model encodes one of the terms in the funcmetic circuit for the polynomialf can be obtained
tion. Specifically, suppose we have the Booleareasily as follows. First, replace and—-nodesAn
variablesV,, V;,, V.. Then the propositional theory by multiplications; then replace or—nodes by addi-
Ay = (Vo VvV =V,) A V. encodes the multi-linear tions; and finally, replace each leaf node labelled
function f as follows: with V,, by x and each node labelled withl/, by 1.

The resulting arithmetic circuit is then guaranteed to
Model ‘ Va Vo Ve ‘ encoded term correspond ?o polynomiaf (DarwichegOOZ). Fig-

o1 ime ];alse ime az ure 3 depicts an NNF and its corresponding arith-
o2 rue . true - true ) ane metic circuit. Note that the generated arithmetic cir-
o3 false  false true | c

cuit is no larger than the NNF. Hence, if we attempt
That is, if modelo; encodes ternt;, theno; sets  to minimize the size of NNF, we are also minimiz-
Boolean variabld/; to true iff ¢; contains the cor- ing the size of generated arithmetic circuit.
responding real-valued variable. This method of
specifying network polynomials allows one to eas-4-3 EncodingPRIMULA’s networks
ily capture local structure; that is, to declare certainAs mentioned earlier, theRMMULA system gener-
information about values of polynomial variables. ates propositional instances of relational models in
For example, if we know that parameter= 0, then  the form of classical Bayesian networks. These net-
we can exclude all terms that contairby conjoin-  works, however, have a specific structure that we
ing =V with our encoding. exploit when encoding the network polynomial as
Step 2: Factoring the propositional encoding. CNF; we do not use the exact encodings proposed in
If we view the conversion of a network polynomial (Darwiche, 2002). In particular, the networks gen-
into an arithmetic circuit as a factoring process, thererated by RimMuLA will only have binary variables,
the purpose of this second step is to accomplistand each node is restricted to have no more than
a similar task but at the logical level. Instead of parents.
starting with a polynomial (set of terms), we start These specific properties of the generated net-
with a propositional theory (set of models). And works allow one to use a tailored encoding of the
instead of building an arithmetic circuit, we build network polynomial. Specifically, instead of using
a Boolean circuit that satisfies certain propertiesone propositional variable for each evidence indi-
Specifically, the circuit must be in Negation Nor- cator \,—which would be needed in general—we
mal Form (NNF): a rooted DAG where leaves areuse one propositional variablg for each Bayesian
labelled with literals, and where internal nodes arenetwork variableX, where the positive literal'x
labelled with conjunctions or disjunctions; see Fig-represents indicatoy,,, and the negative literal x
ure 3. The NNF must satisfy three properties: (1)represents indicatoxz. Not only does this cut the
conjuncts cannot share variables (decomposabilityfpumber of indicator variables by half, but it also
(2) disjuncts must be logically exclusive (determin-relieves the need for clauses of the forl, v Az



and -\, VvV =z which would be needed to ensure aged oveB1 different pieces of evidence. By eval-
that exactly one indicator for variabl& can ap- uating and differentiating the circuit, one obtains
pear in any polynomial term; see (Darwiche, 2002).marginals over all network families, in addition to
The CNF encoding will also include one variable other probabilities discussed in (Darwiche, 2003).
Py, for each network parametéy,,, which is not The main points to observe are the effi-
equal to0 or 1. Given these variables, the CNF ciency of online inference on compiled cir-
will then only include the following clauses: If cuits and the size of these circuits compared to
O2lur,..usn, = 0, Include clausely, V ...V Ly,, the size and connectivity of the Bayesian net-
where Ly, is a literal over variabldy;, whose sign  works. Table 2 also shows the time for jointree
is opposite to the sign af;. If 6., . ., #0,# 1,  propagation using the Samlam inference engine
include claused.;;, V...V Ly, = Py (http://reasoning.cs.ucla.edu/samiam) on instances

z|ug,..., un’

Porurn = Loy - Po,, = Lu,,where whose cluster size was manageable. One can see

Ly, is a literal as defined earlier. the big difference between online inference using
For example, the CPT for variable in Figure 2  the compiled AC and corresponding jointrees.

will generate the following clauses: (1st rowJ 4V Table 2 finally shows the compile time to gener-

—Ip, (3ndrow)—I4AIp = Poyor Poy = —la, ate the arithmetic circuits. The compile times range

Py, . = Ip, (4th row) =1y A —Ig = Pgwa, from less than a minute to aboé minutes for the

PQM& = 14, andng‘a = —Ip. largest model. Yet the time for online inference

Given that all network variables are binary, andranges from milliseconds to abou$ seconds for
given that each node has at most three parents, thibese models. This clearly shows the benefit of of-
encoding leads to a CNF whose size is linear in thdline compilation in this case, whose time can be
number of network variables. Table 2 depicts theamortized over online queries.
size of CNF encodings for the relational models we )
experimented with. The number of clauses for thes® ~Conclusion
encodings is usually smaller than the number of paye gescribed in this paper an inference system for
rameters in the corresponding Bayesian networks. g|ational Bayesian networks as defined bgiw-

The special encoding used above calls for &, a. The proposed inference approach is based on
slightly different decoding scheme for transforming compiling propositional instances of these models
a smooth d-DNNF into an arithmetic circuit. Specif- jnto arithmetic circuits. The approach exploits local

ically, literals Iy and —I are replaced with evi- strycture in relational models, allowing us to reason
dence indicators, and\z, respectively. Moreover,  gfficiently with relational models whoseRRMULA —

literals 7y, , and—Fy, , are replaced by, |, andl,  generated propositional instances contain thousand
respectively. Finally, conjunctions and disjunctionsqf variables, and whose jointrees contain hundreds

are replaced by multiplications and additions. of variables. The described system appears to sig-
_ nificantly expand the scale ofRMMULA—based re-
5 Experimental Results lational models that can be handled efficiently by

: . exact inference algorithms.
We ran our experiments on a 1.6GHz Pentium M g

with 2GB of RAM. Table 2 lists for each reI:_;ltionaI Acknowledgments
model a number of instances, and for each instance,
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Relational Bayesian Network CNF Encoding Arithmetic Circuit AC Time JT
Model Vars CPT Largest|| Vars Clauses || Nodes Edges Inf Comp Inf
Parameters Cluster| Count Log (sec) (min) (sec)
mastermind
C-R-P
03-08-03 1220 8326 23 1328 4379 26021 339505 18.4|| 0.0291 1 8.25
04-08-03 1418 9802 26 1580 5252 71666 541356 19.0|| 0.0516 1 57.48
05-08-03 1616 11278 32 1832 6125 149982 942167 19.8|| 0.0930 1
06-08-03 1814 12754 37 2084 6998 258228 1523888 20.5|| 0.1518 1
10-08-03 | 2606 18658 54 3092 10490 1293323 4315566 22.0| 0.6835 3
03-08-04 2288 16008 31 2432 8292 186351 4859201 22.2|| 0.2997 2
04-08-04 2616 18488 39 2832 9712 932355 19457308 24.2|| 1.7341 5
03-08-05 3692 26186 40 3872 13453 1359391 55417639 25.7| 4.3253 10
students
P-S
03-02 376 2616 25 618 2131 7927 37281 15.2|| 0.0052 1 6.14
03-06 764 5512 50 1454 5147 110196 595737 19.2|| 0.0588 1
03-12 1346 9856 59 2708 9671 24219 113876 16.8|| 0.0175 1
04-08 1571 11566 72 3099 11099 95649 445410 18.8|| 0.0530 2
04-16 2827 21070 101 5859 21115 181166 815461 19.6|| 0.0930 3
05-10 2774 20688 128 5624 20279 630092 2531230 21.3|| 0.2885 3
05-20 5064 38168 148 10734 38889 1319834 5236257 22.3| 1.8439 7
06-12 4445 33454 176 9209 33353 4586368 16936504 24.9| 3.2120 14
06-24 8201 62302 233 17693 64325 9922233 36450231 25.1| 12.9663 33
blockmap
L-B
05-01 700 4784 18 708 2412 1255 3364 11.7 0.0052 1 2.70
05-02 855 5898 21 875 2999 1751 12306 13.6|| 0.0058 1 6.36
05-03 1005 6972 23 1035 3561 2833 20636 14.3|| 0.0068 1 27.39
10-01 5650 40070 52 5670 20083 10147 56998 15.8|| 0.0136 1
10-02 6252 44444 53 6292 22318 11978 309176 18.2|| 0.0255 1
10-03 6848 48758 52 6908 24529 17749 974817 19.9(| 0.0582 2
15-01 16497 116048 68 16525 58094 29347 224826 17.8{| 0.0349 2
15-02 17649 124298 70 17709 62299 33011 1798085 20.8|| 0.1085 3
15-03 18787 132436 68 18877 66443 47475 7643307 22.9(| 0.3799 6
20-01 39297 278138 90 39335 139164 || 69208 726787 19.5(| 0.0940 6
20-02 41337 292760 90 41413 146570 || 75299 6989375 22.7|| 0.3757 10
20-03 43356 307220 92 43476 153910 || 105602 40172434 25.3| 2.4529 30
22-01 54318 386842 104 54360 193526 || 96424 1103074 20.1|| 0.1408 10
22-02 56873 405240 103 56957 202830 || 103980 11707536 23.5| 0.8227 20
22-03 59404 423452 104 59536 212056 || 144136 76649302 26.2| 4.6651 61
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