
Compiling Relational Bayesian Networks for Exact Inference

Mark Chavira, Adnan Darwiche
Computer Science Department

UCLA, CA 90095
{chavira,darwiche}@cs.ucla.edu

Manfred Jaeger
Institut for Datalogi, Aalborg Universitet
Fredrik Bajers Vej 7 E, DK-9220 Aalborg

jaeger@cs.auc.dk

Abstract

We describe a system for exact inference with relational Bayesian networks as defined in the
publicly available PRIMULA tool. The system is based on compiling propositional instances of
relational Bayesian networks into arithmetic circuits and then performing onlineinference by
evaluating and differentiating these circuits in time linear in their size. We reporton experi-
mental results showing the successful compilation, and efficient inference, on relational Bayesian
networks whose PRIMULA –generated propositional instances have thousands of variables, and
whose jointrees have clusters with hundreds of variables.

1 Introduction

Relational probabilistic models extend Bayesian
network models by representing objects, their at-
tributes and their relations with other objects. The
standard approach for inference with a relational
model is based on the generation of a propositional
instance of the model in the form of a classical
Bayesian network, and then using classical algo-
rithms, such as the jointree (Jensen et al., 1990), to
compute answers to queries.

The propositional instance of a relational model
includes one Boolean random variable for each
ground relational atom. For example, if we have
n objects o1, . . . , on in the domain, and a bi-
nary relationR(., .), we will generate a proposi-
tional variable for each instance of the relation:
R(o1, o1), R(o1, o2), . . . , R(on, on). The first task
in making Bayesian networks over these random
variables tractable for inference is to ensure that the
size of the Bayesian network representation does
not show exponential growth in the numbern of
domain objects (as can easily happen due to nodes
whose in-degree grows as a function ofn). This can
often be achieved by decomposing nodes with high
in-degree into suitable, sparsely connected sub-
networks using a number of new, auxiliary nodes.
This approach is systematically employed in the
PRIMULA system. Even when a reasonably com-
pact Bayesian network representation (i.e. polyno-

mial in the number of objects) has been constructed
for a propositional instance, this model will often be
inaccessible to standard algorithms for exact infer-
ence, because its global structure does not lead to
tractable jointrees.

Even though the constructed networks may lack
the global structure that would make them accessi-
ble to standard inference techniques, they may very
well exhibit abundant local structure in the form
of determinism and context–specific independence
(Boutilier et al., 1996). The objective of this paper
is to describe a system for inference with proposi-
tional instances of relational models which can ex-
ploit this local structure, allowing us to reason very
efficiently with relational models whose proposi-
tional instances may look quite formidable at first.
Specifically, we will employ the approach proposed
by (Darwiche, 2003) to compile propositional in-
stances of relational models into arithmetic circuits,
and then perform online inference by simply eval-
uating and differentiating the compiled circuits in
time linear in their size. As our experimental re-
sults illustrate, this approach efficiently handles re-
lational models whose PRIMULA –generated propo-
sitional instances are quite massive.1

1Some may recall the technique of zero–compression which
can be used to exploit determinism in the jointree framework
(Jensen and Andersen, 1990). This technique, however, re-
quires that one do inference on the original jointree before it
is zero–compressed, making almost all of our data sets inac-
cessible to this method.

This paper is structured as follows. We start in
Section 2 with a review of relational models in gen-
eral and the specific formalization used in this paper.
We then discuss in Section 3 the PRIMULA system,
which implements this formalization together with a
method for generating propositional instances in the
form of Bayesian networks. Section 4 is then dedi-
cated to our proposed approach for compiling rela-
tional models. We then provide experimental results
in Section 5, and finally close with some concluding
remarks in Section 6.

2 Relational Models

Relational or first–order probabilistic models extend
propositional modeling supported by Bayesian net-
works by allowing one to represent objects explic-
itly, and to define relations over these objects. Most
of the early work on such generic models, which
has been subsumed under the titleknowledge-
based model construction(see e.g. (Breese et al.,
1994)), combines elements of logic–programming
with Bayesian networks. Today one can dis-
tinguish several distinct representation paradigms
for relational and first–order models: (inductive)
logic-programming based approaches (Sato, 1995;
Muggleton, 1996; Kersting and de Raedt, 2001),
network fragments (Laskey and Mahoney, 1997),
frame–based representations (Koller and Pfeffer,
1998; Friedman et al., 1999), and probabilistic pred-
icate logic formulas (Jaeger, 1997).

We will use in this paper the language ofrela-
tional Bayesian networks(Jaeger, 1997) to represent
relational models, as implemented in the PRIMULA

system (http://www.cs.auc.dk/∼jaeger/Primula).
The formal semantics of the language is based on
Random Relational Structure Models (RRSMs),
which we define next.

Definition 1 Given (1) a set of relational symbols
S, called predefined relations; (2) a set of relational
symbolsR, called probabilistic relations; and (3)
a finite setD, called the domain; we define an
SD-structureto be an interpretation of relationsS
over domainD, that is, a function which maps ev-
ery ground atoms(d) (s ∈ S, d ⊆ D) to either
true or false. We also define a Random Relational
Structure Model(RRSM) as a partial function which
takes anSD-structure as input, and returns a proba-

bility distribution over allRD-structures as output.

Intuitively, members of domainD representobjects,
and members ofS andR represent relations that can
hold on these objects. These relations can be unary
in which case they are called objectattributes. A
user would typically define the relations inS (by
providing anSD–structure), and then use anRRSM

to induce a probability distribution over the possible
definitions of relations inR (RD–structures). We
note here thatSD–structures correspond toskeleton
structuresin (Friedman et al., 1999).

We now describe threeRRSMs that will be used
in our experiments. These models have been im-
plemented in PRIMULA , which provides a syntax
for specifying RRSMs, and can be obtained from
http://www.cs.ucla.edu/∼chavira/pgm04.

Random Blocks.This is a model for the random
placement of blocks, which serve as obstacles, on
the locations of a map, and the resulting accessibil-
ity relation among the locations. The input struc-
tures consist of a particular gridmap, and a set of
blocks. This is represented using a set of prede-
fined relationsS = {location,block,leftof,belowof}
where location and block are attributes that parti-
tion the domain into the two types of objects, and
leftof and belowof are binary relations that deter-
mine the spatial relationship among locations. Fig-
ure 1 shows an inputSD–structure.

One of the probabilistic relations inR for this
model is the binary relationblocks(b, l) which
represents the random placement of a blockb on
some locationl. Another isconnected(l1, l2) be-
tween pairs of locations which describes whether,
after the placement of the blocks, there is an un-
blocked path betweenl1 and l2. A probabilistic
query might be the probability that there is an un-
blocked path between two locationsl1 andl2, given
the observed locations of some blocks (but uncer-
tainty about the placement of the remaining ones).

We will experiment with different versions of this
relational model, blockmap–l–b, wherel is the num-
ber of locations andb the number of blocks.

Mastermind. In the game of Mastermind, Player
1 arranges a hidden sequence of colored pegs.
Player 2 guesses the exact sequence of colors by
arranging guessed sequences of colored pegs. To
each guessed sequence, Player 1 responds by stating

B1 B2

Blocks

Locations

1 2 3

54
leftof

belowof

Figure 1: InputSD–structure.

how many pegs in the guess match pegs in his hid-
den sequence both in color and position (white feed-
back), and how many pegs in the guess match pegs
in the hidden sequence only in color (black feed-
back). This feedback is provided by placing white
and black feedback pegs in a sequence. Player 2
wins if he guesses the hidden sequence within a cer-
tain number of rounds.

The game can be represented as anRRSM where
the domainD consists of objects of typespeg, color,
and round specified by corresponding unary rela-
tions in S, as well as binary relationspeg-ordand
round-ord in S that impose orders on the peg and
round objects, respectively. The probabilistic rela-
tionsR in the model represent the game configura-
tions after a number of rounds:true-color(p, c)
represents thatc is the color of the hidden pegp;
guessed-color(p, c, r) represents that in round
r colorc was placed in positionp in the guess. Sim-
ilarly, the arrangement of the feedback pegs can be
encoded. The probabilistic model specifies that all
color sequences are equiprobable, but can also spec-
ify a distribution on the choice of hidden colors.

We will experiment with different versions of this
model, mastermind–c–g–p, wherec is the number
of colors,g is the number of guesses, andp is the
number of pegs.

Students and Professors.We refer the reader
to http://www.cs.ucla.edu/∼chavira/pgm04for the
definition of this last model used in our experiments,
which is a variation on the model used by (Pasula
and Russell, 2001) to investigate approximate infer-
ence for relational models.

3 The PRIMULA System

The RRSM is an abstraction of probabilistic rela-
tional models. For a practical system, one needs a
specific syntax for specifying anRRSM. PRIMULA

allows users to encodeRRSMs using the language
of relational Bayesian networks (Jaeger, 1997), and
outputs the distribution onRD–structures in the
form of a standard Bayesian network.

3.1 SpecifyingRRSMs usingPRIMULA

We will now provide an example of specifying an
RRSM using PRIMULA . Consider a relational ver-
sion of the well known domain involving individu-
als, their alarms, neighbors (who can be pranksters),
and whether they receive calls from these neigh-
bors when their alarm is set off. The domainD

contains individuals, and the set of predefined re-
lations S contains a unary relation,prankster, in
addition to a binary relationneighbor. There are
four probabilistic relations inR for this domain.
The first iscalls(v, w): whetherv calls w in or-
der to warnw that his alarm went off. The proba-
bility of calls(v, w) is defined conditional on the
predefinedneighborandpranksterrelations (it is 0
if v and w are not neighbors), and on the proba-
bilistic alarm(v) relation: whether the alarm ofv
went off. We also have another probabilistic relation
alarmed(v): whetherv has been alarmed (called
by at least one neighbor). The last probabilistic re-
lation isburglary(v): whetherv’s home has been
burglarized.

This RRSM is specified in PRIMULA as given
in Table 1, which provides the probability distri-
bution on probabilistic relations usingprobability
formulas. These formulas can be seen either as
probabilistic analogues of predicate logic formu-
las, or as expressions in a functional programming
language. A probability formula defines both the
dependency structure between ground probabilistic
atoms (which will depend on the predefined rela-
tions in the input structure), and the exact condi-
tional probabilities, given the truth values of parent
atoms.

burglary(v) = 0.005;
alarm(v) = (burglary(v):0.95,0.01);
calls(v,w) = (neighbor(v,w):

(prankster(v)):
(alarm(w):0.9,0.05),
(alarm(w):0.9,0)),0);

alarmed(v)=n-or{calls(w,v)|w:neighbor(w,v)}

Table 1: Specifying anRRSM using PRIMULA .

3.2 From relational to propositional networks

To instantiate a generic relational model as in Ta-
ble 1 in PRIMULA , one must provide a definition of
an inputSD–structure. That is, one must define the
set of individuals in domainD, and then one must
define who of these individuals are pranksters (by
defining the attributepranskter), and who are neigh-
bors of whom (by defining the relationneighbor).
Given the above inputs, the distribution over proba-
bilistic relations can be represented, as described in
Section 1, using a standard Bayesian network with
a node for each ground probabilistic atom. Our ex-
ample also illustrates how the in-degree of a node
can grow as a function of the number of domain ob-
jects: the nodealarmed(Holmes), for instance, will
depend oncalls(w, Holmes) for all of Holmes’s
neighborsw (of which there might be arbitrarily
many).

The PRIMULA system employs the general
method described in (Jaeger, 2001) to decom-
pose the dependency of a node on multiple par-
ents. This method consists of an iterative algo-
rithm that takes the probability formula defining the
distribution of a node, decomposes it into its top–
level subformulas—by introducing one new auxil-
iary node for each of these subformulas—and de-
fines the probability of the original node condi-
tional only on the new auxiliary nodes. This method
can be applied to any relational Bayesian network
that only contains multi-linear combination func-
tions (which includenoisy-orandmean), and then
yields a Bayesian network in which the number of
parents is bounded by 3 for all nodes.

Even when one succeeds in constructing a stan-
dard Bayesian network of a manageable representa-
tion size, inference in this network may be computa-
tionally very hard. It is a long-standing open prob-
lem in first-order and relational modeling whether
one might not design inference techniques that
avoid these complexities of inference in the ground
propositional instances by performing inference di-
rectly on the level of the relational representation,
perhaps employing techniques of first-order logical
inference. Complexity results derived in (Jaeger,
2000) show that one cannot hope for a better worst-
case performance with such inference techniques.
This still leaves the possibility that they could often

lead to substantial gains in practice.

A high-level inference technique that aims at
achieving such gains in average-case performance
has recently been described by Poole (Poole, 2003).
The potential advantage of this and similar infer-
ence techniques seems to be restricted, however, to
relational models where individual model instances
are given by relatively unstructured input structures,
i.e. input structures containing large numbers of in-
distinguishable objects. The potential of high-level
inference techniques lies in their ability to deal with
such sets of objects without explicitly naming each
object individually. However, in the type of rela-
tional models we are here considering, the input
structures consist of mostly unique objects (in Ran-
dom Blocks, for instance, the block objects are in-
distinguishable, but all location objects have unique
properties defined by thebelowof and leftof re-
lations). We can identify an input structure with
the complete ground propositional theory that de-
fines it (for the structure of Figure 1 this would be
the theoryblock(B1) ∧ ¬location(B1)∧ . . . ∧
leftof(2, 3)∧ . . . ∧ ¬belowof(5, 5)), and, infor-
mally, characterize highly structured input struc-
tures as those for which this propositional theory
admits no simple first-order abstraction.2 When a
relational model instance, now, is given by an in-
put structure that cannot be succinctly encoded in
an abstract, first-order style representation, chances
are very small that probabilistic inference for this
model instance can gain much efficiency by operat-
ing on a non-propositional level.

It thus appears that at least for a fairly large
class of interesting models more advantages might
be gained by optimizing inference techniques
for ground propositional models, than by non-
propositional inference techniques.

Table 2 depicts the relational models we experi-
mented with, together with the size of correspond-
ing propositional Bayesian networks generated by
PRIMULA ’s decomposition method. The table also
reports the size of largest cluster in the jointree
constructed for these networks. Obviously, most
of these networks are inaccessible to mainstream,
structure–based algorithms for exact inference. Yet,

2Formally one would define the ’structuredness’ of an input
structure in terms of the number of its automorphisms.

A

B C

A B

true true θb|a = 0
true false θb̄|a = 1
false true θb|ā = .7
false false θb̄|ā = .3

Figure 2: A Bayesian net with one of its CPTs.

we will show later that all of these models can be
handled efficiently using the compilation approach
we propose in this paper.

4 Compiling Relational Models

We describe in this section the approach we use to
perform exact inference on propositional instances
of relational models, which is based on compil-
ing Bayesian networks into arithmetic circuits (Dar-
wiche, 2003). Inference can then be performed us-
ing a simple two–pass procedure in which the circuit
is evaluated and differentiated given evidence.

4.1 Bayesian networks as polynomials

The compilation approach we adopt is based on
viewing each Bayesian network as a very large poly-
nomial (multi–linear function in particular), which
may be compactly represented using an arithmetic
circuit. The function itself contains two types of
variables.3 For each valuex of each variableX
in the network, we have a variableλx called an
evidence indicator. For each instantiationx,u of
each variableX and its parentsU in the network,
we have a variableθx|u called a network parame-
ter. The multi–linear function has a term for each
instantiation of the network variables, which is con-
structed by multiplying all evidence indicators and
network parameters that are consistent with that in-
stantiation. For example, the multi–linear function
of the network in Figure 2 has8 terms correspond-
ing to the 8 instantiations of variablesA, B, C:
f = λaλbλcθaθb|aθc|a+ λaλbλc̄θaθb|aθc̄|a+ . . .+

3We are using the standard notation: variables are denoted
by upper–case letters (A) and their values by lower–case let-
ters (a). Sets of variables are denoted by bold–face upper–case
letters (A) and their instantiations are denoted by bold–face
lower–case letters (a). For a variableA with valuestrue and
false, we usea to denoteA= true andā to denoteA= false.
Finally, for a variableX and its parentsU, we useθx|u to de-
note the CPT entry corresponding toPr(x | u).

a c + a b c + c
Multi-linear function:Propositional theory:

Vc ^ (V a ∨∨∨∨ ¬¬¬¬ Vb) Encode

∗∗∗∗

++++ c

∗∗∗∗ ∗∗∗∗

b 1++++

a 1

Arithmetic Circuit

Decode

∧∧∧∧

∨∨∨∨ Vc

∧∧∧∧ ∧∧∧∧

Vb
¬Vb

∨∨∨∨

Va ¬Va

Smooth d-DNNF

Compile

Figure 3: Factoring multi–linear functions into
arithmetic circuits.

λāλb̄λc̄θāθb̄|āθc̄|ā. Given this multi–linear function
f , we can answer standard queries with respect to its
corresponding Bayesian network by simply evaluat-
ing and differentiating this function; see (Darwiche,
2003) for details.

The ability to compute answers to probabilistic
queries directly from the derivatives off is inter-
esting semantically, but one must realize that the
size of functionf is exponential in the number of
network variables. Yet, one may be able to factor
this function and represent it more compactly us-
ing an arithmetic circuit.An arithmetic circuitis a
rooted DAG, in which each leaf represents a vari-
able or constant and each internal node represents
the product or sum of its children; see Figure 3. If
we can represent the network polynomial efficiently
using an arithmetic circuit, then inference can be
done in time linear in the size of such circuits, since
the (first) partial derivatives of an arithmetic circuit
can all be computed simultaneously in time linear in
the circuit size (Darwiche, 2003).

4.2 Compiling the network polynomial into an
arithmetic circuit

We now turn to the approach for compil-
ing/factoring network polynomials into arithmetic
circuits, which is based on reducing the factor-
ing problem to one of logical reasoning (Darwiche,
2002). This approach is based on three concep-
tual steps, as shown in Figure 3. First, the network
polynomial is encoded using a propositional theory.

Next, the propositional theory is factored by con-
verting it to a special logical form. Finally, an arith-
metic circuit is extracted from the factored proposi-
tional theory.

Step 1: Encoding a multi–linear function using
a propositional theory. The purpose of this step is
to specify the network polynomial using a proposi-
tional theory. To illustrate how a multi–linear func-
tion can be specified using a propositional theory,
consider the following functionf = ac + abc + c

over real–valued variablesa, b, c. The basic idea is
to specify this multi–linear function using a propo-
sitional theory that has exactly three models, where
each model encodes one of the terms in the func-
tion. Specifically, suppose we have the Boolean
variablesVa, Vb, Vc. Then the propositional theory
∆f = (Va ∨ ¬Vb) ∧ Vc encodes the multi–linear
functionf as follows:

Model Va Vb Vc encoded term
σ1 true false true ac

σ2 true true true abc

σ3 false false true c

That is, if modelσi encodes termti, thenσi sets
Boolean variableVj to true iff ti contains the cor-
responding real–valued variable. This method of
specifying network polynomials allows one to eas-
ily capture local structure; that is, to declare certain
information about values of polynomial variables.
For example, if we know that parametera = 0, then
we can exclude all terms that containa by conjoin-
ing¬Va with our encoding.

Step 2: Factoring the propositional encoding.
If we view the conversion of a network polynomial
into an arithmetic circuit as a factoring process, then
the purpose of this second step is to accomplish
a similar task but at the logical level. Instead of
starting with a polynomial (set of terms), we start
with a propositional theory (set of models). And
instead of building an arithmetic circuit, we build
a Boolean circuit that satisfies certain properties.
Specifically, the circuit must be in Negation Nor-
mal Form (NNF): a rooted DAG where leaves are
labelled with literals, and where internal nodes are
labelled with conjunctions or disjunctions; see Fig-
ure 3. The NNF must satisfy three properties: (1)
conjuncts cannot share variables (decomposability),
(2) disjuncts must be logically exclusive (determin-

ism), and (3) disjuncts must be over the same vari-
ables (smoothness). The NNF in Figure 3 satisfies
the above properties, and encodes the multi–linear
function shown in the same figure. In our experi-
mental results, we use a second generation compiler
for converting CNFs to NNFs that are decompos-
able, deterministic and smooth (smooth d-DNNF)
(Darwiche, 2004).

Step 3: Extracting an arithmetic circuit. The
purpose of this last step is to extract an arithmetic
circuit for the polynomial encoded by an NNF. If
∆f is an NNF that encodes a network polynomial
f , and if ∆f is a smooth d-DNNF, then an arith-
metic circuit for the polynomialf can be obtained
easily as follows. First, replace and–nodes in∆f

by multiplications; then replace or–nodes by addi-
tions; and finally, replace each leaf node labelled
with Vx by x and each node labelled with¬Vx by 1.
The resulting arithmetic circuit is then guaranteed to
correspond to polynomialf (Darwiche, 2002). Fig-
ure 3 depicts an NNF and its corresponding arith-
metic circuit. Note that the generated arithmetic cir-
cuit is no larger than the NNF. Hence, if we attempt
to minimize the size of NNF, we are also minimiz-
ing the size of generated arithmetic circuit.

4.3 EncodingPRIMULA ’s networks

As mentioned earlier, the PRIMULA system gener-
ates propositional instances of relational models in
the form of classical Bayesian networks. These net-
works, however, have a specific structure that we
exploit when encoding the network polynomial as
CNF; we do not use the exact encodings proposed in
(Darwiche, 2002). In particular, the networks gen-
erated by PRIMULA will only have binary variables,
and each node is restricted to have no more than3
parents.

These specific properties of the generated net-
works allow one to use a tailored encoding of the
network polynomial. Specifically, instead of using
one propositional variable for each evidence indi-
catorλx—which would be needed in general—we
use one propositional variableIX for each Bayesian
network variableX, where the positive literalIX

represents indicatorλx, and the negative literal¬IX

represents indicatorλx̄. Not only does this cut the
number of indicator variables by half, but it also
relieves the need for clauses of the form,λx ∨ λx̄

and¬λx ∨ ¬λx̄ which would be needed to ensure
that exactly one indicator for variableX can ap-
pear in any polynomial term; see (Darwiche, 2002).
The CNF encoding will also include one variable
Pθx|u

for each network parameterθx|u which is not
equal to0 or 1. Given these variables, the CNF
will then only include the following clauses: If
θx|u1,...,un

= 0, include clauseLU1
∨ . . . ∨ LUn

,
whereLUi

is a literal over variableIUi
whose sign

is opposite to the sign ofui. If θx|u1,...,un
6= 0, 6= 1,

include clausesLU1
∨ . . . ∨ LUn

⇒ Pθx|u1,...,un
,

Pθx|u1,...,un
⇒ LU1

, . . . , Pθx|u1,...,un
⇒ LUn

, where
LUi

is a literal as defined earlier.
For example, the CPT for variableB in Figure 2

will generate the following clauses: (1st row)¬IA∨
¬IB, (3nd row)¬IA∧IB ⇒ Pθb|ā

, Pθb|ā
⇒ ¬IA,

Pθb|ā
⇒ IB, (4th row)¬IA ∧ ¬IB ⇒ Pθb̄|ā

,

Pθb̄|ā
⇒ ¬IA, andPθb̄|ā

⇒ ¬IB.
Given that all network variables are binary, and

given that each node has at most three parents, this
encoding leads to a CNF whose size is linear in the
number of network variables. Table 2 depicts the
size of CNF encodings for the relational models we
experimented with. The number of clauses for these
encodings is usually smaller than the number of pa-
rameters in the corresponding Bayesian networks.

The special encoding used above calls for a
slightly different decoding scheme for transforming
a smooth d-DNNF into an arithmetic circuit. Specif-
ically, literals IX and¬IX are replaced with evi-
dence indicatorsλx andλx̄, respectively. Moreover,
literalsPθx|u

and¬Pθx|u
are replaced byθx|u and1,

respectively. Finally, conjunctions and disjunctions
are replaced by multiplications and additions.

5 Experimental Results

We ran our experiments on a 1.6GHz Pentium M
with 2GB of RAM. Table 2 lists for each relational
model a number of instances, and for each instance,
a number of findings. First is the size and connec-
tivity of the Bayesian network that PRIMULA gen-
erated. Next is the size of CNF encoding in terms
of the number of Boolean variables and clauses.
Third, the table shows the size of the compiled arith-
metic circuit in terms of both number of nodes and
edges (count and log base2). We also show the time
it takes to evaluate and differentiate the circuit, aver-

aged over31 different pieces of evidence. By eval-
uating and differentiating the circuit, one obtains
marginals over all network families, in addition to
other probabilities discussed in (Darwiche, 2003).

The main points to observe are the effi-
ciency of online inference on compiled cir-
cuits and the size of these circuits compared to
the size and connectivity of the Bayesian net-
works. Table 2 also shows the time for jointree
propagation using the SamIam inference engine
(http://reasoning.cs.ucla.edu/samiam) on instances
whose cluster size was manageable. One can see
the big difference between online inference using
the compiled AC and corresponding jointrees.

Table 2 finally shows the compile time to gener-
ate the arithmetic circuits. The compile times range
from less than a minute to about60 minutes for the
largest model. Yet the time for online inference
ranges from milliseconds to about13 seconds for
these models. This clearly shows the benefit of of-
fline compilation in this case, whose time can be
amortized over online queries.

6 Conclusion

We described in this paper an inference system for
relational Bayesian networks as defined by PRIM-
ULA . The proposed inference approach is based on
compiling propositional instances of these models
into arithmetic circuits. The approach exploits local
structure in relational models, allowing us to reason
efficiently with relational models whose PRIMULA –
generated propositional instances contain thousand
of variables, and whose jointrees contain hundreds
of variables. The described system appears to sig-
nificantly expand the scale of PRIMULA –based re-
lational models that can be handled efficiently by
exact inference algorithms.

Acknowledgments

This work has been partially supported by NSF
grant IIS-9988543 and MURI grant N00014-00-1-
0617.

References
C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.

Context–specific independence in bayesian networks.
UAI’96.

Relational Bayesian Network CNF Encoding Arithmetic Circuit AC Time JT
Model Vars CPT Largest Vars Clauses Nodes Edges Inf Comp Inf

Parameters Cluster Count Log (sec) (min) (sec)
mastermind

C–R–P
03–08–03 1220 8326 23 1328 4379 26021 339505 18.4 0.0291 1 8.25
04–08–03 1418 9802 26 1580 5252 71666 541356 19.0 0.0516 1 57.48
05–08–03 1616 11278 32 1832 6125 149982 942167 19.8 0.0930 1
06–08–03 1814 12754 37 2084 6998 258228 1523888 20.5 0.1518 1
10–08–03 2606 18658 54 3092 10490 1293323 4315566 22.0 0.6835 3
03–08–04 2288 16008 31 2432 8292 186351 4859201 22.2 0.2997 2
04–08–04 2616 18488 39 2832 9712 932355 19457308 24.2 1.7341 5
03–08–05 3692 26186 40 3872 13453 1359391 55417639 25.7 4.3253 10
students

P–S
03–02 376 2616 25 618 2131 7927 37281 15.2 0.0052 1 6.14
03–06 764 5512 50 1454 5147 110196 595737 19.2 0.0588 1
03–12 1346 9856 59 2708 9671 24219 113876 16.8 0.0175 1
04–08 1571 11566 72 3099 11099 95649 445410 18.8 0.0530 2
04–16 2827 21070 101 5859 21115 181166 815461 19.6 0.0930 3
05–10 2774 20688 128 5624 20279 630092 2531230 21.3 0.2885 3
05–20 5064 38168 148 10734 38889 1319834 5236257 22.3 1.8439 7
06–12 4445 33454 176 9209 33353 4586368 16936504 24.0 3.2120 14
06–24 8201 62302 233 17693 64325 9922233 36450231 25.1 12.9663 33

blockmap
L–B

05–01 700 4784 18 708 2412 1255 3364 11.7 0.0052 1 2.70
05–02 855 5898 21 875 2999 1751 12306 13.6 0.0058 1 6.36
05–03 1005 6972 23 1035 3561 2833 20636 14.3 0.0068 1 27.39
10–01 5650 40070 52 5670 20083 10147 56998 15.8 0.0136 1
10–02 6252 44444 53 6292 22318 11978 309176 18.2 0.0255 1
10–03 6848 48758 52 6908 24529 17749 974817 19.9 0.0582 2
15–01 16497 116048 68 16525 58094 29347 224826 17.8 0.0349 2
15–02 17649 124298 70 17709 62299 33011 1798085 20.8 0.1085 3
15–03 18787 132436 68 18877 66443 47475 7643307 22.9 0.3799 6
20–01 39297 278138 90 39335 139164 69208 726787 19.5 0.0940 6
20–02 41337 292760 90 41413 146570 75299 6989375 22.7 0.3757 10
20–03 43356 307220 92 43476 153910 105602 40172434 25.3 2.4529 30
22–01 54318 386842 104 54360 193526 96424 1103074 20.1 0.1408 10
22–02 56873 405240 103 56957 202830 103980 11707536 23.5 0.8227 20
22–03 59404 423452 104 59536 212056 144136 76649302 26.2 4.6651 61

Table 2: Relational Bayesian networks, their corresponding propositional instances, the sizes of their CNFs
encodings, the sizes of their ACs, and times for online inference and compilation.

J. S. Breese, R. P. Goldman, and M. P. Wellman. 1994. Intro-
duction to the special section on knowledge-based construc-
tion of probabilistic decision models.IEEE Transactions on
Systems, Man, and Cybernetics, 24(11).

A. Darwiche. 2002. A logical approach to factoring belief
networks. InProceedings of KR, pages 409–420.

A. Darwiche. 2003. A differential approach to inference in
bayesian networks.Journal of the ACM, 50(3):280–305.

A. Darwiche. 2004. New advances in compiling CNF to de-
composable negational normal form. Technical Report D–
141, Computer Science Department, UCLA, Los Angeles,
Ca 90095. To appear in ECAI’04.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models.IJCAI’99.

M. Jaeger. Relational bayesian networks.UAI’97.

M. Jaeger. 2000. On the complexity of inference about prob-
abilistic relational models.Artificial Intelligence, 117:297–
308.

M. Jaeger. 2001. Complex probabilistic modeling with recur-
sive relational Bayesian networks.Annals of Mathematics
and Artificial Intelligence, 32:179–220.

F. Jensen and S. K. Andersen. Approximations in Bayesian
belief universes for knowledge based systems.UAI’90.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. 1990. Bayesian
updating in recursive graphical models by local computa-
tion. Computational Statistics Quarterly, 4:269–282.

K. Kersting and L. de Raedt. 2001. Towards combining induc-
tive logic programming and bayesian networks. InProceed-
ings of the Eleventh International Conference on Inductive
Logic Programming (ILP-2001), Springer Lecture Notes in
AI 2157.

D. Koller and A. Pfeffer. Probabilistic frame-based systems.
AAAI’98.

K. B. Laskey and S. M. Mahoney. Network fragments: Rep-
resenting knowledge for constructing probabilistic models.
UAI’97.

S. Muggleton. 1996. Stochastic logic programs. In
L. de Raedt, editor,Advances in Inductive Logic Program-
ming, pages 254–264. IOS Press.

H. Pasula and S. Russell. 2001. Approximate inference for
first-order probabilistic languages.IJCAI’2001.

D. Poole. 2003. First-order probabilistic inference.IJ-
CAI’2003.

T. Sato. 1995. A statistical learning method for logic programs
with distribution semantics. InProceedings of the 12th In-
ternational Conference on Logic Programming (ICLP’95),
pages 715–729.

