
Optimal Feature Selection for Decision Robustness in Bayesian Networks

YooJung Choi, Adnan Darwiche, and Guy Van den Broeck
Computer Science Department

University of California, Los Angeles
{yjchoi, darwiche, guyvdb}@cs.ucla.edu

Abstract
In many applications, one can define a large set
of features to support the classification task at
hand. At test time, however, these become pro-
hibitively expensive to evaluate, and only a small
subset of features is used, often selected for their
information-theoretic value. For threshold-based,
Naive Bayes classifiers, recent work has suggested
selecting features that maximize the expected ro-
bustness of the classifier, that is, the expected prob-
ability it maintains its decision after seeing more
features. We propose the first algorithm to compute
this expected same-decision probability for gen-
eral Bayesian network classifiers, based on com-
piling the network into a tractable circuit repre-
sentation. Moreover, we develop a search algo-
rithm for optimal feature selection that utilizes ef-
ficient incremental circuit modifications. Experi-
ments on Naive Bayes, as well as more general net-
works, show the efficacy and distinct behavior of
this decision-making approach.

1 Introduction
Classification and Bayesian decision making are complicated
by the fact that features – the input to our decision making
process – are expensive to evaluate in many application do-
mains. In medical diagnosis, cost prohibits the doctor from
running all possible tests, necessitating selective and active
sensing [Yu et al., 2009]. Similar issues arise in sensor net-
works [Krause and Guestrin, 2009], adaptive testing [Millán
and Pérez-De-La-Cruz, 2002; Munie and Shoham, 2008],
network diagnosis [Bellala et al., 2013], and seismic risk
monitoring [Malings and Pozzi, 2016].

Traditionally, such problems have been tackled by select-
ing features that optimize the decision-theoretic value of in-
formation [Heckerman et al., 1993; Bilgic and Getoor, 2011].
These approaches seek to maximize the expected reward of
observing the features. In one common instance, this means
observing features that maximize the information gain, or
equivalently, minimize the conditional entropy of the vari-
able of interest (e.g., the medical diagnosis) [Zhang and
Ji, 2010; Gao and Koller, 2011]. We refer to Krause and
Guestrin [2009] for a more detailed discussion.

Another criterion called same-decision probability (SDP)
came to the front more recently [Choi et al., 2012; Chen et
al., 2014]. Given a current set of observed features, and the
corresponding threshold-based decision, the SDP measures
the robustness of this decision against further observations. It
is the probability that our classification will be unchanged af-
ter all remaining features are revealed. SDP was successfully
used to evaluate mammography-based diagnosis [Gimenez et
al., 2014] and adaptive testing [Chen et al., 2015a].

Chen et al. [2015b] propose to use decision robustness for
feature selection. In this context, we need to evaluate the ex-
pected robustness of a future decision based on the selected
subset of features. It is compared to the hypothetical decision
based on all features. The probability that these two classi-
fiers agree is the expected SDP.

As our first contribution, we present the first algorithm to
compute the expected SDP query on general Bayesian net-
works, which is PPPP-complete [Choi et al., 2012].1 Previous
expected SDP algorithms were restricted to Naive Bayes net-
works, where computing the SDP is (only) NP-hard [Chen et
al., 2013], and is amenable to heuristic search. Our expected
SDP algorithm is instead based on the knowledge compilation
approach of Oztok et al. [2016] for solving PPPP-complete
problems using sentential decision diagrams (SDDs) [Dar-
wiche, 2011].

Our second contribution is an optimal feature selection al-
gorithm. It searches for the subset of features that fits in our
budget and is maximally robust according to expected SDP.
The algorithm incrementally modifies an SDD representation
of the Bayesian network during search, in order to efficiently
re-evaluate the expected SDP of a large number of feature
sets. It is the first optimal feature selection algorithm for gen-
eral Bayesian network classifiers that optimizes robustness.

As a third contribution, we illustrate how decision robust-
ness leads to different feature selection behavior on general
Bayesian networks, compared to value of information. More-
over, the feature selection behavior depends strongly on the
threshold used – a distinct property of the expected SDP cri-
terion. We demonstrate our feature selection algorithm on
both naive Bayes and general Bayesian network classifiers.

1Note that NP ⊆ PP ⊆ NPPP ⊆ PPPP ⊆ PSPACE ⊆ EXPTIME.
MPE queries (NP), marginal probabilities (PP), and marginal MAP(
NPPP) are all easier than (expected) SDP queries [Darwiche, 2009].

D

R1 R2

AC

Pr(D=+)

0.2

D Pr(R1 =+|D)

+ 0.7
− 0.2

D Pr(R2 =+|D)

+ 0.6
− 0.1

R1 R2 Pr(AC =+|R1R2)

+ + 0.9
+ − 0.2
− + 0.3
− − 0

Figure 1: Bayesian network for review decisions

2 Same-Decision Feature Selection
We write uppercase letters for random variables and lower-
case letters for their instantiation. Sets of variables are written
in bold uppercase, and their joint instantiation in bold lower-
case. Concatenations of sets denote their union (e.g. XY).

2.1 Motivation and Intuition
Imagine a scenario where a program chair (PC) wants to de-
termine the true quality D of a submitted paper. Two review-
ers, R1 and R2 , independently evaluate the paper, and their
assessments are summarized by area chair AC . Figure 1 de-
picts this scenario as a Bayesian network. The PC wants to
ascertain that accepted papers are high quality with at least
60% probability. This means that papers with two positive
reviews get accepted regardless of the AC ’s evaluation, as

Pr(D=+|R1 =+,R2 =+) = 0.84 ≥ 0.60,

and all other papers get rejected. We refer to this ideal clas-
sifier as C?. In practice, however, the PC only has time to
observe a single evaluation. The question then is: which fea-
ture should the decision be based on; R1 , R2 , or AC ?

This scenario gives rise to three possible classifiers, CR1
,

CR2 , and CAC , depending on which feature is selected. For
our threshold of 60%, these make the following decisions.

CR1
=

{
Pr(D=+|R1 =+) = 0.47 → reject
Pr(D=+|R1 =−) = 0.09 → reject

}
CR2

=

{
Pr(D=+|R2 =+) = 0.60 → accept
Pr(D=+|R2 =−) = 0.10 → reject

}
CAC =

{
Pr(D=+|AC =+) = 0.61 → accept
Pr(D=+|AC =−) = 0.12 → reject

}
It is customary to evaluate these classifiers with information-
theoretic measures, such as information gain, or equivalently,
the conditional entropy H(D|F) of D given feature F :
H(D|R1) = 0.30 · h(0.47) + 0.70 · h(0.09) = 0.59 bits
H(D|R2) = 0.20 · h(0.60) + 0.80 · h(0.10) = 0.57 bits
H(D|AC) = 0.16 · h(0.61) + 0.84 · h(0.12) = 0.60 bits,

where h(p) is the entropy of a Bernoulli with probability p.
This tells us that CR2

is the best classifier, yielding most cer-
tainty about D, and the area chair’s review CAC is the worst,
providing the least amount of information (i.e., high entropy).

Nevertheless, our PC may not want to maximize informa-
tion content, and may simply strive to make the same deci-
sions as the ones made by the ideal classifier C?. The most
informative classifier CR2

agrees with the optimal classifier
on 90% of the papers, in all cases except when R1 =− and
R2 =+. Classifier CR1

also makes the same decision in 90%
of the cases. Our least informative classifier CAC , however,
outperforms both. When it rejects a paper because AC =−,
the ideal classifierC? agrees 99% of the time, namely in those
cases where the AC did not overrule the reviewers. When
CAC accepts a paper because AC =+, the ideal classifier C?
agrees 56% of the time, in those cases where the reviewers
both voted accept. These quantities are called same-decision
probabilities. Overall, we expect CAC to make the same de-
cisions as C? on 92% of the papers, which is its expected
same-decision probability.

In conclusion, to optimize the decision, the PC should
follow the AC evaluation, not an individual reviewer, even
though their evaluations contain more information.

2.2 Problem Statement
Next, we formalize the robustness of a current decision
against future observations as the same-decision probability.
Definition 1. Let d and e be instantiations of the decision
variable D and evidence variables E. Let T be a threshold.
Let X be a set of variables distinct from D and E. The same-
decision probability (SDP) in distribution Pr is

SDPd,T (X | e) =
∑
x

[Pr(d | xe) =T Pr(d | e)] · Pr(x | e).

Here, the equality =T holds if both sides evaluate to a proba-
bility on the same side of threshold T , and [α] is 1 when α is
true and 0 otherwise.

Expected SDP measures the redundancy of a feature set X
if we were to first observe another feature set Y.
Definition 2. Let d and e be instantiations of the decision
variable D and evidence variables E. Let T be a threshold.
Let X and Y be disjoint sets of variables. The expected same-
decision probability (E-SDP) in distribution Pr is

SDPd,T (X |Y, e) =
∑
y

SDPd,T (X | ye) · Pr(y | e)

=
∑
xy

[Pr(d | xye) =T Pr(d | ye)] · Pr(xy | e).

We will drop subscripts d and T when clear from context.
In same-decision feature selection, we are given a set of

candidate features F, a positive cost function c(.), and bud-
get B. The goal is to find features Y ⊆ F maximiz-
ing SDPd,T ((F \Y) | Y, e), subject to a cost constraint∑
Y ∈Y c(Y) ≤ B. That is, we select those features that fit in

our budget and maximize the decision robustness, measured
by expected SDP against the remaining features that were not
selected.

3 A Tractable Circuit Representation
This section describes the logical foundation of our algo-
rithms. Modern approaches to discrete probabilistic infer-
ence often reduce the problem to a logical one, encoding

the distribution in weighted propositional logic [Chavira and
Darwiche, 2005; 2008; Sang et al., 2005; Dechter and Ma-
teescu, 2007; Fierens et al., 2015]. This technique natu-
rally exploits structure in the distribution such as determinism
and context-specific independence, and attains state-of-the-
art performance [Darwiche et al., 2008; Choi et al., 2013]. In
particular, we follow the knowledge compilation approach,
where one compiles the logical description of the inference
problem into a tractable (circuit) representation [Selman and
Kautz, 1996; Darwiche and Marquis, 2002]. Knowledge
compilation is particularly useful to solve some of the harder
reasoning problems in AI, referred to as problems “beyond
NP”.2 These include problems that are PP-hard, NPPP-hard,
or even PPPP-hard, while still being of significant practical
interest [Huang et al., 2006; Oztok et al., 2016]. SDP and
E-SDP queries belong to this family.

Notation We employ the same notation for propositional
logic variables and random variables, as well as for their in-
stantiations. A literal is a variable or its negation. Logical
sentences are constructed in the usual way. Abusing notation,
an instantiation can denote its corresponding set or conjunc-
tion of literals. A model x of a sentence α over variables X is
a complete instantiation of X that satisfies α, denoted x |= α.
Conditioning α|x substitutes all X in α by their values in x.

3.1 Encoding in Weighted Propositional Logic
Several encodings have been proposed to reduce Bayesian
networks into (i) a propositional sentence α, and (ii) a func-
tion w(.) that maps literals to weights. Variables Z in α come
from two disjoint sets: indicators I and parameters P, corre-
sponding to values of network variables and network param-
eters, respectively. Literals ` constructed from I are assumed
to have w(`) = 1. We refer to Chavira and Darwiche [2008]
for the technical details and alternatives. Here, we instead
show a simple encoding of the CPT for Pr(R1 |D) in Fig-
ure 1, which reduces to the sentence αR1 |D consisting of

P1 ⇔ D ∧ R1 (1)
P2 ⇔ D ∧ ¬R1

P3 ⇔ ¬D ∧ R1

P4 ⇔ ¬D ∧ ¬R1 ,

and its associated weight function sets w(P1) = 0.7,
w(P2) = 0.3, w(P3) = 0.2, w(P4) = 0.8, and all other
weights to 1. The full encoding α is obtained by conjoining
the sentences for each CPT.

The logical task called weighted model counting (WMC)
sums the weight of all models of α that we are interested in:

φwα (x) =
∑

z|=α∧x

∏
`∈z

w(`) , and

φwα (x|e) = φwα (x ∧ e)/φwα (e).

We omit w when clear from context and write φα for φα(>).
Given a weighted propositional logic encoding (α,w) of Pr,
inference of conditional probabilities reduces to WMC. In-
deed, Pr(x|e) = φwα (x|e), where x and e are variable instan-
tiations, encoded using indicators from I.

2http://beyondnp.org/

D R1 ¬D ⊥ D ¬R1 ¬D >

P1 ¬P1

(a) Sentential decision diagram (SDD)

1

2

D R1

P1

(b) Variable tree (vtree)

Figure 2: Tractable SDD circuit representation for Sentence 1

3.2 Sentential Decision Diagrams
Sentential decision diagrams (SDDs) [Darwiche, 2011] are
a knowledge compilation target language that allows for ef-
ficient WMC inference and incremental modifications (con-
junction, disjunction, and conditioning of circuits) [Van den
Broeck and Darwiche, 2015], which our algorithms will
make use of. At the same time, SDDs are the most com-
pact representation known to have these properties, exponen-
tially smaller than ordered binary decision diagrams (OB-
DDs) [Bova, 2016].

Partitions SDDs are based on a new type of decomposi-
tion, called (X,Y)-partitions. Consider a sentence α and
suppose that we split its variables into two disjoint sets, X
and Y. It is always possible to decompose the sentence α as

α = (p1(X) ∧ s1(Y)) ∨ · · · ∨ (pn(X) ∧ sn(Y)) .

Sentences pi are called primes, and are mutually exclusive,
exhaustive, and consistent. Sentences si are called subs.

For example, consider Sentence 1 in our encoding of
Pr(R1 |D). By splitting the variables into X = {D,R1}
and Y = {P1}, we obtain the (X,Y)-partition

((D ∧ R1)︸ ︷︷ ︸
prime

∧ P1︸︷︷︸
sub

) ∨ ((¬D ∨ ¬R1)︸ ︷︷ ︸
prime

∧ ¬P1︸︷︷︸
sub

)).

The primes are indeed mutually exclusive, exhaustive and
non-false. This partition is represented in terms of logical
gates by the top two layers of the SDD circuit in Figure 2a.
In the graphical depiction of SDDs, primes and subs are either
a constant, a literal or an input wire from another gate.

Vtrees SDDs represent a sequence of recursive (X,Y)-
partitions. To build an SDD, we need to determine which
X and Y are used in every partition in the SDD. This pro-
cess is governed by a variable tree (vtree): a full, binary tree,
whose leaves are labeled with variables; see Figure 2b. The
root v of the vtree partitions variables into those appearing in
the left subtree (X) and those appearing in the right subtree
(Y). This implies an (X,Y)-partition of sentence α, leading
to the top two layers in Figure 2a. We say that the SDD’s root
node is normalized for vtree node v. The primes and subs of
this partition are turned into SDDs, recursively, normalized

1
R1 2

3
R2 AC

4

D P

Figure 3: Constrained vtree where X = {R2 ,AC}, Y = {R1},
Y-constr. node is 2 and XY-constr. node is 4.

Algorithm 1 SDPd,T (X |Y, e)
Input:
d : hypothesis; T : threshold; e : evidence
X,Y : disjoint sets of features
S : Y-constrained and XY-constrained SDD
Output: computes SDPd,T (X |Y, e)

1: for each SDD node α in S (children before parents) do
2: if α is a terminal then
3: vr1(α)← φα if α ∼ e; else 0
4: vr2(α)← φα if α ∼ de; else 0
5: else
6: vr1(α)←

∑
(pi,si)∈α vr1(pi)× vr1(si)

7: vr2(α)←
∑

(pi,si)∈α vr2(pi)× vr2(si)

8: for each SDD node α in S (children before parents) do
9: if α is a terminal then

10: vr3(α)← φα
11: else if α is XY-constrained then
12: β ← Y-constrained ancestor of α
13: vr3(α)← vr1(α) if vr2(α)

vr1(α)
=T

vr2(β)
vr1(β)

; else 0

14: else
15: vr3(α)←

∑
(pi,si)∈α vr3(pi)× vr3(si)

16: φ(e)← vr1(S); Q← vr3(S)
17: return Q/φ(e)

for vtree nodes from the left and right subtrees. The process
continues until we reach variables or constants. The vtree
used to construct an SDD can have a dramatic impact on its
size, sometimes leading to an exponential difference.

4 Computing the Expected SDP with SDDs
We now introduce our approach to compute E-SDP by com-
pilation into SDDs. As described in Section 3, we can encode
a Bayesian network into weighted propositional logic (α,w)
and further compile it into an SDD. Then, computing the E-
SDP over a set of features translates to computing the E-SDP
over a set of variables of its circuit encoding.
Definition 3. Let d and e be instantiations of the decision
variable D and evidence variables E. Let T be a threshold.
Let X and Y be disjoint sets of variables. The expected same-
decision probability on a WMC encoding (α,w) of Pr is

SDPd,T (X |Y, e)

=
∑
xy

[φwα (d | xye) =T φwα (d | ye)] · φwα (xy | e).

Our approach to compute the E-SDP using SDDs is shown
in Algorithm 1. It requires a special type of SDDs that are

normalized for constrained vtrees [Oztok et al., 2016].
Definition 4. A vtree node v is X-constrained, denoted vX,
iff it appears on the right-most path of the vtree and X is ex-
actly the set of variables outside v. A vtree is X-constrained
iff it has an X-constrained node. An SDD is X-constrained
iff it is normalized for an X-constrained vtree. An SDD node
is X-constrained iff it is normalized for vX.

In order to compute SDPd,T (X |Y, e), we require an SDD
that is Y-constrained and XY-constrained. That is, we need
an SDD that is normalized for a vtree with a Y-constrained
node and an XY-constrained node. Figure 3 depicts an ex-
ample of such a vtree, which would allow us to compute
SDP(R2 ,AC | R1). Note that the Y-constrained node is
always an ancestor of XY-constrained node.

The algorithm performs two bottom-up passes over the
SDD and keeps three value registers for each SDD node. In
the first pass (Lines 1–7), it computes the weighted model
counts of each SDD node with respect to instantiations e and
de, and saves the results in value registers, analogous to the
SDP algorithm of Oztok et al. [2016].
Lemma 1. Let α be an SDD node normalized for vtree v.
Then, vr1(α) = φα(ev) and vr2(α) = φα(dvev), where ev
and dv denote the subset of instantiation e and d, respectively,
that pertains to the variables of vtree v.

During the second bottom-up pass (Lines 8–15), the algo-
rithm simply computes a weighted model count for any SDD
node α that is neither an XY-constrained node nor its ances-
tor. Next, if α is normalized for vXY, then αmust equal S|xy
for some instantiations x and y. Also, its Y-constrained an-
cestor β must equal S|y. Then Line 13 computes the function
[φα(d | e) =T φβ(d | e)]φα(e). We can use induction on the
distance of v to vXY to show that the following holds.
Lemma 2. Let α be an SDD node normalized for vtree v,
where v is vXY or one of its ancestors, but v is not an ances-
tor of vY. Let β be the Y-constrained ancestor of α (that is,
β is normalized for vY). Then,

vr3(α) =
∑
w

[φα(d |we) =T φβ(d | e)]φα(we)

where W = vars(v) ∩X.
It follows from above lemma that at the Y-constrained

SDD node α, our algorithm computes the following quantity:

vr3(α) =
∑
x

[φα(d | xe) =T φα(d | e)]φα(xe).

We can again use induction on the distance of v to vY to show
the following.
Lemma 3. Let α be an SDD node normalized for vtree v,
where v is vY or one of its ancestors. Then,

vr3(α) =
∑
x,z

[φα(d | xze) =T φα(d | ze)]φα(xze)

where Z = vars(v) ∩Y.
The complete proofs of above lemmas are found in the ap-

pendix. Line 16 now computes the quantity

Q =
∑
x,y

[φS(d | xye) =T φS(d | ye)] · φS(xye).

Algorithm 2 FS-SDD(Q, d, b)
Input:
d : hypothesis; T : threshold; e : evidence;
B : budget; F : {F1, . . . , Fn}, set of features
c : cost function; S : F-constrained SDD
Data:
Q← {} : features selected
k ← 0 : depth b← B : budget left
Y : best subset p : best E-SDP
Output: Subset Y ⊆ F with best E-SDP within budget B

1: if b < 0 then return
2: else if k > n then return
3: else if c(Fk) ≤ b then
4: Z← Q ∪ {Fk}
5: move variable in S to make it Z-constrained
6: if SDP((F \ Z) | Z, e) > p then
7: Y ← Z
8: p← SDP((F \ Z) | Z, e)
9: FS-SDD(Z, k + 1, b− c(Fk))

10: FS-SDD(Q, k + 1, b)

Dividing Q by vr1(S) = φS(e) yields the expected SDP.

Proposition 1. Alg. 1 computes SDPd,T (X |Y, e).
Note that the algorithm performs a constant amount of

work at each SDD node. Thus, we have the following.

Proposition 2. Alg. 1 runs in time linear in the size of SDD S.

5 Feature Selection using SDDs
A naive approach to feature selection computes E-SDP for
each possible subset of features that respects the budget and
chooses the best one. However, this requires exponentially
many compilations of SDDs since our E-SDP algorithm ex-
pects a different Y-constrained SDD for each subset Y.

We can improve upon this approach by introducing an op-
eration to move a variable within a vtree and adjusting the
SDD accordingly. Suppose we want to move a variable X of
an SDD α, normalized for vtree v. If we condition α onX be-
ing true, the resulting SDD β = α|X no longer contains the
variable X . Similarly, we can obtain an SDD for γ = α|¬X .
Since X is not used for β and γ, we can move it to a new
location to obtain a new vtree v′, and β and γ will still be nor-
malized for vtree v′. Finally, we join them to get a new SDD
α′ = (X ∧ β) ∨ (¬X ∧ γ), using an efficient APPLY func-
tion [Darwiche, 2011; Van den Broeck and Darwiche, 2015],
which is normalized for vtree v′ and still represents the same
Boolean formula as α. Thus, once we compile an SDD, we
can move variables around to make a Y-constrained node for
each subset Y, instead of recompiling the SDD.

Our proposed algorithm FS-SDD, shown in Algorithm 2,
generates candidate subsets by depth-first searching an
inclusion-exclusion tree, as described in Korf [2009] and
Chen et al. [2015b]. At each depth of the tree, we either in-
clude or exclude the variable pertaining to that depth in the
subset. We backtrack if the cost so far exceeds the budget.
Each time we include a variable in the subset, the expected

1
R1 2

R2 3
AC 4

D P

(a) Y = {R1}

1
R1 2

AC 3
R2 4

D P

(b) Y = {R1 ,AC}

Figure 4: Moving AC after R1 . Vtree is right-linear outside of F-
constrained node where F = {R1 ,R2 ,AC}.

SDP over that subset is computed using Algorithm 1, updat-
ing the optimal subset and its E-SDP as necessary.

Note that we are interested in computing the exact value
of E-SDP only if it exceeds the highest E-SDP computed for
some previous subset. Thus, we can early terminate the com-
putation and continue our search to the next candidate, if an
upper bound for current E-SDP falls below the highest value
so far. We can do this by adding the following after line 13
of Algorithm 1: if vr3(α) = 0 then ub ← ub − vr1(α)

vr1(S)
;

if ub < best esdp then return. At the start of each E-SDP
computation, ub is initialized to 1, and best esdp is set to the
highest E-SDP value until that point in search.

Analysis We illustrate that moving a variable each search
iteration of FS-SDD is efficient, if the input SDD S is
normalized for a vtree that is right-linear outside of its F-
constrained node.3 For example, for F = {R1 ,R2 ,AC},
Figure 4a satisfies this requirement, but Figure 3 does not.
Each time we compute E-SDP over Z = Q ∪ {Fk}, we al-
ready have a Q-constrained node from the last recursive step,
and variable Fk should appear inside the Q-constrained vtree
but outside the F-constrained vtree. We can simply move
Fk, using the operation defined previously, right after the nth
variable in the vtree where n is the size of Q. Figure 4
gives an example of such operation where Q = {R1} and
Fk = AC . In other words, the F variables appear in the
same order in the vtree as in the path to the current search
point in the inclusion-exclusion tree. This also maintains the
right-linear structure outside the F-constrained node, so we
only need to move one variable in each search step.

6 Experimental Evaluation
We now empirically evaluate our SDD-based approach for
decision-robust feature selection.

Naive Bayes We evaluated our system on Naive Bayes
networks from the UCI repository [Bache and Lichman,
2013], BFC (http://www.berkeleyfreeclinic.
org/), and CRESST (http://www.cse.ucla.edu/).
We performed experiments using three variations of our
SDD-based algorithm. We compare to MAXDR which, to
our knowledge, is the only exact algorithm for feature selec-
tion based on E-SDP [Chen et al., 2015b]. Since both algo-
rithms find exact solutions, we compare their running times.

3A vtree is right-linear if each left child is a leaf.

Network |F| MaxDR FS-SDD1 FS-SDD2 FS-SDD3
bupa 6 0.021 0.184 0.035 0.044
pima 8 0.033 0.372 0.058 0.056
ident 9 0.105 1.548 0.127 0.128
anatomy 12 2.393 35.720 2.951 2.252
heart 13 18.649 122.822 9.907 6.321
voting 16 682.396 timeout 1110.96 810.042

Table 5: Running time (s) on Naive Bayes networks.

Network # nodes naive FS-SDD
alarm 37 143.920 19.061
win95pts 76 23.581 14.732
tcc4e 98 48.508 2.384
emdec6g 168 28.072 3.688
diagnose 203 105.660 6.667

Table 6: Running time (s) on general Bayesian networks.

For each network, we find the optimal subset for E-SDP
with the budget set to 1/3 the number of features. In all exper-
iments, the cost of each feature is 1, timeout is 1 hour, and a
2.6GHz Intel Xeon E5-2670 CPU with 4GB RAM was used.
FS-SDD1 refers to the naive approach that compiles a con-
strained SDD for every candidate subset. FS-SDD2 directly
compiles the network into an F-constrained SDD which is
then passed into our FS-SDD algorithm. Lastly, FS-SDD3
first compiles an unconstrained SDD and, after compilation,
moves variables to make it F-constrained. Table 5 shows that
the naive approach performs worst. This highlights that re-
peated SDD compilation is very expensive. Moreover, FS-
SDD3 outperforms FS-SDD2 as network size increases, il-
lustrating that directly compiling a constrained SDD can be
challenging for large networks and that moving variables is
more effective. Moreover, even though MAXDR outper-
forms SDD-based approaches in most of the benchmarks, the
running times of MAXDR and FS-SDD3 are comparable.
Thus, utilizing efficient SDD operations enables our general-
purpose algorithm to perform as well as MAXDR which is
designed specifically for Naive Bayes networks.

General Bayesian Networks We now evaluate our algo-
rithm on general Bayesian networks provided by HRL Labo-
ratories and benchmarks from the UAI 2008 evaluation. For
each network, a decision variable was chosen at random from
root nodes, and 10 variables were randomly selected to be
our set of features F. We used FS-SDD to select an opti-
mal subset of size at most 3. As this is the first algorithm
for feature selection using E-SDP in general Bayesian net-
works, we compare our algorithm to a naive, brute-force ap-
proach which enumerates all possible instantiations of fea-
tures to compute the E-SDP. Table 6 shows that our algorithm
runs significantly faster than the naive approach, and that it
performs as well on larger general Bayesian networks as it
does on Naive Bayes networks. To calculate the marginals
for the brute-force approach, we used jointree inference as
implemented in SAMIAM.4 Note that the runtime of the join-
tree algorithm is exponential in the treewidth of the network,

4SAMIAM is available at http://reasoning.cs.ucla.
edu/samiam.

0.2 0.4 0.6 0.8

0.97

0.98

0.99

1

Threshold

O
pt

im
al

E
-S

D
P

alarm
win95pts

Figure 7: Expected SDP by threshold. Large markers indicate a
change in the optimal selected subset.

whereas the SDD approach can sometimes run efficiently on
high-treewidth networks. [Choi et al., 2013] We also want
to stress that the running time includes initial SDD compila-
tion time, which in practice would be performed in an offline
phase. Once we compile a constrained SDD, we can make
observations and find the next optimal subset in an online
fashion, thereby making decisions in a sequential manner.

Threshold-Based Decisions Lastly, we demonstrate that
decision robustness is not only a function of the probabil-
ity distribution and features but also of the threshold, un-
like other measures of value of information. For networks
alarm and win95pts, we used FS-SDD to select features
Y ⊆ F where F is the set of all leaf nodes in each net-
work. No evidence was asserted, the decision variable was
chosen randomly from root nodes, and the budget was set to
1/3 the size of F. Using the same decision variable, we re-
peatedly evaluated our algorithm with decision thresholds in
{0.1, 0.2, . . . , 0.9}. Figure 7 shows different values of E-SDP
for different thresholds. In fact, FS-SDD selects different
features as the threshold changes. For example, a subset of
three leaf nodes is chosen as an optimal subset for alarm for
T ∈ [0.1, 0.6], whereas one leaf node can achieve expected
SDP of 1.0 for T ∈ [0.7, 1.0]. Intuitively, the E-SDP mea-
sures redundancy of remaining features given a selected set
of features, taking into account the decision procedure de-
fined by the threshold. On the other hand, other measures
such as information gain are unaware of the decision proce-
dure and choose the same features regardless of changes in
threshold.

7 Conclusion
We presented the first algorithm to compute the expected
same-decision probability on general Bayesian network, as
well as the first algorithm to use this measure of decision
robustness for feature selection on general networks. This
approach yields distinct results from other selection criteria.
Our algorithms exploit the properties of sentential decision
diagrams to evaluate and search feature sets efficiently.

Acknowledgments
This work is partially supported by NSF grants #IIS-1514253,
#IIS-1657613, and #IIS-1633857, ONR grant #N00014-15-
1-2339 and DARPA XAI grant #N66001-17-2-4032. The au-
thors thank Arthur Choi for helpful discussions.

A Soundness of Algorithm 1
We prove the soundness of Algorithm 1 whose proof was out-
lined earlier. We first introduce a few complementary lemmas
and refer to Oztok et al. [2016] for their proofs.

Lemma 4. Let α = (p1∧s1)∨· · ·∨ (pn∧sn) be an (X,Y)-
partition. Then, for any x � pi, si = α|x.

Lemma 5. Let α be a function over variables Z, and let Y ⊆
Z. Then φα(ye) = φyφα | y(e).

Lemma 6. φα(d |ye) = φα | y(d |e), where α is defined over
variables Z and Y ⊆ Z.

Lemma 7. Let α = (p1∧s1)∨· · ·∨ (pn∧sn) be an (X,Y)-
partition, and e = eXeY be evidence over α where eX and
eY are partial instantiations pertaining to X and Y respec-
tively. Then φα(e) =

∑
i φpi(eX)× φsi(eY).

Now we prove the lemmas that show the soundness of Algo-
rithm 1.

Lemma 1. Let α be an SDD node normalized for vtree v.
Then, vr1(α) = φα(ev) and vr2(α) = φα(dvev), where ev
and dv denote the subset of instantiation e and d, respectively,
that pertains to the variables of vtree v.

Proof. If α is a terminal node, Line 3-4 compute vr1(α) =
φα(ev) and vr2(α) = φα(dvev). Otherwise, α = (p1∧s1)∨
· · ·∨(pn∧sn) where each pi is normalized for vl and si for vr.
Then ev = evlevr . Suppose the lemma holds for each pi and
si. Then by induction vr1(α) =

∑
i φpi(evl) × φsi(evr) =

φα(ev) using Lemma 7. Similarly, vr2(α) = φα(dvev).

Lemma 2. Let α be an SDD node normalized for vtree v,
where v is an ancestor of vXY or v = vXY, but v is not an
ancestor of vY. Let β be the Y-constrained ancestor of α
(that is, β is normalized for vY). Then,

vr3(α) =
∑
w

[φα(d |we) =T φβ(d | e)]φα(we)

where W = vars(v) ∩X.

Proof. The proof is done by induction on the distance of v to
vXY.
Base case: Suppose v = vXY. Then Line 13 computes
vr3(α) = [φα(d | e) =T φβ(d | e)]φα(e). Note that W =
∅, and so the only possible instantiation of W is w = >.
Thus, vr3(α) =

∑
w [φα(d |we) =T φβ(d | e)]φα(we).

Inductive step: Suppose that v is an ancestor of vXY but
not an ancestor of vY, and that the lemma holds for SDD
nodes that are normalized for vr. Let Wl = vars(vl) and
Wr = vars(vr) ∩ X. Note that W = Wl ∪Wr. Let
α = (p1 ∧ s1) ∨ · · · ∨ (pn ∧ sn). Each pi is normal-
ized for vl, which cannot be an ancestor of vXY. Thus,
Line 10 and Line 15 compute vr3(pi) = φpi . Also note
that β, the Y-constrained ancestor of α is also an an-
cestor of each si. By the induction hypothesis, we have
vr3(si) =

∑
wr [φsi(d |wre) =T φβ(d | e)]φsi(wre). So

Line 15 computes the following:

vr3(α) =
∑
i

vr3(pi)× vr3(si)

=
∑
i

φpi

(∑
wr

[φsi(d |wre) =T φβ(d | e)]φsi(wre)

)
=
∑
i

wl�pi
wr

φwl

[
φα|wl(d |wre) =T φβ(d | e)

]
φα|wl(wre)

(2)

=
∑

wl,wr

φwl

[
φα|wl(d |wre) =T φβ(d | e)

]
φα|wl(wre)

(3)

=
∑

wl,wr

[
φα(d |wlwre) =T φβ(d | e)

]
φα(w

lwre) (4)

=
∑
w

[φα(d |we) =T φβ(d | e)]φα(we) (5)

Equation 2 is due to Lemma 4. Equation 3 holds as primes are
partitions, and Equation 4 holds by Lemma 5 and Lemma 6.
Equation 5 follows from W = Wl ∪Wr.

Lemma 3. Let α be an SDD node normalized for vtree v,
where v is an ancestor of vY or v = vY. Then,

vr3(α) =
∑
x,z

[φα(d | xze) =T φα(d | ze)]φα(xze)

where Z = vars(v) ∩Y.

Proof. The proof is done by induction on the distance of v to
vY.
Base case: Suppose v = vY, an ancestor of vXY. Then by
Lemma 2, vr3(α) =

∑
x [φα(d | xe) =T φα(d | e)]φα(xe)

since W = X and β = α. Note that Z = ∅, and thus
the only possible instantiation of Z is z = >. Hence,
vr3(α) =

∑
x,z [φα(d | xze) =T φα(d | ze)]φα(xze).

Inductive step: Suppose that v is an ancestor of vY, and
that the lemma holds for SDD nodes that are normalized
for vr. Let Zl = vars(vl) and Zr = vars(vr) ∩ Y,
and thus Z = Zl ∪ Zr. Let α = (p1 ∧ s1) ∨ · · · ∨
(pn ∧ sn). Similar to proof for Lemma 2, vr3(pi) =
φpi . By the induction hypothesis, we have vr3(si) =∑

x,zr [φsi(d | xzre) =T φsi(d | zre)]φsi(xzre). Thus:

vr3(α) =
∑
i

vr3(pi)× vr3(si)

=
∑
i

φpi ·
∑
x,zr

[φsi(d | xzre) =T φsi(d | zre)]φsi(xzre)

=
∑
i

zl�pi
zr,x

[
φα(d | xzre) =T φα|zl(d | zre)

]
φα|zl(xzre) (6)

=
∑

zl,zr,x

[
φα(d | xzlzre) =T φα(d | zlzre)

]
φα(xz

lzre)

(7)

=
∑
x,z

[φα(d | xze) =T φα(d | ze)]φα(xze) (8)

Equation 6 follows from Lemma 4 and Lemma 5. Equation 7
is due to Lemma 6, and because primes are partitions. Equa-
tion 8 holds as Z = Zl ∪ Zr.

Applying Lemma 3 on the root of SDD S which
is clearly normalized for an ancestor of vY, we get
vr3(S) =

∑
x,y [φS(d | xye) =T φS(d | ye)]φS(xye).

Since vr1(S) = φS(e) from Lemma 1, Algorithm 1 returns
SDPd,T (X |Y, e) on Line 17. This proves Proposition 1.

References
[Bache and Lichman, 2013] K. Bache and M. Lichman. UCI ma-

chine learning repository, 2013.
[Bellala et al., 2013] Gowtham Bellala, Jason Stanley, Suresh K.

Bhavnani, and Clayton Scott. A rank-based approach to active
diagnosis. IEEE Trans. Pattern Anal. Mach. Intell., 35(9):2078–
2090, 2013.

[Bilgic and Getoor, 2011] Mustafa Bilgic and Lise Getoor. Value
of information lattice: Exploiting probabilistic independence for
effective feature subset acquisition. Journal of Artificial Intelli-
gence Research (JAIR), 41:69–95, 2011.

[Bova, 2016] Simone Bova. SDDs are exponentially more succinct
than OBDDs. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, pages 929–935. AAAI Press, 2016.

[Chavira and Darwiche, 2005] M. Chavira and A. Darwiche. Com-
piling bayesian networks with local structure. In Proceedings of
IJCAI, volume 5, pages 1306–1312, 2005.

[Chavira and Darwiche, 2008] M. Chavira and A. Darwiche. On
probabilistic inference by weighted model counting. AIJ, 172(6–
7):772–799, 2008.

[Chen et al., 2013] Suming Chen, Arthur Choi, and Adnan Dar-
wiche. An exact algorithm for computing the Same-Decision
Probability. In Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, pages 2525–2531, 2013.

[Chen et al., 2014] Suming Chen, Arthur Choi, and Adnan Dar-
wiche. Algorithms and applications for the Same-Decision
Probability. Journal of Artificial Intelligence Research (JAIR),
49:601–633, 2014.

[Chen et al., 2015a] Suming Chen, Arthur Choi, and Adnan Dar-
wiche. Computer adaptive testing using the same-decision proba-
bility. In Proceedings of the Twelfth UAI Conference on Bayesian
Modeling Applications Workshop, pages 34–43, 2015.

[Chen et al., 2015b] Suming Chen, Arthur Choi, and Adnan Dar-
wiche. Value of information based on Decision Robustness.
In Proceedings of the 29th Conference on Artificial Intelligence
(AAAI), 2015.

[Choi et al., 2012] Arthur Choi, Yexiang Xue, and Adnan Dar-
wiche. Same-Decision Probability: A confidence measure for
threshold-based decisions. International Journal of Approximate
Reasoning (IJAR), 2:1415–1428, 2012.

[Choi et al., 2013] A. Choi, D. Kisa, and A. Darwiche. Compil-
ing probabilistic graphical models using sentential decision dia-
grams. In ECSQARU, pages 121–132, 2013.

[Darwiche and Marquis, 2002] A. Darwiche and P. Marquis. A
knowledge compilation map. JAIR, 17:229–264, 2002.

[Darwiche et al., 2008] Adnan Darwiche, Rina Dechter, Arthur
Choi, Vibhav Gogate, and Lars Otten. Results from the proba-
blistic inference evaluation of UAI-08. http://graphmod.
ics.uci.edu/uai08/Evaluation/Report, 2008.

[Darwiche, 2009] Adnan Darwiche. Modeling and Reasoning with
Bayesian Networks. Cambridge University Press, 2009.

[Darwiche, 2011] A. Darwiche. SDD: A new canonical representa-
tion of propositional knowledge bases. In Proceedings of IJCAI,
pages 819–826, 2011.

[Dechter and Mateescu, 2007] Rina Dechter and Robert Mateescu.
And/or search spaces for graphical models. Artificial intelligence,
171(2-3):73–106, 2007.

[Fierens et al., 2015] Daan Fierens, Guy Van den Broeck, Joris
Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda
Janssens, and Luc De Raedt. Inference and learning in probabilis-
tic logic programs using weighted Boolean formulas. Theory and
Practice of Logic Programming, 15:358–401, 5 2015.

[Gao and Koller, 2011] T. Gao and D. Koller. Active classification
based on value of classifier. In Advances in Neural Information
Processing Systems (NIPS 2011), 2011.

[Gimenez et al., 2014] Francisco J Gimenez, Yirong Wu, Eliza-
beth S Burnside, and Daniel L Rubin. A novel method to assess
incompleteness of mammography reports. In AMIA Annual Sym-
posium Proceedings, volume 2014, page 1758. American Medi-
cal Informatics Association, 2014.

[Heckerman et al., 1993] David Heckerman, Eric Horvitz, and
Blackford Middleton. An approximate nonmyopic computation
for value of information. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(3):292–298, 1993.

[Huang et al., 2006] Jinbo Huang, Mark Chavira, Adnan Darwiche,
et al. Solving map exactly by searching on compiled arithmetic
circuits. In AAAI, volume 6, pages 3–7, 2006.

[Korf, 2009] Richard E Korf. Multi-way number partitioning. In
IJCAI, pages 538–543. Citeseer, 2009.

[Krause and Guestrin, 2009] Andreas Krause and Carlos Guestrin.
Optimal value of information in graphical models. Journal of
Artificial Intelligence Research (JAIR), 35:557–591, 2009.

[Malings and Pozzi, 2016] Carl Malings and Matteo Pozzi. Condi-
tional entropy and value of information metrics for optimal sens-
ing in infrastructure systems. Structural Safety, 60:77–90, 2016.

[Millán and Pérez-De-La-Cruz, 2002] Eva Millán and José Luis
Pérez-De-La-Cruz. A Bayesian diagnostic algorithm for student
modeling and its evaluation. User Modeling and User-Adapted
Interaction, 12(2-3):281–330, 2002.

[Munie and Shoham, 2008] Michael Munie and Yoav Shoham. Op-
timal testing of structured knowledge. In Proceedings of the 23rd
National Conference on Artificial intelligence, pages 1069–1074,
2008.

[Oztok et al., 2016] Umut Oztok, Arthur Choi, and Adnan Dar-
wiche. Solving PPPP-complete problems using knowledge com-
pilation. In Proceedings of the 15th International Conference
on Principles of Knowledge Representation and Reasoning (KR),
pages 94–103, 2016.

[Sang et al., 2005] Tian Sang, Paul Beame, and Henry A Kautz.
Performing bayesian inference by weighted model counting. In
AAAI, volume 5, pages 475–481, 2005.

[Selman and Kautz, 1996] Bart Selman and Henry Kautz. Knowl-
edge compilation and theory approximation. Journal of the ACM
(JACM), 43(2):193–224, 1996.

[Van den Broeck and Darwiche, 2015] G. Van den Broeck and
A. Darwiche. On the role of canonicity in knowledge compi-
lation. In Proceedings of the 29th Conference on Artificial Intel-
ligence (AAAI), 2015.

[Yu et al., 2009] Shipeng Yu, Balaji Krishnapuram, Romer Ros-
ales, and R Bharat Rao. Active sensing. In International Con-
ference on Artificial Intelligence and Statistics, pages 639–646,
2009.

[Zhang and Ji, 2010] Yongmian Zhang and Qiang Ji. Efficient sen-
sor selection for active information fusion. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 40(3):719–728, June
2010.

