
On Relaxing Determinism in Arithmetic Circuits

Arthur Choi 1 Adnan Darwiche 1

Abstract

The past decade has seen a significant inter-
est in learning tractable probabilistic represen-
tations. Arithmetic circuits (ACs) were among
the first proposed tractable representations, with
some subsequent representations being instances
of ACs with weaker or stronger properties. In
this paper, we provide a formal basis under which
variants on ACs can be compared, and where the
precise roles and semantics of their various prop-
erties can be made more transparent. This allows
us to place some recent developments on ACs in
a clearer perspective and to also derive new re-
sults for ACs. This includes an exponential sep-
aration between ACs with and without determin-
ism; completeness and incompleteness results;
and tractability results (or lack thereof) when
computing most probable explanations (MPEs).

1. Introduction
Arithmetic circuits (ACs) were introduced into the AI lit-
erature more than fifteen years ago as a tractable repre-
sentation of probability distributions. The original work
on these circuits proposed the compilation of such circuits
from Bayesian networks, while identifying and assuming
three circuit properties, called determinism, decomposabil-
ity and smoothness (Darwiche, 2001a;b; 2003). Since then,
the literature on using arithmetic circuits for probabilistic
reasoning has seen two key developments. The first is the
proposal made by (Lowd & Domingos, 2008) to learn these
circuits directly from data—instead of just compiling them
from models—therefore creating two distinct construction
modes for these circuits. The second development, re-
ported by (Poon & Domingos, 2011), amounted to propos-
ing a class of arithmetic circuits that does not satisfy deter-
minism, under the name of sum-product networks (SPNs).

1University of California, Los Angeles, California, USA. Cor-
respondence to: Arthur Choi <aychoi@cs.ucla.edu>, Adnan
Darwiche <darwiche@cs.ucla.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

An examination of the literature surrounding arithmetic cir-
cuits and their variants suggests that the implications of
relaxing determinism are not very well understood, even
leading to conflicting claims in some cases. The treatment
of smoothness has also not been very consistent as far as its
necessity for certain operations on arithmetic circuits, and
the complexity of enforcing it. Our goal in this paper is to
address some of these issues by providing a systematic and
formal treatment of arithmetic circuits, while focusing on
the precise roles and semantics of their various properties
and the implications of relaxing determinism.

We make several contributions in this paper. We start by
reconstructing the original definition of arithmetic circuits
given in (Darwiche, 2002; 2003), while assuming that these
circuits represent arbitrary factors, instead of just distribu-
tions induced by Bayesian networks (a particular class of
factors). We then provide definitions for decomposability,
smoothness and determinism in the context of this recon-
struction, while isolating precisely the role that each one
of these properties play. Some of what we report on this
has already been observed in the literature, but we provide
alternate or more formal proofs for the sake of a system-
atic and inclusive treatment. We also derive new results.
The first of these is a separation theorem showing that re-
laxing determinism can lead to exponentially smaller arith-
metic circuits, while preserving the ability of these circuits
to compute marginals in linear time. This begs the ques-
tion of whether anything is lost from relaxing determinism.
On this front, we highlight a finding that has already been
reported in the literature and introduce new ones. In par-
ticular, we provide an expanded proof for the observation
that relaxing determinism deprives arithmetic circuits from
the ability to compute MPE in linear time. We also add
a new result showing that enforcing decomposability has
the power of solving MPE, even though the MPE query
is not tractable for decomposable circuits. Moreover, we
show that relaxing determinism leads to a type of incom-
pleteness that we call parametric incompleteness, with im-
portant implications on the compilability of circuits from
models. Our final contribution is a formal correctness proof
of the linear-time MPE algorithm, originally proposed by
(Chan & Darwiche, 2006), but with respect to the recon-
structed definition of arithmetic circuits satisfying decom-
posability, determinism and smoothness.



On Relaxing Determinism in Arithmetic Circuits

This paper is structured as follows. We reconstruct the def-
inition of arithmetic circuits as given by (Darwiche, 2002;
2003) in Section 2, but with respect to factors instead of dis-
tributions (of Bayesian networks). We then provide a new
treatment of decomposability and smoothness in Section 3,
followed by a new treatment of determinism in Section 4.
We finally focus on the relaxation of determinism in Sec-
tion 5, where we provide a new set of results and insights.
An extended version of this paper includes some proofs that
have been omitted here for space limitations.1

2. Arithmetic Circuits
Capital letters (X) denote variables and lower-case letters
(x) denote their values. Bold capital letters (X) denote sets
of variables and bold lower-case letters (x) denote their in-
stantiations. Value x is compatible with instantiation y iff
y assigns value x to X or does not assign any value to X .

Definition 1 A factor f(X) over variables X maps each
instantiation x of variables X into a non-negative number
f(x). The factor is a distribution when

∑
x f(x) = 1.

The classical, tabular representation of a factor f(X) is
clearly exponential in the number of variables X, yet it
allows one to answer key probabilistic queries efficiently.
The interest here is in a more compact representation of
these factors, using arithmetic circuits, while preserving the
ability to answer some of these queries efficiently. We fo-
cus on the following queries, all with respect to a factor
f(X), with its variables X partitioned into sets Y and Z:

• Computing the value of factor f(X) at instantiation y,
defined as f(y) =

∑
z f(y, z) and called a marginal

in this paper. This corresponds to the probability of
evidence y when the factor is a distribution.

• Computing the MPE of factor f(X), defined as
argmaxx f(x). This corresponds to the most likely
instantiation when the factor is a distribution.

• Computing the MAP over variables Y, defined as
argmaxy

∑
z f(y, z). This is the most likely state of

variables Y when the factor is a distribution.

For Bayesian networks (interpreted as factors), the de-
cision variants of the MPE, marginals, and MAP prob-
lems are, respectively, NP-complete (Shimony, 1994), PP-
complete (Roth, 1996), and NPPP-complete (Park & Dar-
wiche, 2004); see also (Darwiche, 2009). Hence, comput-
ing marginals is more difficult than computing MPE—an
observation that will be quite relevant later.

1Available at http://reasoning.cs.ucla.edu.

A f1
1 1
0 2

(a) f1(A)

A B f2
1 1 3
1 0 4
0 1 5
0 0 6

(b) f2(A,B)

A B f
1 1 3
1 0 4
0 1 10
0 0 12

(c) f = f1f2

Figure 1. Two factors and their product.

We also need to define the projection of factor f(X) on
variables Y as the factor g(Y) with g(y) =

∑
z f(y, z).

This projection will be denoted by
∑

Z f(X).

We next define an arithmetic circuit over discrete variables
X, as utilized in (Darwiche, 2002; 2003) to represent distri-
butions, except that we will utilize it to represent factors. A
key observation here is that the circuit inputs are not vari-
ables X, but indicator variables that are derived from the
values of variables X (Darwiche, 2002; 2003).

Definition 2 An arithmetic circuit AC(X) over variables
X is a rooted DAG whose internal nodes are labeled with
+ or ∗ and whose leaf nodes are labeled with either indi-
cator variables λx or non-negative parameters θ. Here, x
is the value of some variable X in X. The value of the cir-
cuit at instantiation y, where Y ⊆ X, is denoted AC(y)
and obtained by assigning indicators λx the value 1 if x is
compatible with instantiation y and 0 otherwise, then eval-
uating the circuit in the standard way (in linear time).

The following definition makes a distinction that has not
been made explicit in the literature as far as we know, but
is critical for a clear semantics of arithmetic circuits.

Definition 3 The circuit AC(X) computes factor f(X) iff
AC(x) = f(x) for each instantiation x of variables X.
The circuit computes the factor marginals iff AC(y) =
f(y) for each instantiation y of every Y ⊆ X.

The notion of “computes a factor” constrains the value of
an arithmetic circuit under a strict subset of its inputs (i.e.,
those corresponding to complete instantiations). However,
the notion of “computes marginals” constrains its value un-
der every input. Hence, two arithmetic circuits that repre-
sent distinct functions (over indicator variables) may still
compute the same factor. Consider an arithmetic circuit
that computes a factor f(X, . . .), where X has values x
and x̄. Replacing λx + λx̄ with 1 in this circuit preserves
its ability to compute the factor since λx+λx̄ = 1 for every
input that is relevant to computing the factor. This replace-
ment, however, will change the function represented by the
circuit and its ability to compute the factor marginals.

Corollary 1 An arithmetic circuit that computes the
marginals of a factor also computes the factor. However,

http://reasoning.cs.ucla.edu


On Relaxing Determinism in Arithmetic Circuits

an arithmetic circuit that computes a factor does not nec-
essarily compute its marginals.

Consider the following arithmetic circuit which computes
the factor in Figure 1(c):

[λa + 2λā][3λaλb + 4λaλb̄ + 5λāλb + 6λāλb̄].

This circuit does not compute the factor marginals. More-
over, this circuit is the product of two circuits, one comput-
ing factor f1, the other computing factor f2, as in Figure 1.

To get further insights into the notion of “computing
marginals,” we appeal to the notion of a network polyno-
mial (Darwiche, 2003), while lifting it to factors.

Definition 4 The polynomial of factor f(X) is defined as:∑
x

f(x)
∏
x∼x

λx,

where x ∼ x means that the value x of variable X ∈ X is
compatible with instantiation x of variables X.

The polynomial of factor f(A,B) in Figure 1(c) is 3λaλb+
4λaλb̄+10λāλb+12λāλb̄. The polynomial of factor f(X)
corresponds to the simplest circuit that computes the factor
marginals. It is a two-level circuit though, which has an
exponential size. The interest, however, is in deeper cir-
cuits that may not be exponentially sized. We later discuss
circuit properties that allows us to achieve this, sometimes.

One can construct an arithmetic circuit that computes the
distribution of a Bayesian network or the partition function
of a Markov network in time and space that are linear in
the size of these models. Each of these models correspond
to a set of factors f1, . . . , fn, with the model representing
the product of these factors. We can construct a circuit that
computes each factor as given in Definition 4, then simply
combine these circuits using a multiplication node. The re-
sult will compute the factor f = f1 . . . fn but it will not
necessarily compute its marginals. We next show that if we
enforce the properties of decomposability and smoothness
on such a circuit, while maintaining its ability to compute
the factor f , the resulting circuit will also compute the fac-
tor marginals. Therefore, these two properties turn the cir-
cuit into a tractable representation of the factor, allowing
one to compute marginals by simply evaluating the circuit
as in Definition 2 (in time linear in the circuit size).

3. Decomposability and Smoothness
The property of decomposability (Darwiche, 2001b) was
used for tractable probabilistic reasoning in (Darwiche,
2003) by compiling Bayesian networks into arithmetic cir-
cuits that are guaranteed to be decomposable. This property
was also enforced by the algorithm proposed in (Lowd &
Domingos, 2008) for learning arithmetic circuits.

+
∗

λa λā

λb̄λb

2

3 4 5 6

+ +

∗

∗ ∗ ∗ ∗

+
∗

λa λā

λb̄λb

2

3 4 5 6

+ +

∗

∗ ∗ ∗ ∗

Figure 2. An AC that computes factor f = f1 · f2 from Figure 1,
where an ab-subcircuit (left) and an āb-subcircuit (right) are high-
lighted. This circuit is deterministic, decomposable and smooth.

Definition 5 (Decomposability) Let n be a node in an
arithmetic circuit AC(X). The variables of n, denoted
vars(n), are all variables X ∈ X with some indicator
λx appearing at or under node n. An arithmetic circuit
is decomposable iff every pair of children c1 and c2 of a
∗-node satisfies vars(c1) ∩ vars(c2) = ∅.

The property of smoothness (Darwiche, 2001b) was also
used for probabilistic reasoning in (Darwiche, 2003) by
compiling circuits that are smooth. It was also enforced
by the learning algorithm of (Lowd & Domingos, 2008).
This property was later called completeness in the works
on SPNs, initially in (Poon & Domingos, 2011).

Definition 6 (Smoothness) An arithmetic circuit AC(X)
is smooth iff (1) it contains at least one indicator for each
variable in X, and (2) for every child c of +-node n, we
have vars(n) = vars(c).

Consider a factor f(X), where variable X is binary and
f(x) = f(x̄) = θ. A circuit that consists of the single
parameter θ will compute this factor but is not smooth. The
circuit θλx + θλx̄ computes this factor and is smooth.

Consider a variable X with values x1, . . . , xm. Multiply-
ing a circuit node by λx1

+ . . .+λxm
preserves the circuit’s

ability to compute a given factor since λx1 + . . .+λxm = 1
under any circuit input that is relevant to this computation.
One can use this technique to ensure the smoothness of
any circuit, while incurring only a polynomial overhead.2

Hence, contrary to decomposability and determinism, en-
forcing smoothness is not difficult computationally, yet it
is necessary for an arithmetic circuit to compute marginals
as we discuss later. We also state the following observation,
used extensively in inductive proofs that we utilize later.

Lemma 1 Consider a decomposable and smooth arith-
metic circuit AC(X) and define Xn = vars(n) for each
circuit node n. Each arithmetic circuit AC(Xn) rooted at
node n is also decomposable and smooth.

2(Darwiche, 2001a) shows how to smooth an NNF circuit in
O(mn) space and time, where n is the size of the circuit and m
is the number of variables (the method can be adapted to ACs).



On Relaxing Determinism in Arithmetic Circuits

A main insight in this paper is the use of subcircuits, first
introduced in (Chan & Darwiche, 2006) for a different pur-
pose. They were also adopted in (Dennis & Ventura, 2015;
Zhao et al., 2016) to motivate SPN learning algorithms.

Definition 7 (Subcircuits) A complete subcircuit α of an
arithmetic circuit is obtained by traversing the circuit top-
down, while choosing one child of each visited +-node and
all children of each visited ∗-node. The term of α is the
set of values x for which indicator λx appears in α. The
coefficient of α is the product of all parameters in α.

The circuit 2∗λx+1∗λx̄+3∗λx computes factor f(X) with
f(x) = 5 and f(x̄) = 1. It is decomposable, smooth and
has three complete subcircuits, with (x, 2), (x̄, 1) and (x, 3)
as their term/coefficient pairs. Note that two subcircuits
may have the same term but different coefficients.

The following lemma and its proof reveal the precise roles
of decomposability and smoothness. Given decomposabil-
ity, the term of a complete subcircuit will not contain con-
flicting values for any variable. Given smoothness, the term
must contain a value for each variable.

Lemma 2 Let α be a complete subcircuit of an arithmetic
circuitAC(X) that is decomposable and smooth. The term
of subcircuit α must be an instantiation of variables X.

Proof Given smoothness, every variable X ∈ X must
have at least one indicator λx in α (no variables are dropped
from the circuit if we keep only a single child of a +-node).
Given decomposability, each variable X ∈ X must have at
most one indicator λx in α. Hence, α will contain exactly
one indicator for each variable X ∈ X. The term of α is
therefore an instantiation x of variable X. �

A complete subcircuit with term x will be called an
x-subcircuit. Figure 2 depicts an ab-subcircuit (in red) and
an āb-subcircuit (in blue).

In a decomposable and smooth circuit AC(X), every com-
plete subcircuit is an x-subcircuit for some instantiation x
of variables X. The circuit can then be treated as a col-
lection of x-subcircuits (multiple subcircuits can have the
same term). Our proofs utilize this implication heavily.

Definition 8 An input Λ for arithmetic circuit AC(X) as-
signs a value in {0, 1} to each circuit indicator λx. An in-
stantiation x is compatible with a circuit input Λ, denoted
x ∼ Λ, iff the input sets λx = 1 when x sets X=x.

A circuit input can be viewed as the set of instantiations
compatible with it. Consider the binary variables X =
{A,B,C} for an example. The circuit input

Λ = {λa = 1, λā = 0, λb = 1, λb̄ = 0, λc = 1, λc̄ = 0}

has a single compatible instantiation abc. The input

Λ = {λa = 0, λā = 0, λb = 1, λb̄ = 0, λc = 1, λc̄ = 0}

has no compatible instantiations, and the circuit input:

Λ = {λa = 1, λā = 1, λb = 1, λb̄ = 0, λc = 1, λc̄ = 0}

has two compatible instantiations abc and ābc. In this latter
case, evaluating the circuit at instantiation bc, as discussed
in Definition 2, leads to evaluating it under input Λ.

The following lemma brings us one step away from show-
ing why decomposability and smoothness force an AC that
computes a factor to also compute the factor marginals.

Lemma 3 Given a decomposable and smooth arithmetic
circuit, let θ1, . . . , θm be the coefficients of complete sub-
circuits whose terms are compatible with circuit input Λ.
The circuit will evaluate to θ1 + . . .+ θm under input Λ.

Proof Given Lemma 1, we will use induction on the cir-
cuit structure. The base case is a leaf circuit node (indica-
tor or parameter). The lemma holds trivially in this case.
The inductive case is when n is an internal circuit node
with children c1, . . . , ck. Suppose the lemma hold for these
children. If n is a ∗-node, the lemma holds for n by decom-
posability (the complete subcircuits of n correspond to the
Cartesian product of complete subcircuits for its children).
If n is a +-node, the lemma holds for n since the complete
subcircuits of n correspond to the union of complete sub-
circuits of its children. �

Corollary 2 Let θ1, . . . , θm be the coefficients of x-
subcircuits in a decomposable and smooth arithmetic cir-
cuit AC(X). We then have AC(x) = θ1 + . . .+ θm.

We are now ready for the key result we are after.

Theorem 1 Consider an arithmetic circuit AC(X) that
computes factor f(X). If the circuit is decomposable and
smooth, then it also computes the marginals of factor f(X).

Proof Consider an instantiation y of some variables Y ⊆
X, let x1, . . . ,xm be all instantiations of variables X that
are compatible with y, and let Λ be the circuit input corre-
sponding to these instantiations. Let θi be the sum of coeffi-
cients of all xi-subcircuits. Since the circuit computes fac-
tor f(X), we haveAC(xi) = f(xi) and, hence, f(xi) = θi
by Corollary 2. By Lemma 3, the circuit evaluates to
θ1+. . .+θm under input Λ, which is f(x1)+. . .+f(xm) =
f(y). Hence, the circuit computes the factor marginals. �

This theorem justifies the standard algorithm for computing
marginals on arithmetic circuits, in linear time, as proposed
in (Darwiche, 2003)—that is, by simply evaluating the cir-
cuit as in Definition 2. In that work, however, the property



On Relaxing Determinism in Arithmetic Circuits

of determinism was also assumed (discussed in the next
section). Determinism is not necessary though for comput-
ing marginals as initially observed in (Poon & Domingos,
2011).3 Our proof above uses different tools than those
used in (Poon & Domingos, 2011) and is set in a more gen-
eral context. Moreover, these tools and associated lemmas
turn out to be essential for the rest of our treatment on the
role of determinism, which we discuss in the next section.

As for the necessity of smoothness, consider the circuits
AC1(A,B) = λaλb + λā and AC2(A,B) = λaλb +
λā(λb + λb̄). Both circuits are decomposable and compute
the same factor: f(a, b) = 1, f(a, b̄) = 0, f(ā, b) = 1 and
f(ā, b̄) = 1. However, circuit AC1 is not smooth while
AC2 is smooth. Only AC2 is guaranteed to compute factor
marginals by Theorem 1. For example, evaluating AC1 at
instantiation ā gives AC1(ā) = 0 · 1 + 1 = 1 6= f(ā) = 2
according to Definition 2, while AC2(ā) = f(ā).4

Before we discuss determinism, we note that decom-
posability and determinism were exploited recently in
tractable, propositional reasoning within a semi-ring set-
ting; initially in (Kimmig et al., 2012; 2016), then followed
by (Friesen & Domingos, 2016).

4. Determinism
The property of determinism (Darwiche, 2001a) was em-
ployed for probabilistic reasoning in (Darwiche, 2003) by
compiling Bayesian networks into arithmetic circuits that
are deterministic. It was also enforced by the algorithm of
(Lowd & Domingos, 2008) for learning arithmetic circuits.
The property was later called selectivity in the works on
SPNs, initially in (Peharz et al., 2014).

Using the terminology of our current formulation, the orig-
inal definition of determinism would amount to this: An
arithmetic circuit is deterministic iff the terms of each two
of its complete subcircuits are conflicting. We will adopt
a weaker definition, which allows conflicting subcircuits as
long as at most one of them has a non-zero coefficient.

Definition 9 (Determinism) An arithmetic circuitAC(X)
is deterministic iff each +-node has at most one non-zero
input when the circuit is evaluated under any instantiation
x of variables X.

3(Poon & Domingos, 2011) introduced sum-product networks
(SPNs), which are equivalent to decomposable and smooth ACs.
More precisely, each can be converted into the other in linear time
and space (Rooshenas & Lowd, 2014). The conversion is straight-
forward and amounts to adjusting for graphical notation.

4Theorem 1 of (Friesen & Domingos, 2016) implies that factor
marginals can be computed in time linear in the size of an arith-
metic circuit, when the circuit is decomposable but not smooth.
This complexity is not justified (but assumed) in the proof of the
theorem. In fact, we are unaware of any justified algorithm that
attains this complexity without smoothness; see also Footnote 2.

As mentioned earlier, the original proposal for using arith-
metic circuits as a tractable representation of probability
distributions (Darwiche, 2003) ensured that these circuits
are deterministic, in addition to being decomposable and
smooth. Moreover, several methods were proposed in (Dar-
wiche, 2003) for compiling Bayesian networks into ACs
with these properties. One of these methods ensures that
the size of the AC is proportional to the size of a jointree for
the network. Another method yields circuits that can some-
times be exponentially smaller, and is implemented in the
publicly available ace system (Chavira & Darwiche, 2008);
see also (Darwiche et al., 2008) for an empirical evaluation
of this system in one of the UAI inference evaluations.

While determinism is not needed to compute factor
marginals, it is needed for the correctness of the linear-time
MPE algorithm of (Chan & Darwiche, 2006). This was
missed in some earlier works (Poon & Domingos, 2011),
which used this algorithm on non-deterministic ACs (i.e.,
SPNs) without realizing that it is no longer correct. This
oversight was noticed in later works (Peharz et al., 2016;
Mauá & de Campos, 2017).5 We next reveal the reason
why computing MPE without determinism is hard. Later in
the section, we reveal the reason why the MPE algorithm
of (Chan & Darwiche, 2006) fails without determinism.

The key observation is this. Consider variables X which
are partitioned into Y and Z. Given a decomposable
and smooth arithmetic circuit AC(X) that computes factor
f(X), one can obtain in linear time a decomposable and
smooth AC(Y) that computes the projection

∑
Z f(X).

This is achieved by simply setting all indicators λz to 1; see
(Darwiche, 2001b) for the root of this observation. More-
over, an MPE for the projection

∑
Z f(X) is a MAP for

the original factor f(X). Hence, a polytime MPE algo-
rithm implies a polytime MAP algorithm on decomposable
and smooth ACs. We know, however, that Naive Bayes
networks have linear-size decomposable and smooth ACs,
while MAP is hard on these networks (de Campos, 2011).
Therefore, the existence of a polytime MPE algorithm on
such circuits will contradict standard complexity assump-
tions. These observations can be abstracted into the follow-
ing lemma, which succinctly and intuitively explains why
MPE is not tractable on decomposable and smooth circuits.

Lemma 4 A circuit representation that supports projection
and MPE in polytime also supports MAP in polytime.

Note that deterministic, decomposable and smooth ACs do
not support projection in polytime so the above argument

5(Peharz et al., 2016) proposed a polytime algorithm that con-
verts an SPN into one that is deterministic and smooth (called an
augmented SPN), but this new SPN computes a different factor
than the one computed by the original SPN. Hence, its MPEs can-
not be generally converted into MPEs of the original SPN.



On Relaxing Determinism in Arithmetic Circuits

does not apply in this case (setting indicators λz to 1 will
generally destroy determinism).

More formally, let AC(X) be a decomposable and smooth
arithmetic circuit that computes a factor f(X). For a given
value k, consider the decision problems:

• D-MPE-AC: Is there an instantiation x where
AC(x) > k?

• D-MAP-AC: Is there an instantiation y where∑
zAC(y, z) > k? (X is partitioned into Y and Z).

We now have the following result, whose proof expands
the one given in (Peharz et al., 2016) for SPNs based on the
above observations; see also (Mauá & de Campos, 2017)
for an in-depth discussion of MPE hardness on SPNs.

Theorem 2 The problem D-MPE-AC is NP-complete.

Proof Given instantiation x and value k, we can test
whether f(x) > k by evaluating the circuit AC in time lin-
ear in the size of the circuit. Hence, the problem is in NP.
To show NP-hardness, we reduce the (decision) problem of
computing (partial) MAP in a naive Bayes network, which
is NP-complete (de Campos, 2011), to MPE in a decom-
posable and smooth arithmetic circuit. Suppose we have a
naive Bayes network with a root node X0 and leaf nodes
X, and inducing a distribution Pr(X0,X). We can com-
pile this network into a polysize decomposable, determin-
istic and smooth arithmetic circuit AC0(X0,X) that com-
putes Pr(X0,X), e.g., as in (Chavira & Darwiche, 2008).
We can sum-out variable X0 in the circuit AC0(X0,X) by
setting the indicators of X0 to one. The resulting circuit
AC1(X) is decomposable and smooth, and computes the
(marginals of) factor

∑
X0

Pr(X0,X). For a given value
k, there exists an instantiation x where AC1(x) > k iff
there exists an instantiation x where

∑
x0

Pr(x0,x) > k,
which is an NP-complete problem (de Campos, 2011). �

Corollary 3 The problem D-MAP-AC is NP-complete.

The following lemma reveals the precise role of determin-
ism, which stands behind the correctness of the linear-time
MPE algorithm of (Chan & Darwiche, 2006). It basically
shows a one-to-one correspondence between the non-zero
rows of the factor computed by a circuit and the complete
subcircuits with non-zero coefficients.

Lemma 5 Consider an arithmetic circuit AC(X) that
computes factor f(X) and is deterministic, decomposable
and smooth (hence, can be viewed as a collection of x-
subcircuits). For each instantiation x, we have:

(a) If the circuit has two distinct x-subcircuits, one of
them must have a zero coefficient.

(b) If f(x) > 0, the circuit contains a unique x-subcircuit
with coefficient f(x).

Proof To prove (a), suppose the circuit contains two dis-
tinct x-subcircuits α1 and α2 that have non-zero coeffi-
cients. We will now establish a contradiction. Since α1

and α2 are distinct, each αi must include a distinct child
ci of some +-node in the circuit. If we evaluate the circuit
at instantiation x, both c1 and c2 will have non-zero val-
ues. Hence, the circuit cannot be deterministic, which is
a contradiction. To prove (b), suppose f(x) > 0 and let
α1, . . . , αm be all x-subcircuits. At most one αi can have
a non-zero coefficient by (a). Since the circuit computes
the factor, it must evaluate to f(x) under instantiation x.
Hence, exactly one αi has f(x) as its coefficient. �

Lemma 5 allows us to prove the correctness of the MPE al-
gorithm given by (Chan & Darwiche, 2006) under the more
general setting we have in this paper. This original algo-
rithm is based on converting a deterministic, decomposable
and smooth AC that computes a distribution Pr(X) into a
maximizer circuit. Evaluating this circuit under evidence y,
as in Definition 2, gives the MPE value argmaxx∼y Pr(x).

An arithmetic circuitAC(X) is converted into a maximizer
circuit, denoted ACmax(X), by replacing every +-node
with a max-node. The complete subcircuits of ACmax are
defined as in Definition 7, but where exactly one child of
each visited max-node is selected.

Theorem 3 Let AC(X) be a deterministic, decompos-
able and smooth arithmetic circuit that computes a factor
f(X) and let ACmax(X) be its maximizer circuit. Then
ACmax(y) = maxx∼y f(x) for Y ⊆ X.

Proof By Lemma 5, there is a one-to-one correspon-
dence between the non-zero rows of factor f(X) and x-
subcircuits with non-zero coefficients. Let θ1, . . . , θm be
the coefficients of x-subcircuits, where x is compatible
with y. Hence, max{θ1, . . . , θm} = maxx∼y f(x). That
is, the MPE value is a coefficient of some x-subcircuit—
call it an MPE-subcircuit. We will think of the algorithm as
composing an MPE-subcircuit in addition to computing its
coefficient and show that ACmax(y) = max{θ1, . . . , θm}
by induction on the circuit structure (see Lemma 1). The
base case trivially holds for leaf circuit nodes (indicators
and parameters). Assume n is an internal circuit node and
the above equality holds for its children c1, . . . , ck having
MPE-subcircuits αi and coefficient ηi. If n is a ∗-node,
then by decomposability, an MPE-subcircuit for n can be
found by joining α1, . . . , αk with η1 ∗ . . . ∗ ηk as its coef-
ficient. If n is a max-node, then by determinism, an MPE-
subcircuit for n can be found from the αi with the largest
ηi with maxk

i=1 ηi as its coefficient. �

Once a maximizer circuit is evaluated to θ, one can identify



On Relaxing Determinism in Arithmetic Circuits

an x-subcircuit that has θ as its coefficient, with x being an
MPE instantiation; see (Chan & Darwiche, 2006).6

Without determinism, a circuit may have multiple x-
subcircuits for a given x, each having a non-zero coeffi-
cient. By Corollary 2, the value of x, AC(x) = f(x), is
the sum of these coefficients. An MPE algorithm that does
not perform this sum cannot be correct.7

Before we further discuss the impact of relaxing determin-
ism, we point to a new class of arithmetic circuits, the Prob-
abilistic Sentential Decision Diagram (PSDD) (Kisa et al.,
2014), which imposes stronger versions of decomposabil-
ity and determinism. This enables the multiplication of two
ACs in polytime, which is otherwise hard under the stan-
dard versions of these properties (Shen et al., 2016).

5. The Impact of Relaxing Determinism
We now consider two new implications of relaxing deter-
minism, one positive and one negative. We also address an
apparent paradox: How could a representation (decompos-
able and smooth ACs) allow the computation of marginals
easily (a PP-complete problem), yet not allow the compu-
tation of MPE easily (an NP-complete problem)? Recall
that the complexity class NP is included in the class PP.

The positive implication is that relaxing determinism can
lead to exponentially smaller arithmetic circuits.

Theorem 4 (Separation) There is a family of factors
fn(Xn) where (1) there exists a decomposable and smooth
arithmetic circuit ACn(Xn) that computes the marginals
of fn, with a size polynomial in n; (2) every determin-
istic, decomposable and smooth circuit that computes the
marginals of factor fn must have a size exponential in n.

Proof (Bova et al., 2016) identifies a family of Boolean
functions (the Sauerhoff functions) Sn that have decompos-
able NNFs (DNNFs) with sizes polynomial in n, but where
their deterministic DNNFs (d-DNNFs) must have sizes ex-
ponential in n. Previously known separations were con-
ditional on the polynomial hierarchy not collapsing (Dar-
wiche & Marquis, 2002), but (Bova et al., 2016) does not
make such an assumption (and neither do we).

6Smoothness is not strictly needed for this algorithm, except
that it ensures that a full variable instantiation is returned.

7This MPE algorithm was used on selective SPNs (equivalent
to deterministic and decomposable ACs) in (Peharz et al., 2016).
It was also adapted to algebraic model counting (AMC) in (Kim-
mig et al., 2016) and to Sum-Product Functions (SPFs) in (Friesen
& Domingos, 2016). Determinism was not required in (Kimmig
et al., 2016). This is sound since AMC problems correspond to
Boolean circuits where the weight of an instantiation is a prod-
uct of literal weights, and is independent of how many times the
instantiation appears as a subcircuit.

Let gn denote a polysize DNNF for function Sn and let
ACn denote the polysize decomposable and smooth arith-
metic circuit obtained by: replacing the inputs of gn with
the corresponding indicator variables, replacing conjunc-
tions and disjunctions by products and sums, respectively,
then smoothing if necessary. The resulting arithmetic cir-
cuit ACn has a positive value (possibly > 1) on input x iff
the original function Sn evaluates to true. We now show
that if fn is the factor computed by arithmetic circuit ACn,
then any deterministic, decomposable and smooth AC that
computes fn must have an exponential size.

Let AC′n be such a circuit. Consider the d-DNNF g′n ob-
tained by: replacing the indicator variables with the cor-
responding literals of variables X, replacing products and
sums with conjunctions and disjunctions, respectively, and
by replacing positive parameters with true and zero param-
eters with false. Note that g′n(x) is true iff AC′n(x) > 0,
i.e., a complete subcircuit for g′n evaluates to true iff the
corresponding subcircuit forAC′n has a positive coefficient.
Hence, ifAC′n had a sub-exponential size, then function Sn

would have a sub-exponentially sized d-DNNF, which we
know does not exist (Bova et al., 2016). �

We now get to a newly identified, negative implication of
relaxing determinism. It pertains to compiling ACs from
probabilistic models and requires the following notion.

Definition 10 A set of parameters Θ is complete for factor
f(X) iff for every instantiation x, the parameter f(x) can
be expressed as a product of parameters in Θ.

The parameters of a Bayesian network are complete for its
distribution; those of a Markov network are complete for
its partition function; and the parameters Θ = {0, 1} are
complete for Boolean factors: f(X) with f(x) ∈ {0, 1}.
We will write AC(X,Θ) to denote an arithmetic circuit
whose parameters are in Θ. The following theorem states a
key property which is lost when relaxing determinism.

Theorem 5 (Completeness) Consider factor f(X) and
complete parameters Θ. There must exist an arithmetic cir-
cuit AC(X,Θ) that computes the factor marginals and is
deterministic, decomposable and smooth.

Proof Consider the factor polynomial
∑

x f(x)
∏

x∼x λx
in Definition 4 and replace each f(x) by a product of pa-
rameters from Θ. The result can be represented by an AC
that is deterministic, decomposable and smooth. �

The standard methods for compiling Bayesian networks,
and graphical models more generally, into arithmetic cir-
cuits do indeed limit the circuit parameters to those appear-
ing in the model factors. Hence, the compilation process
amounts only to finding a (small) circuit structure since



On Relaxing Determinism in Arithmetic Circuits

the circuit parameters are already predetermined. As men-
tioned earlier, these methods can yield relatively small cir-
cuits for some graphical models with very high treewidth
(Chavira & Darwiche, 2008; Darwiche et al., 2008).

The above property is lost if one insists on constructing
arithmetic circuits that are decomposable and smooth, but
not deterministic. This is shown in the following theorem,
which refers to dead circuit nodes: ones that appear only in
complete subcircuits that have zero coefficients.8

Theorem 6 (Parametric Incompleteness) Let f(X) be a
Boolean factor and Θ = {0, 1} (Θ is complete for f ). A
circuit AC(X,Θ) cannot compute f(X) if it is decompos-
able, smooth and free of dead nodes, but not deterministic.

Proof If the AC has no +-node, then it is vacuously deter-
ministic. Otherwise, it has a +-node. Since the circuit is
not deterministic, there is a +-node n that violates deter-
minism. This node is included in some complete subcircuit
with a non-zero coefficient (otherwise, the node n is dead).
Since node n violates determinism, we can find two distinct
x-subcircuits, with non-zero coefficients, that differ by the
branch selected at node n. Since the circuit computes fac-
tor f(X), Lemma 3 implies that the coefficients of these
x-subcircuits must add up to f(x) = 1. There must then
exist an x-subcircuit whose coefficient is in (0, 1), exclu-
sive, i.e., the circuit has a parameter not in {0, 1}. �

In other words, if a decomposable and smooth circuit
AC(X, {0, 1}) computes the marginals of a Boolean fac-
tor, it must also be non-trivially deterministic. This result
has a major implication on compiling probabilistic graph-
ical models into ACs that are not deterministic. That is,
one cannot generally restrict the circuit parameters to those
appearing in the model, otherwise a circuit may not exist.

Therefore, while relaxing determinism can lead to expo-
nentially smaller circuits, finding these circuits is now more
involved as it may require searching for parameters. This
demands new techniques as all techniques we are aware
of for compiling models into deterministic circuits assume
that the circuit parameters come from model parameters.

Our last contribution relates to the following appar-
ent paradox. Suppose we have a set of factors
f1(X1), . . . , fn(Xn), representing a probabilistic graph-
ical model that has a corresponding joint factor f =
f1 · · · fn. Consider now the following decision problems,
over such probabilistic graphical models, which correspond
to computing the MPE and marginals:

8Dead nodes can be replaced by the constant zero without
changing the factor computed by the circuit. One can relax de-
terminism trivially by adding dead nodes, but that does not help
as far as obtaining smaller circuits.

• D-MPE: Is there an instantiation x where f(x) > k?

• D-PR: Is
∑

x f(x) > k?

D-MPE is NP-complete, whereas D-PR is PP-complete.
Moreover, the complexity class PP includes NP. Yet,
decomposable and smooth ACs allow one to compute
marginals in linear time, while computing MPE, which is
no harder, is hard on these circuits!

To resolve this apparent paradox, one must observe the
sometimes subtle distinction between a representation and
the computation needed to produce that representation. The
representation here is decomposable and smooth ACs, and
the computation is the algorithm used to compile a graphi-
cal model into this representation. While the representation
itself does not facilitate the computation of MPE, the com-
pilation algorithm must be sufficient to compute the MPE
query without additional complexity (beyond polynomial).
To formalize this, we need the following lemma.

Lemma 6 D-MPE can be reduced to D-PR.

We now have the following result, which implies that
a polytime compilation algorithm for decomposable and
smooth ACs can be used as a sub-routine for a polytime
algorithm for computing MPEs (which we do not expect to
exist, under typical complexity theoretic assumptions).

Theorem 7 Consider an algorithm Ξ that takes a set of
factors f1(X1), . . . , fn(Xn) as input and returns a decom-
posable and smooth arithmetic circuit that computes the
marginals of factor f = f1 · · · fn. Let s be the size of
input factors and let O(t(s)) be the time complexity of al-
gorithm Ξ. One can compute the MPE of factor f in time
O(t(poly(s))).

These findings highlight an interesting property of decom-
posable and smooth ACs. They “store” the results to an
exponential number of marginal queries, where each re-
sult can be retrieved by a simple traversal of the circuit.
Yet, they do not “store” the answers to MPE queries, even
though these queries are easier. The implication of this can
be seen from two angles, depending on whether these cir-
cuits are compiled from models or learned from data. In the
former case, the compilation algorithm is readily available
to answer MPE queries, but at the cost of invoking this al-
gorithm for each query. In the latter case, however, answer-
ing MPE queries remains a challenge. Hence, learning cir-
cuits that are not deterministic needs to yield an additional
benefit that compensates for this loss in tractability. This
could be a simpler learning algorithm; a smaller learned
circuit; or a learned circuit whose factor is superior from a
statistical learning viewpoint.



On Relaxing Determinism in Arithmetic Circuits

Acknowledgements
This work has been partially supported by NSF grant #IIS-
1514253, ONR grant #N00014-15-1-2339 and DARPA
XAI grant #N66001-17-2-4032. We thank YooJung Choi,
Umut Oztok, Yujia Shen, and Guy Van den Broeck for
comments and discussions on this paper.

A. Proofs
Proof of Corollary 3 Given an instantiation y and value
k, we can test whether

∑
zAC(y, z) > k, by evaluating the

circuit AC in time linear in the size of the circuit. Hence,
the problem is in NP. To show the problem is NP-hard, we
reduce the (decision) problem of computing (partial) MAP
in a naive Bayes network, as in the proof of Theorem 2. �

Proof of Lemma 6. We first reduce D-MPE to satisfiabil-
ity on a CNF (this is essentially an instance of Cook’s the-
orem). Satisfying assignments of the CNF correspond to
solutions of the D-MPE query, which we can count using a
D-PR query.

First, we construct a Boolean circuit that takes inputs x,
and outputs true if f(x) > k and false otherwise. We con-
struct a (multiplexer) circuit for each factor fi(Xi), which
has inputs xi and outputs a bitstring yi representing a bit
encoding of the value fi(xi) (which we assume are ratio-
nal values). We then construct a circuit that represents a
multiplier, which takes as input the bitstrings yi and out-
puts another bitstring z representing the product of fi(xi).
Finally, we have another circuit that takes the bitstring z as
input, and outputs true if this bitstring represents a value
that is greater than k, and false otherwise. Hence, the out-
put of this circuit is true iff f(x) > k. Each one of the
constructed circuits has size polynomial in the size of the
inputs, i.e., the aggregate size of the factors and the number
of bits needed to represent their values.

We can reduce this circuit to a CNF by adding auxiliary
variables Y, using one new variable for the output of each
gate, i.e., we reduce circuit satisfiability to 3-SAT; see,
e.g., (Kleinberg & Tardos, 2006). This results in a set of
Boolean factors g1, . . . , gm. If g = g1 · · · gm, then g(x) =∑

y g(x,y) > 0 iff f(x) > k, and
∑

x,y g(x,y) > 0 iff
there exists an input x where f(x) > k. �

Proof of Theorem 7. Given factors f1, . . . , fn of size s,
we first construct a set of factors g1, . . . , gm of size
poly(s), as in Lemma 6. We invoke algorithm Ξ
on factors g1, . . . , gm, obtaining a decomposable and
smooth arithmetic circuit g representing g1 · · · gm in time
O(t(poly(s))). The size of g is also O(t(poly(s))) (the
size of the circuit cannot be larger than the time needed to
construct it). The same amount of time is required to eval-
uate the marginal of g, hence the overall time to compute

the MPE of factor f is O(t(poly(s))). �

References
Bova, Simone, Capelli, Florent, Mengel, Stefan, and Slivovsky,

Friedrich. Knowledge compilation meets communication com-
plexity. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence (IJCAI), pp. 1008–1014,
2016.

Chan, Hei and Darwiche, Adnan. On the robustness of most prob-
able explanations. In Proceedings of the 22nd Conference in
Uncertainty in Artificial Intelligence (UAI), 2006.

Chavira, Mark and Darwiche, Adnan. On probabilistic inference
by weighted model counting. Artificial Intelligence, 172(6–7):
772–799, April 2008.

Darwiche, Adnan. On the tractable counting of theory models and
its application to truth maintenance and belief revision. Journal
of Applied Non-Classical Logics, 11(1-2):11–34, 2001a.

Darwiche, Adnan. Decomposable negation normal form. Journal
of the ACM, 48(4):608–647, 2001b.

Darwiche, Adnan. A logical approach to factoring belief net-
works. In Proceedings of KR, pp. 409–420, 2002.

Darwiche, Adnan. A differential approach to inference in
Bayesian networks. J. ACM, 50(3):280–305, 2003.

Darwiche, Adnan. Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press, 2009.

Darwiche, Adnan and Marquis, Pierre. A knowledge compilation
map. JAIR, 17:229–264, 2002.

Darwiche, Adnan, Dechter, Rina, Choi, Arthur, Gogate, Vibhav,
and Otten, Lars. Results from the probabilistic inference eval-
uation of UAI-08. 2008.

de Campos, Cassio Polpo. New complexity results for MAP in
Bayesian networks. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI), pp. 2100–
2106, 2011.

Dennis, Aaron W. and Ventura, Dan. Greedy structure search for
sum-product networks. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJ-
CAI), pp. 932–938, 2015.

Friesen, Abram L. and Domingos, Pedro M. The sum-product
theorem: A foundation for learning tractable models. In Pro-
ceedings of the 33nd International Conference on Machine
Learning (ICML), pp. 1909–1918, 2016.

Kimmig, Angelika, Van den Broeck, Guy, and De Raedt, Luc.
Algebraic model counting. CoRR, abs/1211.4475, 2012. URL
http://arxiv.org/abs/1211.4475.

Kimmig, Angelika, Van den Broeck, Guy, and De Raedt, Luc.
Algebraic model counting. International Journal of Applied
Logic, November 2016.

Kisa, Doga, Van den Broeck, Guy, Choi, Arthur, and Darwiche,
Adnan. Probabilistic sentential decision diagrams. In KR,
2014.

http://arxiv.org/abs/1211.4475


On Relaxing Determinism in Arithmetic Circuits

Kleinberg, Jon M. and Tardos, Éva. Algorithm design. Addison-
Wesley, 2006.

Lowd, Daniel and Domingos, Pedro M. Learning arithmetic cir-
cuits. In Proceedings of the 24th Conference in Uncertainty in
Artificial Intelligence (UAI), pp. 383–392, 2008.

Mauá, Denis Deratani and de Campos, Cassio Polpo. Approxi-
mation complexity of maximum a posteriori inference in sum-
product networks. CoRR, abs/1703.06045, 2017.

Park, James D. and Darwiche, Adnan. Complexity results and
approximation strategies for MAP explanations. J. Artif. Intell.
Res. (JAIR), 21:101–133, 2004.

Peharz, Robert, Gens, Robert, and Domingos, Pedro M. Learning
selective sum-product networks. In LTPM workshop, 2014.

Peharz, Robert, Gens, Robert, Pernkopf, Franz, and Domingos,
Pedro. On the latent variable interpretation in sum-product net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2016.

Poon, Hoifung and Domingos, Pedro M. Sum-product networks:
A new deep architecture. In UAI, pp. 337–346, 2011.

Rooshenas, Amirmohammad and Lowd, Daniel. Learning sum-
product networks with direct and indirect variable interactions.
In ICML, pp. 710–718, 2014.

Roth, Dan. On the hardness of approximate reasoning. Artif.
Intell., 82(1-2):273–302, 1996.

Shen, Yujia, Choi, Arthur, and Darwiche, Adnan. Tractable op-
erations for arithmetic circuits of probabilistic models. In Ad-
vances in Neural Information Processing Systems 29 (NIPS),
2016.

Shimony, Solomon Eyal. Finding MAPs for belief networks is
NP-hard. Artif. Intell., 68(2):399–410, 1994.

Zhao, Han, Poupart, Pascal, and Gordon, Geoffrey J. A uni-
fied approach for learning the parameters of sum-product net-
works. In Advances in Neural Information Processing Systems
29 (NIPS), pp. 433–441, 2016.


