
A Tractable Probabilistic Model for Subset Selection

Yujia Shen and Arthur Choi and Adnan Darwiche
Computer Science Department

University of California
Los Angeles, CA 90095

{yujias,aychoi,darwiche}@cs.ucla.edu

Abstract

Subset selection tasks, such as top-k ranking,
induce datasets where examples have cardinal-
ities that are known a priori. In this paper, we
propose a tractable probabilistic model for sub-
set selection and show how it can be learned
from data. Our proposed model is interpretable
and subsumes a previously introduced model
based on logistic regression. We show how the
parameters of our model can be estimated in
closed form given complete data, and propose
an algorithm for learning its structure in an in-
terpretable space. We highlight the intuitive
structures that we learn via case studies. We
finally show how our proposed model can be
viewed as an instance of the recently proposed
Probabilistic Sentential Decision Diagram.

1 INTRODUCTION

We consider in this paper the problem of selecting k
items from among a set of n alternatives. This subset
selection problem appears in a number of domains, in-
cluding resource allocation (what resources shall I allo-
cate?), preference learning (which items do I prefer?),
human computation (which labelers should I recruit for
my task?), and sports (which players shall play the next
game?). In these subset selection tasks, a dataset consists
of examples in which a fixed number (k) of variables is
set to true from among a total of n variables representing
choices. Given such a dataset, the goal is to learn a gen-
erative probabilistic model that can accurately represent
the underlying processes that govern these selections.

Commonly used representations such as Bayesian and
Markov networks are not well-suited for learning from
this type of data. In general, the underlying cardinality
constraints would lead to fully-connected (and hence in-

tractable) structures—hence more specialized represen-
tations are needed to model such subset selection tasks.
Recently, a new type of probabilistic model was pro-
posed, called the n-choose-k model (Swersky, Tarlow,
Adams, Zemel, & Frey, 2012), that can take into account
datasets whose examples have a known cardinality. The
proposal includes a view on the popular logistic regres-
sion model as a mixture of n-choose-k models (with a
component for each k from 0 to n). Both inference and
learning are tractable in the n-choose-k model.

In this paper, we propose a more expressive model
for subset selection processes, called the recursive n-
choose-k model, which we derived from a more general
tractable representation called the Probabilistic Senten-
tial Decision Diagram (PSDD) (Kisa, Van den Broeck,
Choi, & Darwiche, 2014). Our proposed model is
tractable as it can accommodate a variety of probabilistic
queries in polynomial time. It is also highly interpretable
as its parameters have precise meanings and its underly-
ing structure explicates a generative process for the data.
This is in contrast to similar tractable representations
such as Arithmetic Circuits (ACs) (Lowd & Domingos,
2008; Lowd & Rooshenas, 2013; Shen, Choi, & Dar-
wiche, 2016; Bekker, Davis, Choi, Darwiche, & Van den
Broeck, 2015) and their Sum-Product Networks (SPNs)
variant (Poon & Domingos, 2011; Gens & Domingos,
2012; Dennis & Ventura, 2015). We propose a simplified
closed-form parameter estimation algorithm for our re-
cursive n-choose-k model, as well as a simple but effec-
tive structure learning algorithm. Empirically, we show
how our recursive n-choose-k model is more expressive
and can provide a better fit for datasets with known car-
dinalities than previously proposed models for this task.

This paper is organized as follows. In Section 2, we re-
view the subset selection problem and a previously pro-
posed model. In Section 3, we introduce our recursive
n-choose-k model. In Section 4, we present the corre-
sponding parameter and structure learning algorithms.
In Section 5, we evaluate our model empirically, and

present some case studies. In Section 6, we show how
the proposed n-choose-k model corresponds to a PSDD
for n-choose-k constraints. Section 7 closes with some
concluding remarks. Proofs and additional experiments
are provided in the supplementary appendix.

2 n-CHOOSE-k MODELS

As a running example, consider the subset selection
problem that computer science (CS) students regularly
face: selecting k out of n courses to take in a quarter.
For simplicity, say that students select three out of the
following six courses:

learning (ML) computability (CP) linear algebra (LA)
logic (LG) complexity (CX) calculus (CL)

By column, we have two AI classes, two CS theory
classes, and two math classes.

Let us now consider a dataset over students and
the courses that they select. We have six variables
(ML,LG,CP,CX,LA,CL) representing the classes that a
student can select, where ML=1 means the student se-
lected machine learning, whereas ML=0 means they did
not. Our dataset consists of examples such as:

ML=0,LG=1,CP=1,CX=1,LA=0,CL=0

ML=1,LG=1,CP=0,CX=0,LA=1,CL=0

ML=1,LG=0,CP=0,CX=1,LA=0,CL=1.

Since students must select three out of six classes, each
example in the dataset has exactly three positive entries,
and thus three negative entries as well. We refer to such
a dataset as an n-choose-k dataset: each example has ex-
actly k out of n variables appearing positively, where k
is called the example cardinality. A CS department with
student enrollment data of this type may want to ana-
lyze this data and reason about the courses that students
choose to take.

In this paper, we assume that the cardinality k is known
a priori. For example, in preference learning, we may be
provided with data where users have selected their top-
10 favorite movies, in which case exactly 10 variables
appear positively, and the rest appear negatively.

(Swersky et al., 2012) proposed a probabilistic model,
called the n-choose-k model, which assumes a prior over
k. A simpler form is obtained when k is fixed, leading to
the following distribution over a set of n variables X:

Prk(x;θ) =
1

Zk(θ)

∏
X∈X

exp{θX · λX} (1)

for instantiations x with cardinality k; Pr(x) = 0 oth-
erwise. First, θ = (. . . , θX , . . .) is a vector of n pa-

courses

cs math

ai theory LA CL

ML LG CP CX

Figure 1: A tree hierarchy of courses.

rameters, one parameter θX for each variable X ∈ X.
Next, we have a vector (. . . , λX , . . .) of n indicators,
one indicator λX for each variable X ∈ X, where λX
is 1 if x sets X positively and 0 otherwise. Finally,
Zk(θ) =

∑
x:Card(x)=k

∏
X∈X exp{θX · λX} is the nor-

malizing constant, where Card(x) is the cardinality of x.
When we take a mixture of these models, for k from 0
to n, we obtain the class conditional distribution of the
logistic regression model (Swersky et al., 2012):

Pr(x;θ) =
1

Z(θ)

∏
X∈X

exp{θX · λX}

for all instantiations x (of any cardinality), where
Z(θ) =

∏
X∈X(1 + eθX). Hence, we refer to the model

of Equation 1 as the logistic n-choose-k model.

Example 1. In our course selection problem, every
course X has a parameter θX , where a larger parame-
ter value corresponds to a higher course popularity. For
example, the parameters (θML, θLG, θCP, θCX, θLA, θCL) =
(3, 2, 1,−1,−2,−3) suggest that ML is the most popular
course. The probability of a student selecting machine
learning (ML), logic (LG) and computability (CP) is then

Pr(ML=1,LG=1,CP=1,CX=0,LA=0,CL=0)

= 1
Z exp{θML + θLG + θCP + 0 + 0 + 0} = 1

Z exp{6}

where Z ≈ 529.06 is a normalization constant. �

Next, we propose a more refined model that views course
selection as a recursive process.

3 RECURSIVE n-CHOOSE-k MODELS

Consider the following recursive process of course se-
lection that a student may follow, which traces the tree
structure of Figure 1. First, at the root courses, a student
decides how many cs classes to take, compared to the
number of math classes to take, out of a total of 3 classes.
Say the student decides to take 2 cs classes and 1 math

Algorithm 1 Sample(v, k)

input: Node v in a vtree and a number k, 0 ≤ k ≤ |Xv|
output: A selection of k variables from Xv

main:
1: if v is a leaf node labeled with variable X then
2: return {X=0} if k=0 else return {X=1}
3: else
4: v1, v2 ← children of node v
5: θv,k ← distribution over (k1, k2) s.t. k1 + k2 = k
6: (k1, k2)← a cardinality pair drawn from θv,k
7: return Sample(v1, k1) ∪ Sample(v2, k2)

class. Following the left branch, the student decides how
many classes to take, now between ai and theory. Sup-
pose they take one ai class, and hence one theory class.
The student then recursively decides between learning
(ML) and logic (LG), and independently, between com-
putability (CP) and complexity (CX). We backtrack and
decide (independently of the prior choices) between lin-
ear algebra (LA) and calculus (CL).

Algorithm 1 describes a probabilistic generative process
for subset selection, based on a tree structure similar to
the one in Figure 1. This structure is called a variable
tree, or vtree, and corresponds to a full, binary tree with
each leaf node v labeled with a distinct variable X ∈
X. For a vtree node v, we will use Xv to denote the
set of variables appearing at or below node v. We will
also use v1 and v2 to represent the left and right children,
respectively, of an internal vtree node v.

A call to Sample(v, k) of Algorithm 1 randomly selects
k variables from Xv . If v is an internal node, we first
sample a cardinality k1 of variables to select from the
left child of v (which implies that we select k2 = k − k1

variables from the right child of v). If v is a leaf node,
then k is either 0 (we do not select a variable), or 1 (we
select the variable X at node v).

This generative process describes our new probabilistic
model of subset selection, which we call the recursive
n-choose-k model. We formalize this model next.

3.1 FORMAL DEFINITION

From here on, we assume that n ≥ 1 and 0 ≤ k ≤ n.

To define our recursive n-choose-k model, we first need
to define the notion of a choice distribution, for deciding
how many elements to choose. Such a distribution is de-
fined for three integers n1, n2 and k where n1, n2 ≥ 1
and 0 ≤ k ≤ n1 + n2. The domain of this distribution is
the set of pairs (k1, k2) such that k1 ≤ n1, k2 ≤ n2 and
k1 +k2 = k. The intuition behind a choice distribution is
this. We need to select k items from n1 +n2 items. Each

pair (k1, k2) corresponds to a choice of k1 items from the
n1 items and a choice of k2 items from the n2 items. The
n1 and n2 items will be the variables appearing in the left
and right subtrees of a vtree node v; that is, n1 = |Xv1 |
and n2 = |Xv2 |. Hence, we will denote the parameters
of a choice distribution by θv,k(k1, k2), which represents
the probability that we will select k1 items from the left
subtree of v and k2 items from the right subtree of v.
This implies that k ≤ |Xv|.

Example 2. Consider the following choice distributions
from our course selection problem (we are only showing
choices with non-zero probability).

v k k1, k2 θv,k

courses 3
1, 2 0.1
2, 1 0.3
3, 0 0.6

math 2 1, 1 1.0

math 1
1, 0 0.3
0, 1 0.7

math 0 0, 0 1.0

v k k1, k2 θv,k

cs 2
0, 2 0.3
1, 1 0.6
2, 0 0.1

cs 1
1, 0 0.4
0, 1 0.6

ai 1
1, 0 0.4
0, 1 0.6

For v=courses and k=3, the choice distribution θv,k is
used to select 3 courses from cs and math. For exam-
ple, we select 1 course from cs and 2 from math with
probability θv,k(1, 2) = 0.1. �

We are now ready to define our subset selection model.
A recursive n-choose-k model over n binary variables
X has two components: (1) structure: a vtree where
each leaf node is labeled with a distinct variable from
X, and (2) parameters: for each internal vtree node v
with m leaves, a choice distribution θv,i for each i =
max(0, k − (n−m)), . . . ,min(k,m). In a recursive n-
choose-k model, we will never choose more than k items
at any vtree node v, hence we need choice distributions
for at most min(k,m) items at node v. Moreover, since
we can choose at most n − m items from outside node
v, we must choose at least k − (n − m) items at node
v. Hence, we do not need choice distributions for fewer
items than max(0, k − (n−m)).

The distribution induced by a recursive n-choose-k
model is defined inductively, over instantiations x whose
cardinalities are k. Note that for the inductive cases, we
refer to cardinalities by i rather than by k.

For the base case of a leaf vtree node v labeled with vari-
able X , we have Prv,i(X= true) = 1 if i=1 and 0 if
i=0. For the inductive case of an internal leaf node v:

Prv,i(xv) = Prv1,i1(xv1) · Prv2,i2(xv2) · θv,i(i1, i2).

Here, xv1 and xv2 are the subsets of instantiation xv per-
taining to variables Xv1 and Xv2 , respectively. More-
over, i1 and i2 are the cardinalities of instantiations xv1

v

w c (X3)

a (X1) b (X2)

Prv,2(X1X2X3)

θv,2(1,1) θv,2(2,0)

Prw,1(X1X2)

θw,1(0,1)θw,1(1,0)

Prw,2(X1X2)Prc,1(X3) Prc,0(X3)

Pra,0(X1)Pra,1(X1)Prb,0(X2) Prb,1(X2)

Figure 2: A vtree (upper-left), with a corresponding re-
cursive 3-choose-2 distribution (right). Leaf vtree nodes
are labeled with their variables inside parenthesis.

and xv2 , respectively (hence, i1 + i2 = i). The underly-
ing independence assumption in the above inductive case
is this: how we select i1 elements from v1 is independent
of how we select i2 elements from v2, after we have cho-
sen how many elements i1 and i2 to select in each.

Figure 2 depicts a vtree and a corresponding 3-choose-
2 model. Each circled node represents a recursive n-
choose-k model that is associated with an internal vtree
node, for particular values of n and k. Each circled node
is also associated with a choice distribution, whose pa-
rameters annotate the edges outgoing the node.

Example 3. Using the recursive n-choose-k model, and
the choice distributions of Example 2, the probability
that a student takes machine learning (ML), logic (LG)
and linear algebra (LA) is

Pr(ML=1,LG=1,CP=0,CX=0,LA=1,CL=0)

= θcourses,3(2, 1) · θcs,2(2, 0) · θmath,1(1, 0)·
θai,2(1, 1) · θtheory,0(0, 0)

= 0.3 · 0.1 · 0.3 · 1 · 1 = 0.009. �

Finally, we show that our recursive n-choose-k model
subsumes the logistic n-choose-k model of Equation 1.

Proposition 1 For any logistic n-choose-k model, there
is a recursive n-choose-k model that induces the same
distribution.

3.2 TRACTABLE INFERENCE

Recursive n-choose-k models are tractable probabilistic
models: we can perform many probabilistic queries in
time linear in the size of the model. For example, we
can compute the most probable explanation (MPE), the
probability of evidence, and posterior marginals, all in
linear time. For example, we can use MPE to extend a
partial subset selection to a complete one (e.g., to extend
a user’s top-3 list of movies to a top-10 list of movies, to

provide movie suggestions). We can perform cardinality
queries efficiently: given a user’s top-3 list, what is the
expected number of comedies that would appear on their
top-10 list? This tractability is inherited from the Proba-
bilistic Sentential Decision Diagram (Kisa et al., 2014),
of which the recursive n-choose-k model is a concrete
example. We discuss this connection further in Section 6.

As an example, consider a recursive n-choose-k model
and suppose we observed evidence e on some of its vari-
ables E ⊆ X. We can compute the probability of this
evidence recursively, starting from the root vtree node v:

Prv,i(e) =
∑

θv,i(i1,i2)

Prv1,i1(ev1)Prv2,i2(ev2)θv,i(i1, i2),

which follows from the underlying independence as-
sumptions. In the base case, v is a leaf vtree node with
variable X , and i ∈ {0, 1}. If the evidence e is empty,
then Prv,i(e) = 1. Otherwise, Prvi(e) = 1 iff evidence
e and the 1-choose-i model sets X to the same value.

Example 4. Say we want to compute the probability that
a student takes learning (ML) and linear algebra (LA) out
of 3 total classes, with the choice distributions of Exam-
ple 2. With evidence e = {ML = 1,LA = 1}, we have:

Pr courses,3(ML=1,LA=1)

= Pr cs,2(ML=1) · Prmath,1(LA=1) · θcourses,3(2, 1)

+ Pr cs,1(ML=1) · Prmath,2(LA=1) · θcourses,3(1, 2)

= Pr cs,2(ML=1) · 0.3 · 0.3 + Pr cs,1(ML=1) · 1 · 0.1.

Recursively, we compute Pr cs,2(ML=1) = 0.34 and
Pr cs,1(ML=1) = 0.16, which yields:

Pr courses,3(e) = 0.34 · 0.09 + 0.16 · 0.1 = 0.0466. �

4 LEARNING n-CHOOSE-k MODELS

We show in this section how to estimate the parameters
of a recursive n-choose-k model in closed form. We
also propose a simple structure learning algorithm for
these models, which amounts to learning their underly-
ing vtrees (i.e., the recursive partitioning of variables).

We first consider the number of parameters in a recur-
sive n-choose-k model, which is relevant to our structure
learning algorithm. Each leaf vtree node corresponds to
a 1-choose-1 or a 1-choose-0 model, which has no pa-
rameters. There are O(n) internal nodes in the vtree,
and each one has O(k) choice distributions associated
with it. Each of these distributions has O(k) parameters,
leading to a total of O(nk2) parameters. Hence, the total
number of parameters in a recursive n-choose-k model
is bounded by a polynomial in n and k.

To contrast, there are n parameters in a logistic n-
choose-k model, which can be learned by iterative meth-
ods such as gradient descent (Swersky et al., 2012).
Moreover, unlike our recursive model, there is no struc-
ture to be learned in a logistic n-choose-k model.

4.1 PARAMETER LEARNING

Suppose we are given a set of n binary variables X. Let
D be a dataset containing N examples, where each ex-
ample is an instantiation x of variables X with exactly k
variables set to true (that is, D is an n-choose-k dataset).

For a set of variables Y ⊆ X, we will say that an ex-
ample x has Y-cardinality equal to m iff exactly m vari-
ables in Y are set to true in the example. We will also
use D#(Y :m) to denote the number of examples in
dataset D with Y-cardinality equal to m. This allows
us to define the following empirical probability, which is
the probability of having Y-cardinality equal to m:

PrD(Y :m) = 1
ND#(Y :m).

Example 5. Consider the example

ML=0,LG=1,CP=1,CX=0,CL=0,LA=1

which has an ai-cardinality of 1 and a cs-cardinality of
2. We can compute the empirical probability that a stu-
dent takes one ai course and two cs courses by counting
examples in the dataset:

PrD(ai :1, cs :2) = 1
ND#(ai :1, cs :2).

We can also find the conditional probability that a student
takes one ai course given that they take two cs courses:

PrD(ai :1 | cs :2) =
D#(ai :1, cs :2)

D#(cs :2)
. �

The following theorem provides a closed form for the
maximum likelihood estimates of a recursive n-choose-
k model given a corresponding dataset D.

Theorem 1 Consider a recursive n-choose-k model and
dataset D, both over variables X. Let v be an internal
vtree node of this model. The maximum-likelihood pa-
rameter estimates for node v are unique and given by

θv,i(i1, i2) = PrD(Xv1 : i1 | Xv : i)

= PrD(Xv2 : i2 | Xv : i).

According to this theorem, and given the underlying
vtree of a recursive n-choose-k model, we can estimate
its maximum likelihood parameters by performing a sin-
gle pass on the given dataset.

i = 0 LG ML CX CP CL LA

i = 1 LG

CX

ML

CP CL LA●

i = 2 LG CXML CP

CL LA● ●

Figure 3: The first few iterations of vtree learning.

4.2 STRUCTURE LEARNING

We now turn to learning the structure of a recursive n-
choose-k model, which amounts to learning its underly-
ing vtree. Our approach will be based on maximizing
the log-likelihood of the model, without penalizing for
structure complexity since the number of parameters of
any recursive n-choose-k model is bounded by a polyno-
mial (i.e., regardless of its underlying vtree).

Our approach relies on the following result, which shows
that the log-likelihood of a recursive n-choose-k model
M , denoted LL(M | D), decomposes over vtree nodes.

Theorem 2 Consider a recursive n-choose-k model M
over variables X and a corresponding dataset D. Let v
be an internal vtree node of this model. We then have

LL(M | D) = −N ·
∑
v

H(Xv1 | Xv)

= −N ·
∑
v

H(Xv2 | Xv)

whereH(Xv1 |Xv) is the (empirical) conditional entropy
of the cardinality of Xv1 given the cardinality of Xv:

−
∑

θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) · logPrD(Xv1 : i1 | Xv : i).

Theorem 2 suggests a greedy heuristic for selecting a
vtree. We start with n vtrees, each over a single variable
X ∈ X. We greedily pair two vtrees va and vb (i.e., make
them children of a new vtree node v) if they have the low-
est conditional entropy H(Xva | Xv) = H(Xvb | Xv)
over all pairs va and vb. We iterate until we have a single
vtree over all variables X.

Example 6. Figure 3 highlights the first few iterations
of our vtree learning algorithm, using our course selec-
tion example. Initially, at iteration i = 0, we have six
vtrees, one for each of the six courses. Over all pairs
of vtrees, say we obtain the lowest conditional entropy
with H({LG}|{LG,ML}). At iteration i = 1, we pair the

x w

a b

c xw a

b cleft-rotate(x)

right-rotate(x)

Figure 4: Rotating a vtree node x right and left. Nodes
a, b, and c may represent leaves or subtrees.

vtrees of ML and LG to form a new vtree over both. Over
all pairs of vtrees, say we now obtain the lowest con-
ditional entropy with H({CX}|{CX,CP}). At iteration
i = 2, we again pair the corresponding vtrees to form a
new one. We repeat, until we obtain a single vtree. �

Our structure learning algorithm improves the quality of
this vtree using local search (simulated annealing in par-
ticular). To navigate the full space of vtrees, it suffices
to have (left and right) tree rotation operators, and an op-
erator to swap the labels of two vtree leaves.1 Figure 4
highlights the rotation operator for vtrees. In our exper-
iments, we used simulated annealing with the above op-
erators to navigate the search space of vtrees, using the
greedily found vtree we just described as the initial vtree.

Our local search algorithm defines two vtrees as neigh-
bors if one can be obtained from the other by perform-
ing a left/right rotation of an internal vtree node, or by
swapping the variables of two leaf vtree nodes. We used
an exponential cooling schedule for simulated annealing.
That is, during each iteration of the algorithm, we first se-
lect a neighbor at random. If it has a better log-likelihood
score, we move to that neighbor. Otherwise, we move to
that neighbor with probability exp{ 1

Ti
∆LL(M | D)},

where ∆LL(M | D) is the difference in log-likelihood,
and Ti is the temperature at the current iteration. We stop
when the temperature drops to a preset threshold.2 We do
not use restarts (empirically, our greedy heuristic appears
to obtain a reasonably good initial vtree).

Finally, we remark on the simplicity of our structure
learning algorithm, compared to other tractable repre-
sentations such as the arithmetic circuit (AC) and their
sum-product network (SPN) variant (Choi & Darwiche,
2017). In Section 6, we discuss how our recursive n-
choose-k model corresponds to a certain type of AC.
However, rather than search for ACs (Lowd & Domin-
gos, 2008; Gens & Domingos, 2013; Dennis & Ventura,

1(Choi & Darwiche, 2013) used rotation operators and an
operation that swapped the children of an internal vtree node
in order to navigate the space of vtrees. In our recursive n-
choose-k model, the log likelihood is invariant to the swapping
operator, hence we chose to swap the labels of leaf nodes.

2In our experiments, we have an initial temperature of 5.0,
a cooling rate of 0.98, and a temperature threshold of 0.001.

10
2

10
3

10
4

−32

−31

−30

−29

cpcs54 (k=16)

10
2

10
3

10
4

−30

−28

−26

−24

emdec6g (k=16)

10
2

10
3

10
4

−7

−6

−5

−4

−3

grids10x10 f10 (k=16)

10
2

10
3

10
4

−40

−35

−30

andes (k=16)

10
2

10
3

10
4

−20

−10

0
or chain 111 (k=16)

10
2

10
3

10
4

−48

−46

−44

−42

smokers 10 (k=16)

10
2

10
3

10
4

−28

−26

−24

tcc4e (k=16)

10
2

10
3

10
4

−22.5

−20.0

−17.5

−15.0

win95pts (k=16)

Figure 5: Learning results for cardinality-16: dataset size
(x-axis) vs test log likelihood (y-axis). The blue solid
lines and orange dashed lines correspond to the recursive
and logistic n-choose-k models, respectively.

2015), we only need to search for vtrees (a much simpler
space). This is possible due to a property called canonic-
ity, which fixes the structure of the AC once the vtree is
fixed (Kisa et al., 2014).

5 EXPERIMENTS AND CASE STUDIES

We next compare our recursive n-choose-k model with
the logistic n-choose-k model of (Swersky et al., 2012),
using simulated n-choose-k datasets. We later evaluate
these models using real-world datasets from the domains
of preference learning and sports analytics.

5.1 SIMULATED DATA

Based on Proposition 1, for a given logistic n-choose-k
model, there exists a parameterization of a recursive n-
choose-k model that induces the same distribution. How-
ever, the logistic n-choose-k model has fewer parame-

ters, as discussed before. Thus, for less data we generally
expect the logistic version to be more robust to overfit-
ting, and for greater amounts of data we generally expect
our recursive version to ultimately provide a better fit.

The first goal in our experiments is to verify this be-
havior. We simulated n-choose-k datasets, that are in-
dependent of both the logistic and recursive n-choose-k
models (so that neither model would be able to fit the
data perfectly). In particular, we simulated datasets from
Bayesian and Markov networks, but subjected the net-
works to cardinality-k constraints.3

We selected a variety of networks from the literature,
over binary variables (the corresponding variable count
is given in parentheses): cpcs54 (54), and win95pts
(76) are classical diagnostic BNs from the literature;
emdec6g(168) and tcc4e (98) are noisy-or diagnostic
BNs from HRL Laboratories; andes (223) is a Bayesian
network for educational assessment; grid10x10 f10
(100), or chain 111 (200), smokers 10 (120) are
networks taken from previously held UAI competitions.
We first considered cardinality-16 datasets. For each, we
simulated a testing set of size 2, 500 and independently
sampled 20 training sets each of size 2s for s from 6
(64 examples) to 14 (16,384 examples). We trained n-
choose-k models from each training set, and evaluated
them using the testing set, in Figure 5. Each point in a
plot is an average over 20 training sets.

Our recursive n-choose-k model is depicted with a solid
blue line, and the logistic n-choose-k model is depicted
with a dashed orange line. There are a few general trends.
First, the logistic n-choose-k model more often provides
a better fit with smaller amounts of data, but in all but two
cases (smokers 10 and andes), our recursive alterna-
tive will eventually learn a better model given enough
data. In Appendix B, we ran analogous experiments
except using cardinality-32 datasets, where we observe
that our recursive n-choose-k model tends to perform
even better, i.e., it tends to overtake the logistic one with
fewer examples. Finally, we note that the variance (plot-
ted using error-bars) of the logistic n-choose-k is smaller
(since it has fewer parameters).

Figure 6 highlights the impact of varying k, using data
simulated from the win95pts network. Here, observe
the gain obtained from using the recursive model ver-
sus the logistic model, in terms of the test log likelihood,
i.e., LLrecursive(D) − LLlogistic(D). Hence, if the gain

3We remark that it is non-trivial to simulate a Bayesian net-
work, when we condition on logical constraints. To do so,
efficiently, we first compiled a Bayesian network to a PSDD,
and then multiplied it with a (uniform) PSDD representing a
cardinality-k constraint (Shen et al., 2016). The result is a
PSDD, which we can now efficiently sample from.

k

10
20

30
40

50
60

70
N

(tr
aining

siz
e)

200

400

600

800

1000

T
es

t
L

L
G

ai
n

0

2

4

6

8

10

Figure 6: Learning results on the win95pts dataset: k
vs dataset size vs test log likelihood.

is negative, the logistic model obtained a better likeli-
hood, and if the gain is positive, then our recursive model
obtained a better likelihood. Again, as we increase the
size of the dataset, our recursive n-choose-k model ob-
tains better likelihoods. As we vary the cardinality of the
examples in the data, we see that the performance can
vary. Generally, as we increase k from 0 to n, the dif-
ference between the models become greater up to a point
and then it decreases again. This is expected to an ex-
tent since there is an underlying symmetry: a constraint
that k values be positive is equivalent to a constraint that
n − k values are negative. Hence, for a given n-choose-
k model, there is an equivalent n-choose-(n− k) model
where the signs have been switched. However, there is
not a perfect symmetry in the distribution, since the orig-
inal distribution generating the data (win95pts in this
case) does not have this symmetry across cardinalities.

Finally, we remark on the running time of structure learn-
ing. On the win95pts network, with a 76-choose-32
dataset of size 213, our structure learning algorithm runs
for only 65.02s (on average over 20 runs). On the andes
network, with a 223-choose-32 dataset of size 213, it
runs for only 367.8s (on average over 20 runs). This
is in contrast to other structure learning algorithms for
tractable models, such as those based on ACs and their
SPNs variant, where learning requires hours for compa-
rably sized learning problems, and even days and weeks
for larger scale problems; see, e.g., (Rahman, Kothalkar,
& Gogate, 2014) for a discussion. While our recursive
n-choose-k model corresponds to a special class of ACs
(as we shall discuss in Section 6), it suffices to learn a
vtree and not the AC itself.

●

● ●

 ika (squid) ebi (shrimp) anago (sea eel) ●

● ●

 tamago (egg) kappa-maki (cucumber roll) ●
 toro (fatty tuna)

● ●

 sake (salmon roe) uni (sea urchin) tekka-maki (tuna roll) maguro (tuna)

Figure 7: 10-choose-5 model for the sushi dataset.

5.2 CASE STUDY: PREFERENCE LEARNING

We consider a case study in preference learning. The
sushi dataset consists of 5, 000 total rankings of 10
different types of sushi (Kamishima, 2003). From this
dataset over total rankings, we can obtain a dataset over
top-5 preferred sushi, where we have 10 variables (one
for each type of sushi) and a variable is true iff they are
in the top-5 of their total ranking; we thus ignore the spe-
cific rankings. Note that the resulting dataset is complete,
with respect to top-5 rankings. We learned a 10-choose-5
model from this data, using simulated annealing seeded
with our conditional entropy heuristic.4

Figure 7 highlights the learned vtree structure, which we
can view as providing a recursive partitioning to guide
a selection of the top-5 preferred sushi, as in Section 3.
Going roughly left-to-right, we start with 3 popular non-
fish types of sushi: squid, shrimp and sea eel. Next, egg
and cucumber roll are relatively not preferred; next, fatty
tuna is heavily preferred. Finally, we observe salmon
roe and sea urchin (which are both considered acquired
tastes) and then tuna roll and tuna. These observations
are consistent with previously made observations about
the sushi dataset; see, e.g., (Lu & Boutilier, 2011;
Choi, Van den Broeck, & Darwiche, 2015). In contrast,
(Lu & Boutilier, 2011) learned a mixture-of-Mallows
model with 6 components, providing 6 different refer-
ence rankings (and a dispersion parameter).5 (Choi et al.,
2015) learned a PSDD, but without learning a vtree; a
fixed vtree was used based on rankings, which does not
reflect any relationships between different types of sushi.

Appendix B compares the recursive and logistic n-
choose-k models, where we again observe that the recur-
sive model obtains a better fit when we have more data.

4The sushi data was split into a training set of size 3, 500
and a testing set of size 1, 500 as in (Lu & Boutilier, 2011).
Our model was learning using just the training set.

5The Mallows (1957) model is a probabilistic model for
ranking, which assumes a reference ranking σ, with other rank-
ings σ′ becoming less likely as their distance from σ increases.

●

● ●

●
 Fisher (PG) ●

 Odom (PF)

● ● ●
 Walton (SF)

●
 Mbenga (C) Peace (SF) Bryant (SG) ● ●

 Bynum (C) Gasol (C) Farmar (PG) ●
 Powell (PF) Morrison (SF)

 Brown (SG) Vujacic (SG)

Figure 8: 13-choose-5 model for the 2009-2010 Lakers.

5.3 CASE STUDY: SPORTS ANALYTICS

Team sports, such as basketball and soccer, have an in-
herent n-choose-k problem, where a coach has to select
k out of n players to fulfill different roles on a team. For
example, in modern basketball, a team consists of five
players who play different roles: there are two guards,
who are passers and long-distance shooters; there are two
forwards, who generally play closer to the basket; and
there is the center, who is normally the tallest player and
is the one mostly responsible for gathering rebounds and
for contesting shots.

http://stats.nba.com provides, for a given sea-
son and team, a record of all lineups of five players that
played together at the same time, and for how many min-
utes they played. There are 48 minutes played in a bas-
ketball game, and 82 games played during the regular
season, for a total 3, 936 minutes. For the 2009-2010
Los Angeles Lakers, that season’s NBA champions, we
obtained a 13-choose-5 dataset with 39, 360 examples,
taking lineups in 1

10 -th minute increments, plus some ad-
ditional examples due to overtime.

Figure 8 highlights the (vtree) structure that we learned
from the full dataset. Again, we can view this structure
as providing a recursive partitioning to guide our selec-
tion of a five-player NBA lineup, as in Section 3. Start-
ing from the left, and rotating around the root: Andrew
Bynum, Pao Gasol and Didier Ilunga-Mbenga are the
centers; Metta World Peace, Kobe Bryant, Derek Fisher,
and Lamar Odom are the starting non-centers; Luke Wal-
ton, Josh Powell and Adam Morrison are the reserve for-
wards; and Jordan Farmar, Shannon Brown, and Sasha
Vujacic are the reserve guards.

Appendix B compares the recursive and logistic n-
choose-k models, where we again observe that the recur-
sive model obtains a better fit when we have more data.

6 DISCOVERING THE RECURSIVE
n-CHOOSE-k MODEL

We now highlight how the recursive n-choose-k model
was discovered using the Probabilistic Sentential Deci-
sion Diagram (PSDD) (Kisa et al., 2014).

A PSDD allows one to define a probability distribution
over a structured probability space, which is a subset of
the Cartesian product of a set of variables—with each el-
ement of this subset corresponding to some object of in-
terest. For example, a structured probability space may
correspond to the space of permutations, partial rankings
or routes on a map (Choi et al., 2015; Choi, Tavabi, &
Darwiche, 2016). PSDDs over structured spaces are in-
terpretable in a precise sense. For certain spaces, includ-
ing those for subset selection, this interpretability may
lead to models whose semantics are so clear that they can
be described independently, without the need to invoke
the notion of a PSDD in the first place. In such cases, we
say that the PSDD has enabled model discovery.

Underlying the PSDD is the Sentential Decision Dia-
gram (SDD), which is a class of tractable Boolean cir-
cuits (Darwiche, 2011). In this framework, the SDD
circuit is used to define the structured probability space
(a variable instantiation belongs to the structured space
iff the SDD circuit outputs one under that instantiation).
Once the structured space is defined by an SDD, a PSDD
is used to induce a distribution over that space (the PSDD
is basically a parameterized SDD).

Consider the recursive 3-choose-2 model of Figure 2.
This model corresponds to an SDD circuit when we re-
place (1) internal circled nodes with or-gates, (2) paired
boxes with and-gates, (3) 1-choose-1 leaf nodes with a
positive literal X and 1-choose-0 leaf nodes with a neg-
ative literal ¬X . The result is an SDD circuit whose sat-
isfying instantiations have exactly two positive literals;
that is, the structured probability space for 3-choose-2.
See Appendix C for an example of this SDD circuit, and
its annotation as a PSDD.

More generally, the following theorem describes SDD
circuits whose satisfying instantiations are those with ex-
actly k variables set to true (SDDs are also constructed
based on vtrees; see (Darwiche, 2011) for details).

Proposition 2 Let fv,k be an SDD circuit, for a vtree v
with n variables X, whose satisfying instantiations x set
exactly k variables to true. This circuit is equivalent to:∨

k1+k2=k fv1,k1 ∧ fv2,k2
where 0 ≤ k1 ≤ |Xv1 | and 0 ≤ k2 ≤ |Xv2 |.

Hence, each or-gate of an SDD corresponds to a Boolean
formula representing an n-choose-k constraint.

To emphasize the clear semantics of this SDD, consider
the number of satisfying instantiations (i.e., model count)
that an n-choose-k constraint has:

(
n
k

)
. To obtain the

model count of an SDD (i.e., the number of satisfying in-
stantiations), we replace each or-gate with a + and each
and-gate with a ∗, and all literals with a 1. We then eval-
uate the circuit bottom-up to evaluate the model count.
The model count of the SDD in Figure 2 represents the
following computation of

(
3
2

)
:(

3
2

)
=
(

2
1

)(
1
1

)
+
(

2
2

)(
1
0

)
= 2 · 1 + 1 · 1 = 3.

For a more general example, suppose we are given a
vtree over a set of n variables X, where the left child
of each internal node is a leaf (this is called a right-linear
vtree). Computing the model count of an SDD for this
vtree, as shown above, yields the well-known recurrence
for binomial coefficients:(

n
k

)
=
(

1
0

)(
n−1
k

)
+
(

1
1

)(
n−1
k−1

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

To obtain a PSDD from an SDD, one assigns a local dis-
tribution on the inputs of each or-gate (Kisa et al., 2014).
For the SDDs of Proposition 2, these local distributions
correspond to the choice distributions of our recursive n-
choose-k model; see Appendix C for an example. This
observation allowed us to describe this model in a man-
ner independent of the PSDD framework, and hence en-
abled model discovery.

7 CONCLUSION

We proposed in this paper the recursive n-choose-k
model for subset selection problems. We also derived
a closed-form parameter estimation algorithm for these
models, and a simple structure learning algorithm based
on greedy and local search. Empirically, we showed how
our recursive n-choose-k models can obtain better fits
of the data, compared to a previously proposed model.
Moreover, we showed how structure search can lead to
an intuitive generative model of the subset selection pro-
cess (based on vtrees). We finally showed how the pro-
posed model was discovered using the PSDD represen-
tation for inducing distributions over structured spaces,
with the structured space being the set of variable instan-
tiations having a fixed cardinality.

Acknowledgments

This work has been partially supported by NSF grant
#IIS-1514253, ONR grant #N00014-15-1-2339 and
DARPA XAI grant #N66001-17-2-4032. We thank Tal
Friedman, Yitao Liang and Guy Van den Broeck for com-
ments and discussions on this paper.

References

Bekker, J., Davis, J., Choi, A., Darwiche, A., & Van den
Broeck, G. (2015). Tractable learning for complex prob-
ability queries. In Advances in Neural Information Pro-
cessing Systems 28 (NIPS).

Chavira, M., & Darwiche, A. (2008). On probabilistic
inference by weighted model counting. Artificial Intelli-
gence Journal (AIJ), 172(6–7), 772–799.

Choi, A., & Darwiche, A. (2013). Dynamic minimiza-
tion of sentential decision diagrams. In Proceedings of
the 27th Conference on Artificial Intelligence (AAAI).

Choi, A., & Darwiche, A. (2017). On relaxing determin-
ism in arithmetic circuits. In Proceedings of the Thirty-
Fourth International Conference on Machine Learning
(ICML).

Choi, A., Tavabi, N., & Darwiche, A. (2016). Structured
features in naive Bayes classification. In Proceedings
of the 30th AAAI Conference on Artificial Intelligence
(AAAI).

Choi, A., Van den Broeck, G., & Darwiche, A. (2015).
Tractable learning for structured probability spaces: A
case study in learning preference distributions. In Pro-
ceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI).

Darwiche, A. (2011). SDD: A new canonical represen-
tation of propositional knowledge bases. In Proceedings
of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), pp. 819–826.

Dennis, A. W., & Ventura, D. (2015). Greedy structure
search for sum-product networks. In Proceedings of the
Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence (IJCAI), pp. 932–938.

Gens, R., & Domingos, P. M. (2012). Discrimina-
tive learning of sum-product networks. In Advances in
Neural Information Processing Systems 25 (NIPS), pp.
3248–3256.

Gens, R., & Domingos, P. M. (2013). Learning the struc-
ture of sum-product networks. In Proceedings of the 30th
International Conference on Machine Learning (ICML),
pp. 873–880.

Kamishima, T. (2003). Nantonac collaborative filter-
ing: recommendation based on order responses. In Pro-
ceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp.
583–588.

Kimmig, A., Van den Broeck, G., & De Raedt, L. (2017).
Algebraic model counting. J. Applied Logic, 22, 46–62.

Kisa, D., Van den Broeck, G., Choi, A., & Darwiche,
A. (2014). Probabilistic sentential decision diagrams.
In Proceedings of the 14th International Conference on

Principles of Knowledge Representation and Reasoning
(KR).

Lowd, D., & Domingos, P. M. (2008). Learning arith-
metic circuits. In Proceedings of the 24th Conference in
Uncertainty in Artificial Intelligence (UAI), pp. 383–392.

Lowd, D., & Rooshenas, A. (2013). Learning Markov
networks with arithmetic circuits. In Proceedings of the
16th International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 406–414.

Lu, T., & Boutilier, C. (2011). Learning Mallows models
with pairwise preferences. In Proceedings of the 28th
International Conference on Machine Learning (ICML),
pp. 145–152.

Mallows, C. L. (1957). Non-null ranking models.
Biometrika, 44, 114–130.

Meinel, C., & Theobald, T. (1998). Algorithms and Data
Structures in VLSI Design: OBDD — Foundations and
Applications. Springer.

Poon, H., & Domingos, P. M. (2011). Sum-product net-
works: A new deep architecture. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 337–346.

Rahman, T., Kothalkar, P., & Gogate, V. (2014). Cutset
networks: A simple, tractable, and scalable approach for
improving the accuracy of Chow-Liu trees. In European
Conference on Machine Learning and Knowledge Dis-
covery in Databases (ECML-PKDD), pp. 630–645.

Shen, Y., Choi, A., & Darwiche, A. (2016). Tractable
operations for arithmetic circuits of probabilistic models.
In Advances in Neural Information Processing Systems
29 (NIPS).

Swersky, K., Tarlow, D., Adams, R. P., Zemel, R. S., &
Frey, B. J. (2012). Probabilistic n-choose-k models for
classification and ranking. In Advances in Neural Infor-
mation Processing Systems 25 (NIPS), pp. 3059–3067.

Wegener, I. (2000). Branching Programs and Binary De-
cision Diagrams. SIAM.

A PROOFS

To prove Proposition 1, we reduce the logistic n-choose-
k model to a weighted model counting (WMC) problem.

Given a propositional sentence ∆ and a set of weights
W (`) on each literal `, its weighted model count is

WMC(∆) =
∑
x|=∆

W (x) =
∑
x|=∆

∏
x|=`

W (`)

where the weight of a model W (x) is the product of the
weights of its literalsW (`). For more on weighted model
counting see, e.g., (Chavira & Darwiche, 2008; Kimmig,
Van den Broeck, & De Raedt, 2017).

A WMC problem induces a distribution over its models:

Pr(x) =
W (x)

WMC(∆)
.

If a sentence ∆ can be compiled into an SDD, then the
SDD can be used to compute its weighted model count.
Subsequently, a PSDD can represent the corresponding
distribution, as follows.

Lemma 1 Consider a WMC problem over a proposi-
tional sentence ∆ with weights W (`) on each literal `.
Let m be an SDD representing sentence ∆. There is a
PSDD with m as its base that induces the same distribu-
tion induced by the given WMC problem.

Proof Given a normalized SDD for ∆, we show how to
parameterize it as a PSDD. For an SDD/PSDD node m,
let Pm be the distribution induced by the WMC prob-
lem on m, and let Qm be the distribution induced by the
PSDD. Ifm is a terminal node, setQm(`) = η ·W (`) if `
is compatible with the base of m and 0 otherwise, where
η is a normalizing constant so thatQm sums to one. Ifm
is a decision node with elements (pi, si, θi), set

θi =
WMC(pi) ·WMC(si)

WMC(m)
.

We show Pm(x) = Qm(x) for all x, by induction. The
base case, where m is a terminal node, is immediate.
Suppose m is a decision node with elements (pi, si, θi)
with prime variables X and sub variables Y, and where
Ppi(x) = Qpi(x) and Psi(y) = Qsi(y). Given an as-
signment xy, let the i-th element (pi, si, θi) be the one
where x |= pi. We have:

Qm(xy) = Qpi(x) ·Qsi(y) · θi
= Ppi(x) · Psi(y) · θi by induction

=
W (x)

WMC(pi)
· W (y)

WMC(si)
· WMC(pi) ·WMC(si)

WMC(m)

=
W (x) ·W (y)

WMC(m)
=

W (xy)

WMC(m)
= Pm(xy). �

Proof of Proposition 1 We can represent the logistic n-
choose-k model of Equation 1 as a weighted model
counting problem problem. First, let ∆ be a logical n-
choose-k constraint as in Proposition 2. If we use the
weights W (X) = exp{θX} and W (¬X) = 1, then the
weighted model count gives us the partition function of
the logistic n-choose-k model of Equation 1.

Using Proposition 2, we can obtain an SDD for ∆ of
polynomial size. Using the construction of Lemma 1, we
obtain a PSDD that corresponds to a recursive n-choose-
k model. This distribution is equivalent to the one in-
duced by the WMC problem, and the one induced by the
given logistic n-choose-k model. �

Proof of Theorem 1 Under the recursive n-select-k dis-
tribution, the probability Prw,k(x) is a product of n− 1
choice parameters. Hence, the log likelihood decom-
poses as follows:

LL(M | D) =

N∑
a=1

logPrw,k(x)

=
∑
v,i

∑
θv,i(i1,i2)

D#(Xv1 : i1,Xv : i) log θv,i(i1, i2)

= N ·
∑
v,i

∑
θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) log θv,i(i1, i2)

Note that for each v and i, all of the local choice distri-
butions θv,i are independent. Hence it suffices to locally
maximize each component:∑

θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) log θv,i(i1, i2)

which is basically a cross entropy that is maximized at:

θv,i(i1, i2) = PrD(Xv1 : i1 | Xv : i)

= PrD(Xv2 : i2 | Xv : i). �

Proof of Theorem 2 If we substitute the maximum like-
lihood estimates of Theorem 1 into the log likelihood of
an n-choose-k model we obtain our result.

First, consider the component contributed by a single
vtree node v and their choice distribution θv,i:

N
∑

θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) log θv,i(i1, i2)

= N
∑

θv,i(i1,i2)

PrD(Xv1 : i1,Xv : i) logPrD(Xv1 : i1|Xv : i)

= −N ·H(Xv1 : i1|Xv : i)

which is the conditional entropy distribution. Hence:

LL(M | D) = −N
∑
v

H(Xv1 : i1|Xv : i) �

Proof of Proposition 2 Consider an n-choose-k con-
straint fv,k associated with a vtree node v, with children
v1 and v2 over variables Xv1 and Xv2 .

An Xv1 -Xv2 decomposition is found by compressing the
decomposition:

fv,k =
∨
xv1

xv1 ∧ fv,k|xv1

which is found by disjoining all xv1 terms that have
equivalent terms fv,k|xv1 . For all xv1 with the same car-
dinality k1, the resulting function fv,k|xv1 is the same.
When we disjoin all such xv1 we obtain the function
fv1,k1 . Further, fv,k|xv1 = fv2,k2 for k2 = k − k1.
Hence, the compressed decomposition is:

fv,k =
∨

k1+k2=k

fv1,k1 ∧ fv2,k2 .

See also (Meinel & Theobald, 1998; Wegener, 2000)
(such as the cardinality-k constraint) for more on sym-
metric functions on OBDDs. �

B ADDITIONAL EXPERIMENTS

Consider Figure 9, where we ran the same experiments
of Figure 5, except where we simulated cardinality-32
datasets instead of cardinality-16 datasets. We observe
that our recursive n-choose-k model tends to perform
even better here, i.e., they tend to overtake the logistic
one with fewer examples.

Consider the preference learning task of Section 5.2,
where we considered that sushi dataset, which con-
sists of 5, 000 total rankings of 10 different types of sushi
(Kamishima, 2003). Consider Figure 10, where we com-
pare our recursive n-choose-k model with the logistic n-
choose-k model of (Swersky et al., 2012). First, we split
the dataset into a training set (initially, of size 3,500) and
a testing set (of size 1,500). Next we simulated train-
ing sets of varying sizes, which we used to learn our
recursive n-choose-k models, which are then evaluated
using the testing set. We used datasets of size 2s for
s from 6 (64 examples) to 11 (2,048 examples), where
each was sampled from the original training set, without
replacement. Each point of Figure 10 represents an aver-
age over 20 simulated training sets. For smaller amounts
of data, we see the logistic 10-choose-5 model obtains
a better test likelihood. For larger amounts of data, we
see our recursive 10-choose-5 model obtains better test
likelihoods.

Consider the sports analytics task of Section 5.3, where
we considered the 2009-2010 Los Angeles Lakers, that
season’s NBA champions, and obtained a 13-choose-5

10
2

10
3

10
4

−37

−36

−35

−34

−33

cpcs54 (k=32)

10
2

10
3

10
4

−50

−45

−40

emdec6g (k=32)

10
2

10
3

10
4

−20

−15

−10

−5

grids10x10 f10 (k=32)

10
2

10
3

10
4

−65

−60

−55

andes (k=32)

10
2

10
3

10
4

−8

−6

−4

−2

or chain 111 (k=32)

10
2

10
3

10
4

−75

−70

−65

smokers 10 (k=32)

10
2

10
3

10
4

−42

−40

−38

−36

−34

tcc4e (k=32)

10
2

10
3

10
4

−26

−24

−22

−20

win95pts (k=32)

Figure 9: Learning results for cardinality-32: dataset size
(x-axis) vs test log likelihood (y-axis). The blue solid
lines and orange dashed lines correspond to the recursive
and logistic n-choose-k models, respectively.

dataset with 39, 360 examples. In Figure 11, we com-
pared our recursive n-choose-k model with the logistic
n-choose-k model. First, we split the dataset into a train-
ing set and testing set (the testing set had size 2,500,
with the rest going to the training set). Next we sim-
ulated training sets of varying sizes, which we used to
learn our n-choose-k models, which are then evaluated
using the testing set. We used datasets of size 2s for s
from 6 (64 examples) to 14 (16,384 examples), where
each was sampled from the original training set, without
replacement. Each point of Figure 11 represents an av-
erage over 20 simulated training sets. Notably, the logis-
tic model (in orange) does not improve much, even from
very small amounts of data. The model that we propose
(in blue) provides a better fit, even with a small training
set, and is further able to provide increasingly better fits
given more data.

v

w c (X3)

a (X1) b (X2)

Prv,2(X1X2X3)

θv,2(1,1) θv,2(2,0)

Prw,1(X1X2)

θw,1(0,1)θw,1(1,0)

Prw,2(X1X2)Prc,1(X3) Prc,0(X3)

Pra,0(X1)Pra,1(X1)Prb,0(X2) Prb,1(X2)

Figure 12: A vtree (upper-left), with a corresponding recursive 3-choose-2 model (right). Leaf vtree nodes are labeled
with their variables inside parenthesis. This vtree and model are reproduced from Figure 2.

102 103

N (training size)

−5.0

−4.9

−4.8

T
es

t
L

L

sushi

recursive

logistic

Figure 10: Learning results for the sushi dataset.

102 103 104

N (training size)

−5.50

−5.25

−5.00

−4.75

−4.50

T
es

t
L

L

nba 2009

recursive

logistic

Figure 11: Learning results for the 2009-2010 NBA
Champion Los Angeles Lakers.

θv,2(1,1) θv,2(2,0)

X1 X2

θw,2(1,1)

¬X3

X1 ¬X2 ¬X1 X2

θw,1(1,0) θw,1(0,1)

X3

Figure 13: A PSDD corresponding to the vtree and the
recursive n-choose-k model of Figure 2 (and Figure 12).

C EXAMPLE PSDD

Figure 13 highlights the SDD/PSDD corresponding to
the recursive 3-choose-2 model of Figure 2 using the
same vtree. For convenience, we reproduce the vtree and
model in Figure 12.

As we highlighted in Section 6, the Boolean circuit of
Figure 13 (ignoring the annotated parameters θv,k) out-
puts 1 if the circuit input sets exactly 2 out of 3 vari-
ables positively, and outputs 0 otherwise. Note that for
simplicity, we have omitted inconsistent branches of or-
gates that would normally appear in a SDD/PSDD (these
branches correspond to instantiations that do not have the

required cardinality, and hence, always outputs a 0).

We can obtain an AC of this PSDD by performing two
steps: convert each and-gate into a ∗-node, and con-
vert each or-node with children c1, . . . , cn and param-
eters θ1, . . . , θn into a +-node with children α1 ∗ c1, . . . ,
αn ∗ cn. Given an instantiation x, the output of the AC
is found by setting the inputs to 1/0 according to x and
then evaluating the circuit bottom-up. This output yields
the probability Pr(x) of the corresponding recursive 3-
choose-2 model.

The properties of SDDs and PSDDs allow certain queries
or operations to be performed efficiently, which are oth-
erwise hard on general Boolean and arithmetic circuits.
For example, model counting can be performed using
SDDs in time that is linear in the size of the SDD (Dar-
wiche, 2011). In PSDDs, queries such as MPE and
marginals are similarly tractable (as discussed in Sec-
tion 3.2). The maximum likelihood parameters of a
PSDD can be learned in closed-from from a complete
dataset (as in Section 4). Further, one can multiply two
PSDDs in polynomial time, which enables incremental
learning and inference (Shen et al., 2016).

