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Abstract. State-of-the-art knowledge compilers generate deterministic

subsets of DNNF, which have been recently shown to be exponentially
less succinct than DNNF. In this paper, we propose a new method
to compile DNNFs without enforcing determinism necessarily. Our ap-
proach is based on compiling deterministic DNNFs with the addition of
auxiliary variables to the input formula. These variables are then exis-
tentially quantified from the deterministic structure in linear time, which
would lead to a DNNF that is equivalent to the input formula and not
necessarily deterministic. On the theoretical side, we show that the new
method could generate exponentially smaller DNNFs than deterministic
ones, even by adding a single auxiliary variable. Further, we show that
various existing techniques that introduce auxiliary variables to the input
formulas can be employed in our framework. On the practical side, we
empirically demonstrate that our new method can significantly advance
DNNF compilation on certain benchmarks.

1 Introduction

Decomposability and determinism are two fundamental properties that underlie
many tractable representations in propositional logic. Decomposability is the
characteristic property of decomposable negation normal form (DNNF) [9], and
adding determinism to DNNF leads to deterministic DNNF (d-DNNF) [10],
which includes many other representations, such as sentential decision diagrams
(SDDs) [14] and ordered binary decision diagrams (OBDDs) [5].

The key property of deterministic subsets of DNNF is their ability to render
the query of model counting tractable, which is key to probabilistic reasoning
(see, e.g., [29,11,6]). On the other hand, decomposability without determinism
is also sufficient to ensure the tractability of many interesting queries, such
as clausal entailment and cardinality minimization. Indeed, these queries are
enough for various applications, which do not require efficient computation of
model counting. For example, constructing DNNFs would suffice to perform re-
quired reasoning tasks efficiently for model-based diagnosis (e.g., [8,3,18]) and
testing (e.g., [31,32]).

However, state-of-the-art knowledge compilers all generate deterministic sub-
sets of DNNF (see, e.g., [12,23,25]). Yet, unsurprisingly, the addition of determin-
ism comes with a cost of generating less succinct representations. In particular, as
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recently shown [4], DNNF is exponentially more succinct than its deterministic
subsets. Therefore, for those applications where only decomposability is suffi-
cient, compiling a deterministic subset of DNNF not only implies performing
more work than necessary, but it could also result in generating larger DNNFs
which would make reasoning tasks less efficient (if compilation is possible at all).
Still, all existing compilers that we know of to generate decomposability also
ensure determinism.

In this paper, we focus on compiling DNNFs without enforcing determinism,
and make several contributions in that matter. Our main contribution is a new
methodology to compile DNNFs by leveraging existing knowledge compilers. The
key insight behind our approach is a new type of equivalence relation between
two Boolean functions: a Boolean function f(X) over variables X is equivalent
modulo forgetting to another Boolean function g(X,Y) over variables X and Y

iff existentially quantifying (also known as, forgetting) variables Y from g results
in a function equivalent to f . The relevance of this notion to DNNF compilation
is the well-known result that one can forget arbitrarily many variables on a
given DNNF in linear time in the DNNF size, without losing the property of
decomposability but not necessarily determinism [9]. Thus, instead of compiling
function f directly, one can compile function g into a deterministic DNNF using
existing compilers, on which forgetting variables Y would result in a DNNF that
is not necessarily deterministic and equivalent to f .

The usefulness of our new approach depends on two important questions,
which we address in this paper both theoretically and empirically: (i) to what
extend forgetting variables could lead to more compact DNNFs without deter-
minism than deterministic DNNFs, and (ii) how can one identify functions that
are equivalent modulo forgetting. On the theoretical side, we present two main
results. First, we show that even forgetting a single auxiliary variable can lead
to exponential difference between sizes of DNNFs with and without determin-
ism. Second, we study various existing approaches, such as Tseitin transforma-
tion [33], extended resolution [34], and bounded variable addition (BVA) [22],
where auxiliary variables are introduced to formulas, mostly to obtain an eq-
uisatisfiable formula so that SAT task can be performed or becomes easy.1 We
show that those existing techniques indeed correspond to generating functions
that are equivalent modulo forgetting, and hence offering some practical ideas to
apply to our approach. In particular, we show that BVA would generate CNFs
without increasing the treewidth of the input CNF much in the worst case, and
could potentially reduce it to a bounded value from an unbounded value. Since
CNF-to-DNNF compilation is tractable for bounded treewidth [9], this result
shows the potential of BVA on DNNF compilation. On the practical side, we
demonstrate that BVA, which turns out to be useful for SAT solving, can sig-
nificantly advance DNNF compilation.

This paper is structured as follows. We start with providing some technical
preliminaries in Section 2. We then describe our new method in detail in Sec-
tion 3. This is followed by showing that forgetting a single auxiliary variable can

1 Two formulas are equisatisfiable when the satisfiability of one depends on the other.



lead to exponential separation between DNNFs with and without determinism
in Section 4. We then make a treatment of various existing approaches in the
literature as equivalent modulo forgetting transformations in Section 5. After
providing an empirical evaluation of our new approach in Section 6, we continue
with a discussion on related work in Section 7. We conclude the paper with a
few remarks in Section 8.

2 Technical Preliminaries

In this section, we will briefly introduce the concepts that will be used throughout
the paper. We will use upper-case letters (e.g., X) to denote variables and lower-
case letters (e.g., x) to denote their instantiations. That is, x is a literal denoting
X or ¬X . We will use bold upper-case letters (e.g., X) to denote sets of variables
and bold lower-case letters (e.g., x) to denote their instantiations.

A Boolean function f over variables Z, denoted f(Z), is a function that maps
each instantiation z of variables Z to either 1/true or 0/false. A trivial Boolean
function maps all its inputs to true (denoted ⊤) or maps them all to false (de-
noted ⊥). An instantiation z satisfies function f iff f maps z to true. In this case,
z is said to be a model of function f . The model count of function f is the number
of models of f . Two functions f and g are logically equivalent, denoted f ≡ g, iff
they have the same set of models. The conditioning of function f on instantia-
tion x, denoted f |x, is the sub-function obtained by setting variables X to their
values in x. The existential quantification of variable X from function f , denoted
∃X. f , is the function obtained by disjoining functions f |X and f |¬X (that is,
∃X. f = f |X ∨ f |¬X). Existential quantification is also known as forgetting,
and can also be performed on a set of variables X by successively quantifying
variables in X. We will combine Boolean functions using the traditional Boolean
operators, such as ∧, ∨, ⊕, and ⇔.

CNF: A conjunctive normal form (CNF) is a conjunction of clauses, where each
clause is a disjunction of literals. For instance, (X∨¬Y )∧(¬X∨Y ∨Z)∧¬Z is a
CNF with three clauses. Conditioning CNF ∆ on literal ℓ amounts to removing
literal ¬ℓ from all clauses and then dropping all clauses that contain literal ℓ.

NNF: A negation normal form (NNF) is a rooted, directed acyclic graph whose
internal nodes are labeled with either conjunctions (i.e., ∧) or disjunctions (i.e.,
∨) and whose leaf nodes are labeled with either literals or constants⊤ and ⊥ [15].
A conjunction is decomposable iff each pair of its conjuncts share no variables [9].
A disjunction is deterministic iff each pair of its disjuncts are inconsistent with
each other [10]. A decomposable negation normal form (DNNF) is an NNF whose
conjunctions are decomposable [9]. A deterministic DNNF (d-DNNF) is a DNNF
whose disjunctions are deterministic [10]. For instance, Fig. 1 illustrates a DNNF
and a d-DNNF that are both equivalent to the CNF (X ∨Z ∧ (X ∨ ¬Q) ∧ (Y ∨
Z) ∧ (Y ∨ ¬Q) (note that the former is not necessarily deterministic).



∨

∧

X Y

∧

Z ¬Q

(a) DNNF

∨

∧

X ∨

Y ∧

¬Y Z ¬Q

∧

¬X ∧

(b) d-DNNF

Fig. 1. A DNNF and a d-DNNF for the CNF (X ∨¬Q)∧ (X∨Z)∧ (Y ∨¬Q)∧ (Y ∨Z).

3 Compiling DNNFs through Forgetting Variables

In this section, we will describe the proposed methodology, which is based on a
new type of equivalence relation between two functions.

Definition 1. Let f(X) and g(X,Y) be two Boolean functions, where variables
X and Y are disjoint. Then function f is said to be equivalent modulo forgetting
(emf) to function g iff the following holds:

f(X) ≡ ∃Y. g(X,Y).

Intuitively, the models of functions f and g match on their values over variables
X. Specifically, for each model x of f , there must exist an instantiation y such
that xy is a model of g. Similarly, for each model xy of g, x must be a model
of f . In other words, function f says everything function g says on variables X.
Hence, variables Y only act as auxiliary from the view of function f . We note
that the model counts of f and g are not necessarily the same.

We utilize this notion in compiling DNNFs as shown in Algorithm 1. Here,
to compile a DNNF representation of a function f(X), we first obtain another
function g(X,Y) that is emf to function f , with variables Y being auxiliary
(Line 1). Clearly, the specific method to construct function g would depend on
the input representation of f . We will discuss different ways for that later in
Section 5 when the input is a CNF. Once function g is constructed, we com-
pile a deterministic DNNF representation of it using an off-the-shelf knowledge
compiler (Line 2). Finally, we forget auxiliary variables Y from the compiled
structure (Line 3). This would generate a DNNF representation of the input as
g is emf to function f .

Proposition 1. Algorithm 1 returns a DNNF representation of its input.



Algorithm 1: DNNF (f)

Input: f(X) : a Boolean function over variables X

Output: constructs a DNNF representation of function f

1 g(X,Y)← emf(f)
2 ∆← compile g(X,Y) using a d-DNNF compiler
3 Γ ← forget variables Y from ∆

4 return Γ

We remark that the last step of Algorithm 1 can be performed only in linear
time in the size of the structure. This is due to the property of decomposabil-
ity, which supports linear time multiple-variable forgetting: all one needs is to
replace auxiliary variables with the constant ⊤ in the structure. An example of
this procedure is depicted in Fig. 2, where we forget variables X,Z from a de-
terministic DNNF. What is crucial here is that the resulting structure does not
enforce determinism anymore, but the decomposability property stays intact. In
fact, as we will show in the next section, this could lead to exponentially more
succinct representations, which can be thought of as a compensation for losing
the ability of performing efficient model counting.

4 An Exponential Separation by Forgetting Variables

In this section, we address the following question: to what extend forgetting
auxiliary variables could lead to more compact DNNFs without determinism
than deterministic DNNFs?

We next state our main result, showing that exponentially more compact
representations can be obtained.

Theorem 1. There exist two classes of Boolean functions fn(X) and gn(X, Z)
such that: (i) fn is emf to gn, (ii) the size of each d-DNNF computing fn is at
least exponential in n, and (iii) there is a d-DNNF computing gn whose size is
polynomial in n.

In other words, it is not feasible to compile a deterministic DNNF representa-
tion of fn, yet one can construct a compact DNNF representation of fn through
forgetting a single auxiliary variable from the compact deterministic DNNF rep-
resentation of gn. We remark that obtaining a DNNF computing fn directly is
not possible in practice as existing knowledge compilers generate deterministic
subsets of DNNF.

We next present the proof of Theorem 1, where we make use of the func-
tion that has been shown to exponentially separate DNNFs from deterministic
DNNFs [4].

Let M be an n× n matrix of Boolean variables. Let R1, . . . ,Rn be the rows
of M and C1, . . . ,Cn be the columns of M . Let hn be the class of functions over
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Fig. 2. Forgetting variables X,Z from a DNNF.

n variables evaluating to 1 iff the sum of its inputs is divisible by 3. Consider
the following function defined on the variables of M and variable Z:

gn(M, Z) =
(

Z ∧ rown(M)
)

∨
(

¬Z ∧ coln(M)
)

,

where rown and colN are defined by

rown(M) =
n

⊕

i=1

hn(Ri), coln(M) =
n

⊕

i=1

hn(Ci).

Finally, let fn be the following function defined on the variables of M:

fn(M) = rown(M) ∨ coln(M).

Clearly, fn(M) ≡ ∃Z. gn(M, Z), and hence function fn is emf to function gn.
Indeed, function fn is the Sauerhoff function [30], which was used in the expo-
nential separation of DNNFs from deterministic DNNFs [4]. That is, fn has a
polynomial size DNNF representation, but each deterministic DNNF comput-
ing it is exponential in size. Finally, since functions rown and coln both have
polynomial size OBDDs (a subset of deterministic DNNF), function gn has a
polynomial size deterministic DNNF representation. Thus, Theorem 1 holds.

As a side note, this result implies that forgetting on deterministic DNNF and
FBDD cannot be done in polynomial time, which was only known up to some
standard complexity-theoretic assumptions (i.e., P ̸= NP).2

Corollary 1. d-DNNF and FBDD do not support polynomial time single-variable
forgetting, as well as polynomial time multiple-variable forgetting.

2 The same function can also be used to show that d-DNNF and FBDD do not support
polynomial time disjunction operation.



Theorem 1 reveals the usefulness of our new approach in theory. To make it
useful in practice, we need to identify transformations that would produce emf
formulas, which is discussed next.

5 EMF Transformations

In this section, we address the following question: how can one identify functions
that are equivalent modulo forgetting?

We will study some existing techniques for CNFs that incorporate auxiliary
variables, mostly to get an equisatisfiable CNF. For each technique, we will
demonstrate that the produced equisatisfiable CNF is indeed emf to the input
CNF. We first formally define a notion of transformation that will be used to
identify methods producing emf formulas.

Definition 2. Let T be an algorithm that takes as input a Boolean function
f(X) and outputs another Boolean function g(X,Y), where X and Y are dis-
joint. Then algorithm T is said to be an emf transformation iff function f is emf
to function g.

Given this definition, we next present some emf transformations that exist in
the literature.

5.1 Tseitin Transformation

State-of-the-art SAT solvers require their input to be a Boolean formula in CNF.
When this is not the case, one has to first transform the input into a CNF. The
naive approach here is to use the famous De Morgan’s law and the distributive
property, which preserves logical equivalence. However, this can easily blow-up
CNF size exponentially. Thus, one typically applies Tseitin transformation [33],
which converts a Boolean formula into an equisatisfiable CNF by adding auxil-
iary variables with only a linear increase in size. In fact, Tseitin transformation
does more than constructing an equisatisfiable CNF. In particular, it guarantees
two more properties [33]:

(1) Dropping auxiliary variables from a model of the constructed CNF would
yield a model of the input formula;

(2) Any model of the input formula can be extended to be a model of the con-
structed CNF.

As we prove next, these two properties make Tseitin transformation an emf
transformation, as well as any other transformation that satisfies them.

Theorem 2. Let T be a transformation that satisfies the two properties above.
Then T is an emf transformation.



Let f(X) be the input function to transformation T , and let g(X,Y) be the
function constructed for f(X) by transformation T , where variables Y are intro-
duced during the transformation. We want to show that f(X) ≡ ∃Y. g(X,Y).

Let x be a model of ∃Y. g(X,Y). We will show that x is also a model of
f(X). Since x is a model of ∃Y. g(X,Y), there must be an instantiation y such
that xy is a model of g(X,Y). Then, by the first property above, x must be a
model of f(X).

Let x be a model of f(X). We will show that x is also a model of ∃Y. g(X,Y).
Due to the second property above, there must exist an instantiation y such that
xy is a model of g(X,Y). Then, as ∃Y. g(X,Y) says everything g(X,Y) says
on variables X, x must be a model of ∃Y. g(X,Y).

Therefore, Theorem 2 holds, which immediately implies that Tseitin trans-
formation is an emf transformation.

Proposition 2. Tseitin transformation is an emf transformation.

Accordingly, we can apply Tseitin transformation to compile DNNF when the
input is not in CNF, which is also the required format for most knowledge
compilers.

5.2 Extended Resolution

Resolution is a powerful rule of inference that has been used in SAT solving [28].
Specifically, iterating the following rule repeatedly in a certain way would tell
whether a CNF is satisfiable or not:

X ∨ α ¬X ∨ β

α ∨ β
,

where X is a variable and α and β are clauses. This rule states that whenever the
clauses in the premise appear in a CNF, one can increment the CNF by adding
the clause in the conclusion, without changing the logical content of the CNF
(i.e., preserving logical equivalence). Here, α∨ β is called the resolvent obtained
by resolving variable X on X ∨ α and ¬X ∨ β.

It turns out that resolution could generate only exponentially long proofs of
unsatisfiability for certain families of formulas (see, e.g., the Pigeonhole prin-
ciple [16]). To remedy this, extended resolution is introduced, which is a more
powerful generalization of resolution that includes an additional rule, called the
extension rule [33]. Accordingly, extended resolution allows one to increment the
CNF with the addition of clauses of the form X ⇔ ℓ1 ∨ ℓ2

3, where X is an
auxiliary variable that does not appear in the CNF and literals ℓ1 and ℓ2 ap-
pear in the CNF. Then one can apply the resolution rule as before. This simple
addition creates an exponentially more powerful proof system than resolution,
as extended resolution could generate polynomial size proofs where the regular
resolution can only generate exponential size proofs [7].

3 More specifically, X ⇔ ℓ1 ∨ ℓ2 can be replaced with the clauses ¬X ∨ ℓ1 ∨ ℓ2, X ∨
¬ℓ1, X ∨ ¬ℓ2.



Indeed, extended resolution constructs an equisatisfiable CNF, and thus ap-
plying resolution on it produces correct results for SAT solving. This technique
has also been shown to be useful in practice of SAT solving, where different
schemes for applying the extension rule have been suggested [17,1,21]. Hence, its
usage could potentially be extended to DNNF compilation, given that we will
now show it is indeed an emf transformation.

We will now prove the following result, which generalizes extended resolution.

Theorem 3. Let f(X),α1(X), . . . ,αn(X) be Boolean functions. Consider the
class of Boolean functions

gn(X,Y) = f(X) ∧ (Y1 ⇔ α1(X)) ∧ . . . ∧ (Yn ⇔ αn(X)),

where Y = {Y1, . . . , Yn}. Then function f is emf to function gn.

We want to show that f(X) ≡ ∃Y. gn(X,Y). For that, we will use the
following simplification n times:

∃Y. gn ≡ ∃Y1, . . . , Yn−1. ∃Yn. f(X) ∧
n
∧

i=1

Yi ⇔ αi(X) (1)

≡ ∃Y1, . . . , Yn−1. f(X) ∧

( n−1
∧

i=1

Yi ⇔ αi(X)

)

∧ ∃Yn. Yn ⇔ αn(X) (2)

≡ ∃Y1, . . . , Yn−1. f(X) ∧
n−1
∧

i=1

Yi ⇔ αi(X) (3)

· · ·

≡ ∃Y1. f(X) ∧
(

Y1 ⇔ α1(X)
)

≡ f(X).

Equation (1) is due to the definition of multiple-variable forgetting. Equation (2)

holds as f(X)∧
n−1
∧

i=1

Yi ⇔ αi(X) does mention variable Yn. Equation (3) holds as

forgetting variable Yn from Yn ⇔ αn(X) is equivalent to the trivial function ⊤.
Assuming that f(X) is a CNF, replacing each αi(X) with a clause of two

literals of variables X would clearly correspond to the extension rule of extended
resolution.

Proposition 3. Extended resolution is an emf transformation.

5.3 Bounded Variable Addition

Bounded variable addition (BVA) is a preprocessing technique introduced for
SAT solving [22]. The goal here is to reduce the sum of the number of variables
and clauses of a CNF by introducing auxiliary variables, without losing the
ability of answering the SAT query. It is based on resolution as described next.



Let CX be a set of clauses containing literal X and C¬X a set of clauses
containing literal ¬X . Let CX ◃▹ C¬X denote the set of resolvents one would
obtain by resolving X on clauses in CX and C¬X . Given a CNF ∆ and an
auxiliary variable X that does not appear in ∆, BVA looks for sets of clauses CX

and C¬X such that CX ◃▹ C¬X belongs to ∆ and |CX ◃▹ C¬X | > |CX |+ |C¬X |.
In this case, BVA replaces clauses CX ◃▹ C¬X with clauses CX and C¬X . For
instance, consider the following CNF:

∆ = (A ∨D) ∧ (B ∨D) ∧ (C ∨D) ∧ (A ∨ E) ∧ (B ∨ E) ∧ (C ∨E).

By adding an auxiliary variable X , we can obtain the following CNF which has
fewer clauses than ∆:

Σ = (A ∨ ¬X) ∧ (B ∨ ¬X) ∧ (C ∨ ¬X) ∧ (D ∨X) ∧ (E ∨X).

Indeed, ∆ is equisatisfiable to Σ, and thus one can feed Σ to a SAT solver,
instead of ∆.

The authors of [22] also developed a heuristic to apply the BVA transforma-
tion on CNFs, which is a greedy algorithm that searches for clause-patterns in
the input CNF. This algorithm is shown to be useful in SAT solving, and thus
offering a practical idea to apply to our DNNF compilation method due to the
following result.

Proposition 4. Bounded variable addition is an emf transformation.

We will now prove the above proposition. In particular, let ∆(X) be a CNF
and Σ(X, Y ) be the CNF obtained by applying BVA on ∆, where Y is the
auxiliary variable added during the process. Then we want to show that ∆(X) ≡
∃Y.Σ(X, Y ).

Let ΓY = ∧m
i=1Y ∨ αi and Γ¬Y = ∧k

j=1¬Y ∨ βj be the clauses containing
literals Y and ¬Y in CNF Σ, respectively. Then, due to the BVA process, we
can rewrite CNF ∆ as the CNF Φ ∧ ΓY ◃▹ Γ¬Y where Φ is a CNF. Moreover,
CNF Σ is equivalent to Φ ∧ ΓY ∧ Γ¬Y . In this setting, we have the following
equations:

∃Y.Σ(X, Y ) ≡ ∃Y.Φ ∧ ΓY ∧ Γ¬Y

≡ Φ ∧ ∃Y.ΓY ∧ Γ¬Y

≡ Φ ∧
(

(

ΓY ∧ Γ¬Y

)

|Y ∨
(

ΓY ∧ Γ¬Y

)

|¬Y
)

≡ Φ ∧
(

Γ¬Y |Y ∨ ΓY |¬Y
)

≡ Φ ∧
(

k
∧

j=1

βj ∨
m
∧

i=1

αi

)

≡ Φ ∧
(

k
∧

j=1

m
∧

i=1

βj ∨ αi

)

≡ Φ ∧ ΓY ◃▹ Γ¬Y

≡ ∆(X).



Treewidth and BVA We now identify another guarantee that comes with the
BVA transformation. Treewidth4 is a well-known graph-theoretic property [27],
which has been extensively used as a parameter that renders many hard reason-
ing tasks tractable when being small. In the context of knowledge compilation,
it is known that compiling a CNF into a deterministic DNNF can be done in the
worst case in time that is linear in the number of variables and exponential in
the treewidth of the CNF primal graph [9].5 Therefore, a CNF with a bounded
treewidth can easily be compiled into a deterministic DNNF.

We will next present two results regarding the effects of the BVA transforma-
tion on the primal treewidth of CNFs, whose proofs are delegated to Appendix A.
Our first result is the following guarantee.

Theorem 4. Let ∆ be a CNF whose primal treewidth is w. Let Σ be the CNF
obtained by applying the BVA transformation k times on CNF ∆. Then the
primal treewidth of Σ is at most w + k.

Hence, the BVA transformation would not affect the treewidth much in the
worst case, when applied constant times. Moreover, as we present next, the
BVA transformation could potentially reduce the treewidth from an unbounded
value to a bounded value.

Theorem 5. There exists a class of CNFs ∆n over n3 variables such that: (i)
the primal treewidth of ∆n is unbounded (i.e., at least n), and (ii) applying the
BVA transformation 2 times on ∆n can generate a CNF whose primal treewidth
is bounded (i.e., at most 2).

Theorem 5 implies that the BVA transformation can generate a CNF whose
compilation to deterministic DNNF is easy, whereas this cannot be identified
in the input CNF (as the treewidth is unbounded). Therefore, Algorithm 1 can
easily compile a DNNF in this case, if the BVA transformation is applied. Yet,
there is no guarantee on compiling a deterministic DNNF with existing com-
pilers, without applying the BVA transformation. Indeed, we will confirm this
empirically in our experiments, where the following class of CNFs ∆a

n will be
considered:

∧

1≤i,j,k≤n

Xi ∨ Yj ∨ Zk.

This class of CNFs has unbounded treewidth. On the other hand, the follow-
ing class of CNFs ∆b

n can be identified by the BVA transformation, which has
bounded treewidth.

(

∧

1≤i≤n

A ∨Xi

)

∧
(

∧

1≤j≤n

¬A ∨B ∨ Yj

)

∧
(

∧

1≤k≤n

¬B ∨ Zk

)

.

4 The definition of treewidth and some of its properties is delegated to Appendix A.
5 Primal graph is a CNF abstraction that represents the connection between the vari-
ables and clauses of the CNF. In particular, each vertex of the graph represents a
variable, and there is an edge between to vertices iff the corresponding variables
appear together in one of the CNF clauses.



Table 1. Experimental results on CNFs ∆a
n. c2d forget is our approach, compiling

DNNFs without determinism. All timings are in seconds.

c2d forget c2d

∆a
n #node #edge Time #node #edge Time

10 42 43 0.04 794 1,578 0.11

15 57 58 0.03 26,199 52,368 11.43

30 102 103 0.04 – – –

50 162 163 0.04 – – –

75 237 238 0.04 – – –

100 312 313 0.04 – – –

Note that we added two auxiliary variables A,B into CNF ∆a
n, and reduced the

number of clauses from n3 to 3n.

6 Experiments

In this section, we will empirically demonstrate the applicability of Algorithm 1
in compiling DNNFs, when coupled with the BVA transformation. In particular,
we compile CNFs into DNNF and deterministic DNNF. For the latter we use the
c2d compiler6, and for the former we use the same compiler after preprocessing
CNFs by the preprocessor Coprocessor7 and forgetting auxiliary variables after
the compilation.

We evaluated the mentioned systems on two different benchmarks. First, we
used the manually constructed class of CNFs ∆a

n (described in Section 5) for val-
ues of n ∈ {10, 15, 30, 50, 75, 100}. Second, we used some CNF encodings of wire
routing problems in the channels of field-programmable gate arrays (FPGA) [24].
The goal here is to decide if a routing configuration is possible. That is, given m
connections and k channels on an FPGA (denoted fpga m n), the satisfiability
of the CNF encoding would imply that the routing of m connections through k
channels is possible. Our experiments were performed on a 2.6GHz Intel Xeon
E5-2670 CPU with a 1 hour time limit and a memory limit of 8GB RAM.

Table 1 highlights the results on CNFs ∆a
n. According to this, our approach

(c2d forget) recognizes the tractability of the CNF instances by introducing
two auxiliary variables (as shown in Section 5), and thus it compiles the in-
stances quickly and compactly. On the other hand, the traditional approach
(c2d) performed poorly as it could not finish compilation after n = 20.

For the FPGA routing problems, we first present some statistics of the CNF
instances before and after the preprocessing in Table 2. We now highlight the

6 Available at http://reasoning.cs.ucla.edu/c2d.
7 Available at http://tools.computational-logic.org/content/riss.php.



Table 2. Some stats on CNF encodings of FPGA routing problems, before and after
preprocessing.

Before BVA After BVA

Instance #variable #clause #variable #clause #aux variable

fpga 10 8 120 448 158 290 38

fpga 10 9 135 549 174 330 39

fpga 12 8 144 560 188 356 44

fpga 12 9 162 684 207 405 45

fpga 12 11 198 968 269 503 71

fpga 12 12 216 1128 300 552 84

fpga 13 9 176 759 229 444 53

results in Table 3. Accordingly, our approach is clearly superior than the tra-
ditional approach as we can compile 5 instances which otherwise could not be
compiled. In the remaining 2 instances, not only our approach produces DNNFs
faster but also constructs more compact representations. Therefore, our approach
improves performance of DNNF compilation on these FPGA problems.

7 Related Work

The closest related work to ours is perhaps the work of [26], in which the authors
identified a subset of DNNF, called structured DNNF. The significance here is
that this subset supports a polynomial time conjoin operation [26], while gen-
eral DNNF do not support this (unless P = NP) [15]. Due to this operation,
one can compile CNFs incrementally in a bottom-up fashion into a structured
DNNF. That is, after representing each clause as a structured DNNF (which can
be done easily), one can conjoin clauses one by one until a structured DNNF is
compiled for the input CNF. Indeed, the compiled DNNF would not necessar-
ily be deterministic (as the conjoin operation does not enforce this). However,
building an efficient knowledge compiler based on this approach would require
intensive engineering effort and has not been accomplished yet. Our work, on the
other hand, leverages state-of-the-art knowledge compilers as it only depends on
constructing emf formulas. Due to this, one can quickly build an efficient DNNF
compiler, as we have done in this work. Moreover, DNNF could be exponentially
more succinct than its structured subset, which could make the mentioned work
more restrictive than our presented approach.

Another related work to ours is that of [19,20], in which the authors studied
the effects of preprocessing CNFs for model counting. They considered various
techniques from the literature and also introduced a few new ones, which re-
sulted in an efficient preprocessor. Their focus was on constructing CNFs that



Table 3. Experimental results on FPGA routing problems. c2d forget is our approach,
compiling DNNFs without determinism. All timings are in seconds.

c2d forget c2d

Instance #node #edge Time #node #edge Time

fpga 10 8 38,601 116,399 0.66 122,106 398,915 97.63

fpga 10 9 37,528 107,316 0.84 199,563 695,470 661.85

fpga 12 8 215,790 595,522 26.87 – – –

fpga 12 9 428,340 1,303,189 92.68 – – –

fpga 12 11 491,225 1,428,101 99.43 – – –

fpga 12 12 389,274 1,115,493 207.58 – – –

fpga 13 9 1,149,770 3,133,399 268.34 – – –

are either equivalent or preserving the model count. Our work is based on prepro-
cessing techniques that generate emf formulas, and targets compiling DNNFs,
as opposed to counting the models.

Finally, [2] studied the problem of projected model counting, in which the
goal is to compute the model count of a formula after forgetting certain vari-
ables. In their setting, auxiliary variables are named as “non-priority” variables.
The main distinction here is that we are not interested in the model counting
after forgetting variables. Because of this, interestingly enough, the forgetting
operation helps in our setting to obtain more compact representations.

8 Conclusion

In this work, we studied compiling DNNFs without enforcing determinism. We
presented a new methodology to relax determinism, which is based on intro-
ducing auxiliary variables and forgetting them from a deterministic DNNF. We
demonstrated that several existing techniques that introduce auxiliary variables
can be used in our framework, allowing us to exploit existing knowledge compil-
ers. We further showed that our new approach can lead to exponentially more
compact representations, and our experimental evaluation confirmed the appli-
cability of the new technique on certain benchmarks, when bounded variable
addition is employed to introduce auxiliary variables.

A Treewidth

In this section, we will define treewidth and present the proofs of Theorem 4 and
Theorem 5. We start with a definition of the primal treewidth of a CNF, where
we choose to use the one based on jointrees (e.g., [13]) among a number of ways.



A,B

X1, A · · · Xn, A Z1, A · · · Zn, A

· · ·Y1, A,B Yn, A,B

Fig. 3. A jointree for CNF ∆b
n.

A jointree for a CNF ∆ is a tree whose vertices are labeled with a subset of
variables of ∆ such that the following two conditions hold:

– For each clause γ of ∆, there is a vertex whose labels contain the variables
of γ;

– If a variable X appears in the labels of two vertices V1 and V2, then each
vertex on the path connecting V1 and V2 includes variable X in its labels.

The labels of a vertex of a jointree is called its cluster. The width of a jointree
is the size of its largest cluster minus 1. The primal treewidth of a CNF is the
smallest width attained by any of its jointrees. For instance, Fig. 3 depicts a
jointree for ∆b

n whose width is 2.

Proof of Theorem 4 Assume that we apply the BVA transformation on CNF
∆ once, and constructed the CNF ∆1. So, an auxiliary variable X is added
to CNF ∆1. Consider now the best jointree of ∆ (i.e., the one whose width is
w). If we add variable X to each label set of its vertices, the resulting tree will
clearly be a jointree for ∆1, with width w+1. So, the treewidth of ∆1 will be at
most w + 1. Now, if we apply the same idea after each application of the BVA
transformation, the treewidth will be at most w + k after the kth step.

Proof of Theorem 5 We first show that the treewidth of ∆a
n is unbounded

(i.e., at least 2n). In the primal graph of ∆a
n, each vertex will have a degree of

2n. According to a known result (see, e.g., [13]), this implies that the treewidth
of ∆a

n is no less than 2n.

We will now show that the treewidth of ∆b
n, which can be obtained from

∆a
n by the BVA transformation, is bounded (i.e., at most 2). Figure 3 depicts a

jointree for ∆b
n whose width is 2. Hence, the treewidth of ∆b

n is at most 2.
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