Tractability in Structured Probability Spaces

Arthur Choi Yujia Shen Adnan Darwiche
University of California University of California University of California
Los Angeles, CA 90095 Los Angeles, CA 90095 Los Angeles, CA 90095
aychoi@cs.ucla.edu yujias@cs.ucla.edu darwiche@cs.ucla.edu

Abstract

Recently, the Probabilistic Sentential Decision Diagram (PSDD) has been proposed
as a framework for systematically inducing and learning distributions over struc-
tured objects, including combinatorial objects such as permutations and rankings,
paths and matchings on a graph, etc. In this paper, we study the scalability of such
models in the context of representing and learning distributions over routes on
a map. In particular, we introduce the notion of a hierarchical route distribution
and show how they can be leveraged to construct tractable PSDDs over route
distributions, allowing them to scale to larger maps. We illustrate the utility of
our model empirically, in a route prediction task, showing how accuracy can be
increased significantly compared to Markov models.

1 Introduction

A structured probability space is one where members of the space correspond to structured or
combinatorial objects, such as permutations, partial rankings, or routes on a map [Choi et al.,|2015|
2016]|. Structured spaces have come into focus recently, given their large number of applications
and the lack of systematic methods for inducing and learning distributions over such spaces. Some
structured objects are supported by specialized distributions, e.g., the Mallows distribution over
permutations [Mallows) 1957, |Lu and Boutilier, | 2011]]. For other types of objects, one is basically
on their own as far developing representations and corresponding algorithms for inference and
learning. Standard techniques, such as probabilistic graphical models, are not suitable for these kind
of distributions since the constraints on such objects often lead to almost fully connected graphical
models, which are not amenable to inference or learning.

A framework known as PSDD was proposed recently for systematically inducing and learning
distributions over structured objects [Kisa et al., 2014albl [Shen et al., [2016| Liang et al., 2017].
According to this framework, one first describes members of the space using propositional logic,
then compiles these descriptions into Boolean circuits with specific properties (a circuit encodes a
structured space by evaluating to 1 precisely on inputs corresponding to members of the space). By
parameterizing these Boolean circuits, one can induce a tractable distribution over objects in the
structured space. The only domain specific investment in this framework corresponds to the encoding
of objects using propositional logic. Moreover, the only computational bottleneck in this framework
is the compilation of propositional logic descriptions to circuits with specific properties, which
are known as SDD circuits (for Sentential Decision Diagrams) [Darwichel 2011} Xue et al.| 2012].
Parameterized SDD circuits are known as a PSDDs (for Probabilistic SDDs) and have attractive
properties, including tractable inference and closed-form parameter estimation under complete data
[Kisa et al.| 2014al).

Most of the focus on PSDDs has been dedicated to showing how they can systematically induce and
learn distributions over various structured objects. Case studies have been reported relating to total
and partial rankings [Choi et al., [2015]], game traces, and routes on a map [(Choi et al., 2016|. The
scalability of these studies varied. For partial rankings, experiments have been reported for hundreds

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

A B C | Pr

0 0 01| 0.2 3

0 0 1 0.2

0 1 0| 0.0 4
0 1 1 0.1 1 C
1 0 0| 0.0

1 0 1103

1 1 01| 0.1 0 2

1 1 1 0.1 A B-A-B A-B-AB A B-A-B A-B-AB A B

(a) Distribution (b) SDD (c) PSDD (d) Vtree

Figure 1: A probability distribution and its SDD/PSDD representation. The numbers annotating
or-gates in (b) & (c) correspond to vtree node IDs in (d). While the circuit appears to be a tree, the
input variables are shared and hence the circuit is not a tree.

of items. However, for total rankings and routes, the experimental studies were more of a proof of
concept, showing for example how the learned PSDD distributions can be superior to ones learned
used specialized or baseline methods [[Choi et al., 2015].

In this paper, we study a particular structured space, while focusing on computational considerations.
The space we consider is that of routes on a map, leading to what we call route distributions. These
distributions are of great practical importance as they can be used to estimate traffic jams, predict
specific routes, and even project the impact of interventions, such as closing certain routes on a map.

The main contribution on this front is the notion of hierarchical simple-route distributions, which
correspond to a hierarchical map representation that forces routes to be simple (no loops) at different
levels of the hierarchy. We show in particular how this advance leads to the notion of hierarchical
PSDDs, allowing one to control the size of component PSDDs by introducing more levels of the
hierarchy. This guarantees a representation of polynomial size, but at the expense of losing exactness
on some route queries. Not only does this advance the state-of-the-art for learning distributions over
routes, but it also suggests a technique that can potentially be applied in other contexts as well.

This paper is structured as follows. In Section 2, we review SDD circuits and PSDDs, and in Section 3
we turn to routes as a structured space and their corresponding distributions. Hierarchical distributions
are treated in Section 4, with complexity and correctness guarantees. In Section 5, we discuss new
techniques for encoding and compiling a PSDD in a hierarchy. We present empirical results in
Section 6, and finally conclude with some remarks in Section 7.

2 Probabilistic SDDs

PSDDs are a class of tractable probabilistic models, which were originally motivated by the need
to represent probability distributions Pr(X) with many instantiations x attaining zero probability,
i.e., a structured space [Kisa et al., 20144} (Choi et al., 2015, 2016]. Consider the distribution Pr(X)
in Figure for an example. To construct a PSDD for such a distribution, we perform the two
following steps. We first construct a special Boolean circuit that captures the zero entries in the
following sense; see Figure For each instantiation x, the circuit evaluates to O at instantiation x
iff Pr(x) = 0. We then parameterize this Boolean circuit by including a local distribution on the
inputs of each or-gate; see Figure Such parameters are often learned from data.

The Boolean circuit underlying a PSDD is known as a Sentential Decision Diagram (SDD) [Darwiche)
2011]]. These circuits satisfy specific syntactic and semantic properties based on a binary tree, called a
viree, whose leaves correspond to variables; see Figure[I(d)] SDD circuits alternate between or-gates
and and-gates. Their and-gates have two inputs each and satisfy a property called decomposability:
each input depends on a different set of variables. The or-gates satisfy a property called determinism:
at most one input will be high under any circuit input. The role of the vtree is (roughly) to determine
which variables will appear as inputs for gates.

Figure 2: Two paths connecting s and ¢ in a graph.

A PSDD is obtained by including a distribution oy, ..., a, on the inputs of each or-gate; see
again Figure The semantics of PSDDs are given in [Kisa et al.| 2014a]E] The PSDD is a
complete and canonical representation of probability distributions. That is, PSDDs can represent
any distribution, and there is a unique PSDD for that distribution (under some conditions). A variety
of probabilistic queries are tractable on PSDDs, including that of computing the probability of a
partial variable instantiation and the most likely instantiation. Moreover, the maximum likelihood
parameter estimates of a PSDD are unique given complete data, and these parameters can be computed
efficiently using closed-form estimates; see [Kisa et al.||2014a]| for details. Finally, PSDDs have been
used to learn distributions over combinatorial objects, including rankings and permutations [Choi
et al.,|2015]], as well as paths and games [Choi et al.||2016]. In these applications, the Boolean circuit
underlying a PSDD captures variable instantiations that correspond to combinatorial objects, while
its parameterization induces a distribution over these objects.

As a concrete example, PSDDs were used to induce distributions over the permutations of n items as
follows. We have a variable X;; for each 4, j € {1,...,n} denoting that item ¢ is at position j in the
permutation. Clearly, not all instantiations of these variables correspond to (valid) permutations. An
SDD circuit is then constructed, which outputs 1 iff the corresponding input corresponds to a valid
permutation. Each parameterization of this SDD circuit leads to a distribution on permutations and
these parameterizations can be learned from data; see |Choi et al.|[2015]].

3 Route Distributions

We consider now the structured space of simple routes on a map, which correspond to connected and
loop-free paths on a graph. Our ultimate goal here is to learn distributions over simple routes and use
them for reasoning about traffic, but we first discuss how to represent such distributions.

Consider a map in the form of an undirected graph GG and let X be a set of binary variables, which
are in one-to-one correspondence with the edges of graph G. For example, the graph in Figure 2] will
lead to 12 binary variables, one for each edge in the graph. A variable instantiation x will then be
interpreted as a set of edges in graph G. In particular, instantiation x includes edge e iff the edge
variable is set to true in instantiation x. As such, some of the instantiations x will correspond to
routes in G and others will notE] In Figure the left route corresponds to a variable instantiation in
which 4 variables are set to true, while all other 8 variables are set to false.

Let ag be a Boolean formula obtained by disjoining all instantiations x that correspond to routes
in graph G. A probability distribution Pr(X) is called a route distribution iff it assigns a zero
probability to every instantiation x that does not correspond to a route, i.e., Pr(x) = 0if x |~ ag.

One can systematically induce a route distribution over graph G by simply compiling the Boolean
formula o into an SDD, and then parameterizing the SDD to obtain a PSDD. This approach was
actually proposed in|Chot et al.|[2016]], where empirical results were shown for routes on grids of
size at most 8 nodes by 8 nodes.

Let us now turn to simple routes, which are routes that do not contain loops. The path on the left of
Figure[2]is simple, while the one on the right is not simple. Among the instantiations x corresponding
to routes, some are simple routes and others are not. Let S be a Boolean formula obtained by
disjoining all instantiations x that correspond to simple routes. We then have 8¢ = ag.

"Let x be an instantiation of PSDD variables. If the SDD circuit outputs 0 at input x, then Pr(x) = 0.
Otherwise, traverse the circuit top-down, visiting the (unique) high input of each visited or-node, and all inputs
of each visited and-node. Then Pr(x) is the product of parameters visited during the traversal process.

2 An instantiation x corresponds to a route iff the edges it mentions positively can be ordered as a sequence
(n17n2)7 (TlQ,ﬂg), (’I’L3, 7'L4), SRR (nk—hnk)'

Figure 3: The set of all s-t paths corresponds to concatenating edge (s,a) with all a-¢ paths and
concatenating edge (s, b) with all b-¢ paths.

Figure 4: Partitioning a map into three regions (intersections are nodes of the graph and roads between
intersections are edges of the graph). Regions have black boundaries. Red edges cross regions and
blue edges are contained within a region.

A simple-route distribution Pr(X) is a distribution such that Pr(x) = 0if x [~ S¢. Clearly, simple-
route distributions are a subclass of route distributions. One can also systematically represent and
learn simple-route distributions using PSDDs. In this case, one must compile the Boolean formula
B¢ into an SDD whose parameters are then learned from data. Figure [3]shows one way to encode
this Boolean formula (recursively), as discussed in|Choi et al.|[2016]. More efficient approaches are
known, based on Knuth’s Simpath algorithm [Knuth| 2009, |[Minato} 2013} Nishino et al.,{2017]].

To give a sense of current scalability when compiling simple-routes into SDD circuits, |[Nishino et al.
[2017] reported results on graphs with as many as 100 nodes and 140 edges for a single source and
destination pair. To put these results in perspective, we point out that we are not aware of how one
may obtain similar results using standard probabilistic graphical model—for example, a Bayesian or
a Markov network. Imposing complex constraints, such as the simple-route constraint, typically lead
to highly-connected networks with high treewidthsﬂ

While PSDD scalability is favorable in this case—when compared to probabilistic graphical models—
our goal is to handle problems that are significantly larger in scale. The classical direction for
achieving this goal is to advance current circuit compilation technology, which would allow us
to compile propositional logic descriptions that cannot be compiled today. We next propose an
alternative, yet a complementary direction, which is based on the notion of hierarchical maps and the
corresponding notion of hierarchical distributions.

4 Hierarchical Route Distributions

A route distribution can be represented hierarchically if one imposes a hierarchy on the underlying
map, leading to a representation that is polynomial in size if one includes enough levels in the
hierarchy. Under some conditions which we discuss later, the hierarchical representation can also
support inference in time polynomial in its size. The penalty incurred due to this hierarchical
representation is a loss of exactness on some queries, which can be controlled as we discuss later.

3If we can represent a uniform distribution of simple routes on a map, then we can count the number of
simple paths on a graph, which is a #P-complete problem [Valiant, |1979]]. Hence, we do not in general expect a
Bayesian or Markov network for such a distribution to have bounded treewidth.

We start by discussing hierarchical maps, where a map is represented by a graph G as discussed
earlier. Let Ny,...,N,, be a partitioning of the nodes in graph G and let us call each N; a region.
These regions partition edges X into B, Ay, ..., A,,, where B are edges that cross regions and A;
are edges inside region IN;. Consider the following decomposition for distributions over routes:

Pr(x) = Pr(b) H Pr(a; | by). (1)

We refer to such a distribution as a decomposable route distributionE] Here, B, are edges that cross
out of region N;, and b, a; and b; are partial instantiations that are compatible with instantiation x.

To discuss the main insight behind this hierarchical representation, we need to first define a graph
Gp that is obtained from G by aggregating each region N, into a single node. We also need to
define subgraphs G5, obtained from G by keeping only edges A; and the edges set positively in
instantiation b; (the positive edges of b; denote the edges used to enter and exit the region IN;).

Hence, graph G is an abstraction of graph G, while each graph Gf,, is a subset of G. Moreover, one
can think of each subgraph G5, as a local map (for region ¢) together with a particular set of edges
that connects it to other regions. We can now state the following key observations. The distribution
Pr(B) is a route distribution for the aggregated graph Gg. Moreover, each distribution Pr(A; | b;)
is a distribution over (sets of) routes for subgraph G, (in general, we may enter and exit a region
multiple times).

Hence, we are able to represent the route distribution Pr(X) using a set of smaller route distributions.
One of these distributions Pr(B) captures routes across regions. The others, Pr(A; | b;), capture
routes that are within a region. The count of these smaller distributions is 1 + > | 2/B:l, which
is exponential in the size of variable sets By,...,B,. We will later see that this count can be
polynomial for some simple-route distributions.

We used o to represent the instantiations corresponding to routes, and S¢ to represent the instantia-
tions corresponding to simple routes, with S |= . Some of these simple routes are also simple
with respect to the aggregated graph Gy (i.e., they will not visit a region IN; more than once), while
other simple routes are not simple with respect to graph Gg. Let v be the Boolean expression
obtained by disjoining instantiations x that correspond to simple routes that are also simple (and
non-empty) with respect to graph GBE] We then have v = B¢ |E a¢ and the following result.

Theorem 1 Consider graphs G, Gg and Gy, as indicated above. Let Pr(B) be a simple-route
distribution for graph Gy, and Pr(A; | b;) be a simple-route distribution for graph Gy,. Then the
resulting distribution Pr(X), as defined by Equation is a simple-route distribution for graph G.

This theorem will not hold if Pr(B) were not a simple-route distribution for graph Gg. That is,
having each distribution Pr(A; | b;) be a simple-route distribution for graph Gy, is not sufficient
for the hierarchical distribution to be a simple-route distribution for G.

Hierarchical distributions that satisfy the conditions of Theorem [I] will be called hierarchical simple-
route distributions.

Theorem 2 Let Pr(X) be a hierarchical simple-route distribution for graph G and let g be as
indicated above. We then have Pr(x) = 0if x - 7¢.

This means that the distribution will assign a zero probability to all instantiations x = B¢ A =Yg
These instantiations correspond to routes that are simple for graph G but not simple for graph
GB. Hence, simple-route hierarchical distributions correspond to a subclass of the simple-route
distributions for graph G. This subclass, however, is interesting for the following reason.

Theorem 3 Consider a hierarchical simple-route distribution Pr(X) and let x be an instantiation
that sets more than two variables in some B; to true. Then Pr(x) = 0.

*Note that not all route distributions can be decomposed as such: the decomposition implies the independence
of routes on edges A; given the route on edges B.

3For most practical cases, the independence assumption of the hierarchical decomposition will dictate that
routes on G be non-empty. An empty route on G corresponds to a route contained within a single region,
which we can accommodate using a route distribution for the single region.

Basically, a route that is simple for graph Gg cannot enter and leave a region more than once.

Corollary 1 The hierarchical simple-route distribution Pr(X) can be constructed from distribution
Pr(B) and distributions Pr(A; | b;) for which b, sets no more than two variables to true.

Corollary 2 The hierarchical simple-route distribution Pr(X) can be represented by a data structure
whose size is O(2/Bl 4 377 214il|B,|?).

If we choose our regions N; to be small enough, then 2/ can be treated as a constant. A tabular
representation of the simple-route distribution Pr(B) has size O(2!Bl). If representing this table is
practical, then inference is also tractable (via variable elimination). However, this distribution can
itself be represented by a simple-route hierarchical distribution. This process can continue until we
reach a simple-route distribution that admits an efficient representation. We can therefore obtain a
final representation which is polynomial in the number of variables X and, hence, polynomial in the
size of graph G (however, inference may no longer be tractable).

In our approach, we represent the distributions Pr(B) and Pr(A; | b;) using PSDDs. This allows
these distributions to be over a relatively large number of variables (on the order of hundreds), which
would not be feasible if we used more classical representations, such as graphical models.

This hierarchical representation, which is both small and admits polytime inference, is an approxima-
tion as shown by the following theorem.

Theorem 4 Consider a decomposable route distribution Pr(X) (as in Equation , the correspond-
ing hierarchical simple-route distribution Pr(X | vq), and a query o over variables X. The error of
the query Pr(a | vq), relative to Pr(a), is:
Pr(a] 7¢) - Pr(a) Pr(a m)}
Pr(a|e) Pr(a|ve)
where kg = Ba N —yg denotes simple-routes in G that are not simple routes in Gg.

= Pr(xg) {1 -

The conditions of this theorem basically require the two distributions to agree on the relative proba-
bilities of simple routes that are also simple in Gg. Note also that Pr(yg) + Pr(xq) = 1. Hence, if
Pr(v¢) = 1, then we expect the hierarchical distribution to be accurate. This happens when most
simple routes are also simple in G, a condition that may be met by a careful choice of map regionsE]
At one extreme, if each region has at most two edges crossing out of it, then Pr(vg) = 1 and the
hierarchical distribution is exact.

Hierarchical simple-route distributions will assign a zero probability to routes x that are simple in G
but not in Gg. However, for a mild condition on the hierarchy, we can guarantee that if there is a
simple route between nodes s and ¢ in G, there is also a simple route that is simple for Gg.

Proposition 1 If the subgraphs Gy, are connected, then there is a simple route connecting s and t
in G iff there is a simple route connecting s and t in G that is also a simple route for Gg.

Under this condition, hierarchical simple-route distributions will provide an approximation for any
source/destination query.

One can compute marginal and MAP queries in polytime on a hierarchical distribution, assuming
that one can (in polytime) multiply and sum-out variables from its component distributions—we
basically need to sum-out variables B; from each Pr(A;|b;), then multiply the results with Pr(B).
In our experiments, however, we follow a more direct approach to inference, in which we multiply all
component distributions (PSDDs), to yield one PSDD for the hierarchical distribution. This is not
always guaranteed to be efficient, but leads to a much simpler implementation.

5 Encoding and Compiling Routes

Recall that constructing a PSDD involves two steps: constructing an SDD that represents the
structured space, and then parameterizing the SDD. In this section, we discuss how to construct

SIf o is independent of v (and hence « is independent of k), then the approximation is also exact. At this
point, however, we do not know of an intuitive characterization of queries « that satisfy this property.

Cait Tower

Museum @

thedral

InterContinenta
© iopkins San Fry

WA25 Market Street Garage
Dragon’s Gatd@ %

S|

a

Figure 5: Partitioning of the area around the Financial District of San Francisco, into regions.

an SDD that represents the structured space of hierarchical, simple routes. Subsequently, in our
experiments, we shall learn the parameters of the PSDD from data.

We first consider the space of simple routes that are not necessarily hierarchical. Note here that an
SDD of a Boolean formula can be constructed bottom-up, starting with elementary SDDs representing
literals and constants, and then constructing more complex SDDs from them using conjoin, disjoin,
and negation operators implemented by an SDD library. This approach can be used to construct an
SDD that encodes simple routes, using the idea from Figure [3] which is discussed in more detail in
Choi et al.|[2016]. The GRAPHILLION library can be used to construct a Zero-suppressed Decision
Diagram (ZDD) representing all simple routes for a given source/destination pair [[noue et al.,2014].
The ZDDs can then be disjoined across all source and destination pairs, and then converted to an
SDD. An even more efficient algorithm was proposed recently for compiling simple routes to ZSDDs,
which we used in our experiments [Nishino et al., 2016, [2017]].

Consider now the space of hierarchical simple routes induced by regions Ny, ..., N,, of graph
@, with a corresponding partition of edges into B, A1,..., A,,, as discussed earlier. To compile
an SDD for the hierarchical, simple routes of G, we first compile an SDD representing the simple
routes over each region. That is, for each region N;, we take the graph induced by the edges A;
and B;, and compile an SDD representing all its simple routes (as described above). Similarly, we
compile an SDD representing the simple routes of the abstracted graph G. At this point, we have a
hierarchical, simple-route distribution in which components are represented as PSDDs and that we
can do inference on using multiplication and summing-out as discussed earlier.

In our experiments, however, we take the extra step of multiplying all the m + 1 component PSDDs,
to yield a single PSDD over the structured space of hierarchical, simple routes. This simplifies
inference and learning as we can now use the linear-time inference and learning procedures known
for PSDDs [Kisa et al., 2014a]ﬂ

6 Experimental Results

In our experiments, we considered a dataset consisting of GPS data collected from taxicab routes
in San Francisco We acquired public map data from http://www.openstreetmap.org/, i.e.,
the undirected graph representing the streets (edges) and intersections (nodes) of San Francisco.
We projected the GPS data onto the San Francisco graph using the map-matching API of the
graphhopper packageﬂ For more on map-matching, see, e.g., [Froehlich and Krumm) 2008].

"In our experiments, we use an additional simplification. Recall from Footnotethat if b; sets all variables
negatively (i.e., no edges), then G',, is empty. We now allow the case that G, contains all edges A; (by disjoing
the corresponding SDDs). Intuitively, this optionally allows a simple path to exist strictly in region R;. While
the global SDD no longer strictly represents hierarchical simple paths (it may allow sets of independent simple
paths at once), we do not have to treat simple paths that are confined to a single region as a special case.

8 Available at http: //crawdad.org/epf1l/mobility/20090224/,

° Available at https : //www . graphhopper . com.

http://www.openstreetmap.org/
http://crawdad.org/epfl/mobility/20090224/
https://www.graphhopper.com

To partition the graph of San Francisco into regions, we obtained a publicly available dataset of
traffic analysis zones, produced by the California Metropolitan Transportation CommissionEG] These
zones correspond to small area neighborhoods and communities of the San Francisco Bay Area. To
facilitate the compilation of regions into SDDs, we further split these zones in half until each region
was compilable (horizontally if the region was taller than it was wide, or vertically otherwise). Finally,
we restricted our attention to areas around the Financial District of San Francisco, which we were
able to compile into a hierarchical distribution using one level of abstraction; see Figure[5]

Given the routes over the graph of San Francisco, we first filtered out any routes that did not
correspond to a simple path on the San Francisco graph. We next took all routes that were contained
solely in the region under consideration. We further took any sub-route that passed through this
region, as a route for our region. In total, we were left with 87,032 simple routes. We used half for
training, and the other half for testing. For the training set, we also removed all simple routes that
were not simple in the hierarchy. We did not remove such routes for the purposes of testing. We
first compiled an SDD of hierarchical simple-routes over the region, leading to an SDD with 62,933
nodes, and 152,140 free parameters. We then learned the parameters of our PSDD from the training
set, assuming Laplace smoothing [Kisa et al., 2014al.

We considered a route prediction task where we predict the next road segment, given the route taken
so far; see, e.g., [Letchner et al., [2006L Simmons et al., 2006} Krumm| 2008]]. That is, for each route
of the testing set, we consider one edge at a time and try to predict the next edge, given the edges
observed so far. We consider three approaches: (1) a naive baseline that uses the relative frequency of
edges to predict the next edge, while discounting the last-used edge, (2) a Markov model that predicts,
given the last-used edge, what edge would be the most likely one to be traversed next, (3) a PSDD
given the current partial route as well as the destination. The last assumption is often the situation in
reality, given the ubiquity of GPS routing applications on mobile phones. We remark that Markov
models and HMMs are less amenable to accepting a destination as an observation.

For the PSDD, the current partial route and the last edge to be used (i.e., the destination) are given as
evidence e. The evidence for an endpoint (source or destination) is the edge used (set positively),
where the remaining edges are assumed to be unused (and set negatively). For internal nodes on
a route, two edges (entering and exiting a node) are set positively and the remaining edges are
set negatively in the evidence. To predict the next edge on a partial route, we consider the edges
X incident to the current node and compute their marginal probabilities Pr(X | e) according to
the PSDD. The probability of the last edge used in the partial route is 1, which we ignore. The
remaining edges have a probability that sums to a value less than one; one minus this probability is
the probability that the route ends at the current node. Among all these options, we pick the most
likely as our prediction (either navigate to a new edge, or stop).

Note that for the purposes of training our PSDD, we removed those simple routes that were not simple
on the hierarchy. When testing, such routes have a probability of zero on our PSDD. Moreover, partial
routes may also have zero probability, if they cannot be extended to a hierarchical simple-route. In
this case, we cannot compute the marginals Pr(X | e). Hence, we simply unset our evidence, one
edge at a time in the order that we set them (first unsetting negative edges before positive edges),
until the evidence becomes consistent again, relative to the PSDD.

We summarize the relative accuracies over 43,516 total testing routes:

model | naive Markov PSDD
accuracy ‘ 0.736 (326,388/443,481) 0.820 (363,536/443,481) 0.931 (412,958/443,481)

For each model, we report the accuracy averaged over all steps on all paths, ignoring those steps
where the prediction is trivial (i.e., there is only one edge or no edge available to be used next). We
find that the PSDD is much more accurate at predicting the next road segment, compared to the
Markov model and the naive baseline. Indeed, this could be expected as (1) the PSDD uses the history
of the route so far, and perhaps more importantly, (2) it utilizes knowledge of the destination.

10 Available at https://purl.stanford.edu/fv911pc4805|

https://purl.stanford.edu/fv911pc4805

7 Conclusion

In this paper, we considered Probabilistic Sentential Decision Diagrams (PSDDs) representing
distributions over routes on a map, or equivalently, simple paths on a graph. We considered a
hierarchical approximation of simple-route distributions, and examined its relative tractability and
its accuracy. We showed how this perspective can be leveraged to represent and learn more scalable
PSDDs for simple-route distributions. In a route prediction task, we showed that PSDDs can take
advantage of the available observations, such as the route taken so far and the destination of a trip, to
make more accurate predictions.

Acknowledgments

We greatly thank Noah Hadfield-Menell and Andy Shih for their contributions, and Eunice Chen for
helpful discussions. This work has been partially supported by NSF grant #IIS-1514253, ONR grant
#N00014-15-1-2339 and DARPA XAI grant #N66001-17-2-4032.

References

A. Choi, G. Van den Broeck, and A. Darwiche. Tractable learning for structured probability spaces: A case
study in learning preference distributions. In Proceedings of IJCAI, 2015.

A. Choi, N. Tavabi, and A. Darwiche. Structured features in naive Bayes classification. In Proceedings of the
30th AAAI Conference on Artificial Intelligence (AAAI), 2016.

A. Darwiche. SDD: A new canonical representation of propositional knowledge bases. In Proceedings of IJCAI,
pages 819-826, 2011.

J. Froehlich and J. Krumm. Route prediction from trip observations. Technical report, SAE Technical Paper,
2008.

T. Inoue, H. Iwashita, J. Kawahara, and S.-i. Minato. Graphillion: software library for very large sets of labeled
graphs. International Journal on Software Tools for Technology Transfer, pages 1-10, 2014.

D. Kisa, G. Van den Broeck, A. Choi, and A. Darwiche. Probabilistic sentential decision diagrams. In KR,
2014a.

D. Kisa, G. Van den Broeck, A. Choi, and A. Darwiche. Probabilistic sentential decision diagrams: Learning
with massive logical constraints. In ICML Workshop on Learning Tractable Probabilistic Models (LTPM),
2014b.

D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary
Decision Diagrams. Addison-Wesley Professional, 2009.

J. Krumm. A Markov model for driver turn prediction. Technical report, SAE Technical Paper, 2008.

J. Letchner, J. Krumm, and E. Horvitz. Trip router with individualized preferences (TRIP): incorporating
personalization into route planning. In AAAI, pages 1795-1800, 2006.

Y. Liang, J. Bekker, and G. Van den Broeck. Learning the structure of probabilistic sentential decision diagrams.
In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

T. Lu and C. Boutilier. Learning Mallows models with pairwise preferences. In Proceedings of ICML, pages
145-152, 2011.

C. L. Mallows. Non-null ranking models. Biometrika, 1957.

S. Minato. Techniques of BDD/ZDD: brief history and recent activity. IEICE Transactions, 96-D(7):1419-1429,
2013.

M. Nishino, N. Yasuda, S. Minato, and M. Nagata. Zero-suppressed sentential decision diagrams. In AAAIL
pages 1058-1066, 2016.

M. Nishino, N. Yasuda, S. Minato, and M. Nagata. Compiling graph substructures into sentential decision
diagrams. In Proceedings of the Thirty-First Conference on Artificial Intelligence (AAAI), 2017.

Y. Shen, A. Choi, and A. Darwiche. Tractable operations for arithmetic circuits of probabilistic models. In
Advances in Neural Information Processing Systems 29 (NIPS), 2016.

R. Simmons, B. Browning, Y. Zhang, and V. Sadekar. Learning to predict driver route and destination intent. In
Intelligent Transportation Systems Conference, pages 127-132, 2006.

L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput., 8(3):410-421, 1979.

Y. Xue, A. Choi, and A. Darwiche. Basing decisions on sentences in decision diagrams. In AAAI pages 842-849,
2012.

	Introduction
	Probabilistic SDDs
	Route Distributions
	Hierarchical Route Distributions
	Encoding and Compiling Routes
	Experimental Results
	Conclusion

