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Abstract

The space of Bayesian network structures is prohibitively large and hence nu-

merous techniques have been developed to prune this search space, but without

eliminating the optimal structure. Such techniques are critical for structure

learning to scale to larger datasets with more variables. Prior works exploited

properties of the MDL score to prune away large regions of the search space

that can be safely ignored by optimal structure learning algorithms. In this

paper, we propose new techniques for pruning regions of the search space that

can be safely ignored by algorithms that enumerate the k-best Bayesian net-

work structures. Empirically, these techniques allow a state-of-the-art structure

enumeration algorithm to scale to datasets with significantly more variables.
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1. Introduction

Learning the structure of a Bayesian network is a fundamental problem in

artificial intelligence and machine learning. In particular, we seek a structure,

a directed acyclic graph (DAG), that best explains a given dataset (Darwiche,

2009; Koller & Friedman, 2009; Murphy, 2012). In practice, learning a single5

optimal DAG may not be sufficient, especially when the dataset has few exam-

ples and is otherwise noisy. Thus, we are interested in discovering other likely

DAGs, and not just the best one.

Recently, a number of algorithms have been proposed to enumerate the k-

most likely DAGs from a given dataset (Tian et al., 2010; Cussens et al., 2013;10
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Chen & Tian, 2014; Chen et al., 2015, 2016). For example, using dynamic pro-

gramming, we can enumerate the 100-best networks for real-world datasets with

17 variables (Tian et al., 2010). Using heuristic search methods, we can enu-

merate the 1, 000-best networks for real-world datasets with 23 variables, which

is the current state-of-the-art (Chen et al., 2015). In this paper, we show how to15

extend the reach of such systems further, allowing us to enumerate structures

for datasets with 29 variables. Each of these advances is quite significant, when

we consider how quickly the search space grows, as we increase the number of

variables.1

More specifically, we propose techniques that can greatly reduce the search20

space of Bayesian network structures, by safely eliminating regions of the search

space that do not contain any of the k-most likely DAGs. By exploiting prop-

erties of the popular MDL score for Bayesian networks, we identify an upper

bound on the number of parents that a node can have, in any of the k-best

structures. Any structure enumeration algorithm that can incorporate such a25

bound (including all of the aforementioned approaches) can benefit from the

techniques that we propose. In fact, our bounds generalize those proposed for

the problem of learning a single optimal structure (Suzuki, 1996; Tian, 2000;

De Campos & Ji, 2011). Such bounds are broadly used in the literature, and

the scalability of modern structure learning algorithms depend critically on such30

bounds.

This paper is organized as follows. In Section 2, we review score-based

structure learning and the MDL score. In Section 3, we propose our techniques

for pruning the search space for the purposes of enumerating the k-best Bayesian

network structures. We evaluate our approach empirically in Section 4, and35

conclude in Section 5. Proofs are provided in the Appendix.

1For n variables, there are O(n! · 2
(
n
2

)
) BN structures. More precisely, for n = 17, 23

and 29, there are 6.27 · 1052, 6.97 · 1094 and 2.51 · 10148 structures, respectively; for more on

counting Bayesian network structures (and labeled DAGs), see https://oeis.org/A003024.
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2. Technical Preliminaries and Related Work

In this section, we first review the score-based structure learning of Bayesian

networks, and the problem of enumerating the k-best structures. We then review

the MDL score, and prior works that have exploited the MDL score to prune40

the search space of Bayesian network structures.

We use upper case letters (X) to denote variables and lower case letters (x)

to denote their values. Variable sets are denoted by bold-face upper case letters

(X) and their instantiations by bold-face lower case letters (x). We use |X| to

denote the number of values of a discrete variable X, and |X| to denote the45

number of variables in a set X. Generally, we will use X to denote a variable in

a Bayesian network and U to denote its parents. We refer to a variable X and

its parents U as a family, which we denote by XU.

2.1. Score-Based Structure Learning

Score-based approaches for learning the structure of a Bayesian network

are based on searching for a DAG that minimizes a given scoring metric, which

generally rates the quality of a DAG based (in part) on how well a given structure

fits a given dataset D (which is typically complete). Structure scores often

decompose into a sum of local scores, over the families XU of the DAG:

score(G | D) =
∑
XU

score(XU | D). (1)

For example, MDL and BDeu scores are decomposable (note that we negate50

such scores as needed to obtain minimization problems). For more on score-

based structure learning, see, e.g., (Darwiche, 2009; Koller & Friedman, 2009;

Murphy, 2012).

2.2. Learning the k-Best Structures

In the problem of enumerating the k-best DAGs, we simply want to find55

k different DAGs whose scores are the smallest. Enumerating such DAGs can

provide a number of insights about a dataset, beyond learning just a single
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best DAG. First, the single best DAG may be (Markov) equivalent to other

equally good DAGs, or otherwise, there may be other DAGs with comparable

scores. In either case, we would like to be aware of all such DAGs. Next, if60

the score that we use corresponds to the probability of a DAG given the data,

then enumerating the k-best DAGs gives us a (truncated) view of the posterior

over DAGs. If the aggregate probability of the k-best DAGs consumes most of

the available probability, then we can further say that the remaining DAGs are

unlikely to be relevant. By enumerating the k-best DAGs, we can also look for65

the structural features that are prominent in the most likely DAGs, as a more

tractable approach to Bayesian model averaging; see, e.g., (Tian et al., 2010;

Chen & Tian, 2014).

For a concrete example, consider Figure 1 where we have enumerated all 25

DAGs learned from a datasetD over 3 variables: B, D and L. The datasetD was70

simulated from a known Bayesian network, and hence we know the ground-truth

structure: B → D → L. First, each DAG has been ranked by its probability

(using its normalized MDL score, which corresponds to the BIC score). DAGs

with the same rank and score are grouped together (in this case, each set corre-

sponds to a Markov equivalence class). We note that the top set of two DAGs75

together have 66.28% probability, although there is a second set of three DAGs

which are also relatively likely at 33.60% probability. The remaining 20 DAGs

(including the ground truth DAG B → D → L) are relatively unlikely, given

the dataset D. Note that our dataset D is relatively small in this case, with

only 100 examples. In Figure 2, we enumerated all DAGs from a dataset D over80

1,000 examples. Here, the ground-truth DAG is now among the 3 most likely

DAGs, which together have 98.01% probability. In Figure 1, there is a 99.9990%

probability that there is an edge connecting variables D and L; in Figure 2, the

probability that there is no such edge is essentially negligible.

One of the first approaches for enumerating the k-best DAGs was based on85

dynamic programming (DP) (Tian et al., 2010), and was an extension of a DP-

based approach for learning a single optimal DAG (Koivisto & Sood, 2004; Singh

& Moore, 2005; Silander & Myllymäki, 2006). Another approach encodes the
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rank score DAG

1 0.3314
B D L

– 0.3314
B D L

3 0.1120
B D L

– 0.1120
B D L

– 0.1120
B D L

6 0.0012
B D L

7 3.35 · 10−5 B D L

– 3.35 · 10−5 B D L

– 3.35 · 10−5 B D L

10 6.02 · 10−6 B D L

11 2.03 · 10−6
B D L

– 2.03 · 10−6
B D L

13 3.58 · 10−7 B D L

rank score DAG

14 1.21 · 10−7
B D L

– 1.21 · 10−7
B D L

– 1.21 · 10−7
B D L

– 1.21 · 10−7
B D L

– 1.21 · 10−7
B D L

– 1.21 · 10−7
B D L

20 6.09 · 10−10 B D L

– 6.09 · 10−10 B D L

22 2.06 · 10−10
B D L

– 2.06 · 10−10
B D L

– 2.06 · 10−10
B D L

25 2.20 · 10−12
B D L

Figure 1: All 25 Bayesian network structures over 3 variables (B, D and L), learned from a

small dataset over 100 examples, and sorted by probability. The ground-truth structure is

B → D → L, taken from the child Bayesian network (Spiegelhalter & Cowell, 1992). A dash

(–) indicates that a DAG has the same rank and score as the DAG above it.
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rank score DAG

1 0.3267
B D L

– 0.3267
B D L

– 0.3267
B D L

4 0.0090
B D L

– 0.0090
B D L

6 0.0007
B D L

– 0.0007
B D L

– 0.0007
B D L

9 1.78 · 10−7 B D L

10 1.29 · 10−8
B D L

– 1.29 · 10−8
B D L

– 1.29 · 10−8
B D L

– 1.29 · 10−8
B D L

– 1.29 · 10−8
B D L

– 1.29 · 10−8
B D L

rank score DAG

16 3.55 · 10−10
B D L

17 1.72 · 10−114 B D L

– 1.72 · 10−114 B D L

19 1.25 · 10−115
B D L

– 1.25 · 10−115
B D L

– 1.25 · 10−115
B D L

22 4.74 · 10−116 B D L

23 3.43 · 10−117
B D L

– 3.43 · 10−117
B D L

25 6.81 · 10−122
B D L

Figure 2: All 25 Bayesian network structures over 3 variables (B, D and L), learned from

a dataset over 1,000 examples, and sorted by probability. The ground-truth structure is

B → D → L, taken from the child Bayesian network (Spiegelhalter & Cowell, 1992). A dash

(–) indicates that a DAG has the same rank and score as the DAG above it.
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enumeration problem as a series of integer linear programming (ILP) problems

(Cussens et al., 2013). The first ILP problem encodes the problem of finding a90

single optimal DAG (Jaakkola et al., 2010; Cussens, 2011; Cussens et al., 2013).

This solution is then eliminated by adding a constraint to the ILP problem.

The solution of the new ILP problem gives us the second best DAG. We repeat

this process until each of the k-best DAGs is enumerated.

The current state-of-the-art for enumerating the k-best DAGs is based on95

heuristic search methods such as A*, which was previously observed to be orders-

of-magnitude more efficient than the above approaches based on DP and ILP

(Chen et al., 2015). It is based on navigating a seemingly intractable search

space over all DAGs. The complexity of this search can be mitigated, however,

by exploiting an oracle that can find a single optimal DAG. This search space,100

called the BN graph, can also be used to learn Bayesian network structures with

non-decomposable priors and constraints (Chen et al., 2015).

2.3. Evaluating Bayesian Network Structures Using the MDL Score

Suppose we are given a (complete) dataset D containing N examples over a

set of variables X. The MDL score of a DAG G given dataset D is denoted by

MDL(G|D) and defined as:

MDL(G|D) =
∑
XU

MDL(X|U),

which decomposes into local scores MDL(X|U) over the families XU of G:

MDL(X|U) = H(X|U) + c ·K(X|U),

where c = 1
2 log2N is a constant. The MDL score balances between two objec-

tives: we want to minimize the terms H(X|U) (to improve the fit of the data)105

and minimize the terms K(X|U) (to reduce the model complexity).

First, to improve the fit of the data, we seek to minimize the conditional

entropy:

H(X|U) = −N ·
∑
xu

PrD(xu) log2 PrD(x|u)

7



where H(X|U) is the conditional entropy of a variable X given its parents U

(and scaled by N here). This conditional entropy is computed with respect to

the empirical distribution PrD induced by the data, i.e., PrD(x) = 1
ND#(x),

where D#(x) is the number of times instance x appears in the dataset D.110

Roughly, the conditional entropy H(X|U) is the expected uncertainty in the

value of variable X, when we observe the parents U. Hence, the lower the

conditional entropy, the better the parents U are at predicting the value of X

(and hence, providing a better fit of the data). Correspondingly, the conditional

entropy H(X|U) can only decrease (or stay the same value) as we add more115

parents U to variable X. Finally, the conditional entropy is non-negative, and

upper-bounded by Hmax(X) = N · log2 |X|. This upper bound corresponds to

the entropy of the uniform distribution over X, where Pr(x) = 1
|X| .

The second objective of the MDL score is to minimize the model complexity:

K(X|U) = (|X| − 1)
∏
U∈U

|U |

where K(X|U) is the number of free parameters in the conditional distribution

of X given U. For a given DAG G, the sum of all K(X|U) is the total number120

of free parameters in the corresponding Bayesian network.2

Consider the following dataset of N = 100 examples:

A B D#(a, b)

a b 22

a b̄ 18

ā b 38

ā b̄ 22

In the following table, we enumerate the three possible DAGs G, with their

maximum likelihood parameters, aggregate entropy H(G) =
∑
XUH(X|U),125

aggregate complexity K(G) =
∑
XUK(X|U), and MDL scores:

2We note that the MDL and BIC scores are numerically equivalent, and that both scores

are asymptotically equivalent to the BDeu score; see, e.g., (Koller & Friedman, 2009).
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G parameters H(G) K(G) MDL(G|D)

A B θa = 40
100 , θb = 60

100 194.19 2 200.83

A→ B θa = 40
100 , θb|a = 22

40 , θb|ā = 38
60 193.69 3 203.66

A← B θa|b = 22
60 , θa|b̄ = 18

40 , θb = 60
100 193.69 3 203.66

where c = 1
2 log2 100 = 3.32. First, note that DAGs A → B and A ← B are

Markov equivalent, and they have the same entropy and complexity. Next, these

two DAGs have a lower (better) entropy H(G) than the empty DAG with no130

edge. Finally, the lowest (best) MDL score is obtained by the empty DAG, since

the difference in complexity was greater than the difference in entropy. It is this

balance, between entropy and complexity, that we analyze in this paper.

2.4. Pruning Parent Sets with the MDL Score

The MDL score balances the fit of the data with the complexity of the model.135

Prior works have studied this balance, finding ways to prune the search space

of DAGs, thus simplifying the learning problem (Tian, 2000; Teyssier & Koller,

2005; De Campos & Ji, 2011), at least for the case of learning a single optimal

DAG.

First, we consider one of the most elementary pruning rules. Consider a140

variable X and a candidate parent set U. The following theorem identifies

a simple and general condition that guarantees that U will never appear in

a DAG minimizing any decomposable score (MDL or otherwise) (Teyssier &

Koller, 2005).

Theorem 1 (Teyssier & Koller, 2005). Let D denote a dataset, with variable145

X and two candidate sets of parents U and U′. If U′ ⊂ U and score(XU′|D) <

score(XU|D), then no DAG G that minimizes score(G|D) contains the family

XU.3

Consider a DAG G that contains XU as a family. We can replace the family

XU with a smaller family XU′ and obtain a new DAG G′, since replacing XU150

3We note that non-strict inequalities lead to more pruning, although we use strict inequal-

ities here to simplify the discussion.
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with a smaller family will not introduce any directed cycles. Moreover, if the

smaller family XU′ has a better score as well, the new DAG G′ will also have

a better score (since the scores of other families do not change). Hence, an

optimal DAG would not contain such a family XU, as we can obtain a better

DAG with a strictly better score. We can thus ignore the family XU when155

searching for an optimal Bayesian network in this case.

The ability to prune many families in this manner is critical to the efficiency

and scalability of structure learning (De Campos & Ji, 2011; Cussens, 2012).

Unfortunately, Theorem 1 is not practical enough by itself, as there are expo-

nentially many pairs of parent sets U and U′ to test. However, the MDL score160

lends itself to a simple test on the size of a parent set, that allows us to eliminate

a large number of structures at once. Roughly, there is a trade-off in the score

of a family MDL(XU|D) when we try to add a new parent U to X. Adding a

parent increases the fit of the data, but it also increases the complexity of the

model. For the MDL score, there is a point after which adding new parents165

cannot provide a better fit of the data, compared to the additional complexity

it would introduce. This is summarized by the following theorem (Suzuki, 1996;

Tian, 2000; De Campos & Ji, 2011).

Theorem 2. Given a dataset with N examples, there exists an optimal DAG

under the MDL score whose families XU have parents where |U| ≤ blog2
N
c c,170

and where c = 1
2 log2N .

Theorem 2 provides an upper bound d on the number of parents U that a

variable X needs to have in an optimal Bayesian network. Note that this bound

depends only on the size of the dataset N . For example, the following table

enumerates the bounds d given dataset sizes N from 26 = 128 to 216 = 65, 536:175

N 26 27 28 29 210 211 212 213 214 215 216

d 4 5 6 6 7 8 9 10 11 12 13

For example, when N = 210 = 1, 024, it suffices to consider only those families

XU where there are at most d = 7 parents U. Note that the bounds are more

useful when the dataset size is not too large.
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If a structure learning algorithm can accommodate such a bound, then it180

can potentially eliminate an exponential number of candidate structures. For

example, in frameworks based on heuristic search methods such as A*, one can

prune away nodes (representing DAGs) in the search space when they violate

the bounds (Chen et al., 2015). Similarly, in frameworks based on dynamic

programming, one can simplify the underlying recurrence relations so that they185

do not consider sub-problems that violate the bounds. As another example,

approaches based on ILP can significantly benefit from pruning away irrelevant

families (those with too many parents). Such families do not need to be en-

coded into the ILP, and can lead to exponentially fewer ILP variables in the

encoding of a structure learning problem (Jaakkola et al., 2010; Cussens, 2011).190

For structure learning approaches based on decomposable scores (as in Equa-

tion 1), one typically has to solve local optimization sub-problems of the form

minU score(XU|D). Some approaches perform some pre-computations on these

sub-problems, allowing for more efficient lookups to be performed during struc-

ture learning itself (De Campos & Ji, 2011; Yuan & Malone, 2013). However, for195

datasets over larger sets of variables, such an approach is only feasible when (1)

there are not too many scores to process, and (2) the associated data structures

can fit in memory (both are indeed enabled by the above bounds).

3. Pruning Parent Sets While Enumerating Structures

In this section, we generalize the pruning techniques from the previous sec-200

tion for the task of enumerating the k-best Bayesian network structures. For

example, Theorem 2 can only guarantee that X does not have too many parents

in an optimal DAG—but it says nothing about how many parents a variable

can have in the 2nd best DAG.

Our goal in this paper is to prune the space of structures that we need to205

consider when enumerating the k-best DAGs. Ultimately, we will propose a

single algorithm for computing an upper bound on the size of the largest family

that we will need to consider. Along the way, we will analyze simpler bounds
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that will conceptually motivate the final algorithm that we propose.

First, we present a simple generalization of Theorem 1.210

Theorem 3. Let D denote a dataset, with variable X and a candidate set of par-

ents U. If there are k parents sets U′ ⊂ U where score(XU′|D) < score(XU|D),

then none of the k-best DAGs contains the family XU.

Consider a DAG G that contains XU as a family. We can replace the family

XU with any of the k-better families XU′ (none of which will introduce a cycle),215

and obtain k new DAGs G with a strictly lower score. Hence, none of the k-best

DAGs will contain such a family XU, since we can always find k better DAGs

with lower scores. Hence, we can eliminate the family XU from consideration

when enumerating the k-best DAGs.4

The following observation provides another simple condition where we can220

safely prune a family from an enumeration problem.

Theorem 4. Let D denote a dataset, with variable X and a candidate set of

parents U. Let G denote the DAG with the best score(G|D), among all DAGs

containing the family XU. If there are k better DAGs G′ where score(G′|D) <

score(G|D), then none of the k-best DAGs of dataset D contains the family225

XU.5

Theorems 3 and 4 are simple and intuitive, but they are of limited practical

utility by themselves. In particular, in order to eliminate a family XU from

consideration, we would need a way to determine whether there are k smaller

families (or DAGs) with better scores. Under the MDL score, we can identify230

some stronger and more practical conditions, which we shall propose next. Be-

fore we proceed, we remark that Theorem 3 is based on reasoning locally about

4We remark that Theorem 3 was also implicitly used in the k-best enumeration algorithms

of (Tian et al., 2010) and (Chen & Tian, 2014), although we make the underlying concept

explicit here.
5If G is the best DAG containing the family XU, and if G′ is a DAG with a strictly better

score, then G′ cannot contain the family XU (by the optimality of G).
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families XU, and Theorem 4 is based on reasoning globally about DAGs G. We

consider instances of such local and global tests, next.

3.1. Pruning with Local Tests235

Theorem 2 provided a practical realization of Theorem 1, for the MDL score.

It provided an upper bound on the number of parents that a variable needs

to have in an optimal DAG, which allows us to eliminate a large proportion

of DAG structures at once. Theorem 2 was based on the trade-off between

the conditional entropy (fit to the data) and the model complexity (number240

of parameters). The following result establishes an analogous bound for the

problem of enumerating the k-best structures.

Theorem 5. Let D denote a dataset, with variable X and a candidate set of

parents U. If Hmax(X) ≤ 1
2c ·K(X|U), then every proper subset U′ of U has

a local score MDL(XU′|D) ≤ MDL(XU|D), where c = 1
2 log2N .245

Intuitively, this theorem identifies a limit on the number of parents U that a

variable needs to have, where the added complexity of a large enough parent set

U makes every smaller parent set U′ ⊂ U preferable to U itself. In particular,

if a given parent set U satisfies the conditions of Theorem 5, then there are

2|U| − 1 smaller parent sets U′ ⊂ U that are at least as good as U. Thus, if250

we are interested in enumerating the k-best DAGs, and if k ≤ 2|U| − 1, then

we know that XU is not needed to find the k-best DAGs, via Theorem 3. As a

result, we obtain the following result that is analogous to Theorem 2.

Corollary 1. Given a dataset with N examples, there exists a set of k-best

DAGs under the MDL score where families XU have parents where |U| ≤ d =255

blog2
2N
c c when k ≤ 2d+1 − 1 and where c = 1

2 log2N .

Note that first, this theorem identifies a bound d on the number of parents

in U that we need to consider; for any parent set U of size d+ 1, every smaller

parent set U′ ⊂ U will have a better score. Next, we must verify that this

number of smaller parent sets (i.e., 2d+1−1) eliminates at least as many parent260

sets as DAGs that we want to enumerate.
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Note that the bound d itself depends only on the size of the dataset N . For

example, the following table enumerates the bounds given dataset sizes N from

26 = 128 to 216 = 65, 536:

N 26 27 28 29 210 211 212 213 214 215 216

d 5 6 7 7 8 9 10 11 12 13 14
265

For example, whenN = 210 = 1, 024, then d = 8 and there are at least 28+1−1 =

511 better families for any family XU with 9 parents or more. Hence, if we want

to enumerate the 511-best DAGs (or fewer), it suffices to consider families with

no more than 8 parents. For any parent set U with size greater than d, it still

holds that every smaller parent set U′ ⊂ U will lead to a better score. Hence,270

if we wanted to enumerate instead the 1, 000-best DAGs (for the same dataset

size), then we find the smallest parent set size d′ > d where k ≤ 2d
′+1−1, which

is d′ = 9 in this case (and we consider only parent sets of size d′ or less).

Like Theorem 2, Corollary 1 provides an upper bound on the number of

parents U that a variable X needs to have, but now for the k-best Bayesian275

networks. However, when k is large, we may have to inflate the bound to

accommodate the additional networks, which may make the bound too loose

to be practical. Next, we will consider more sophisticated tests that can allow

us to provide tighter bounds when enumerating the k-best Bayesian networks,

even for larger values of k.280

3.2. Pruning with Global Tests

We now provide a practical realization of Theorem 4, which states that if

there are k DAGs better than the best DAG containing a family XU, then we

can prune any DAG containing the family XU for the purposes of enumerating

the k-best DAGs. While Theorem 3 reasons locally about families XU, Theo-285

rem 4 reasons globally about DAGs. The importance of this distinction is that

it will allow us to more aggressively prune the space of DAGs.

We shall now propose a practical method for pruning a family XU, by rea-

soning globally about DAGs. We shall proceed in multiple steps. First, we will
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discuss a technique that allows us to determine when there are k better DAGs290

than a given DAG G. Next, we will apply this technique so that we can bound

the size of a family XU under the assumption that a DAG’s topological ordering

is fixed (which will be given in Algorithm 1). Finally, we will generalize across

all possible topological orderings, allowing us to bound the size of a family XU

for the original learning problem over all DAGs (which will be given in Algo-295

rithm 2). This final algorithm is the one we shall evaluate in our experiments,

in Section 4.

Consider again Theorem 5, which tells us if a family XU has too many

parents U, then under the MDL score, the complexity of the corresponding

model is high enough so that every smaller family XU′ will be preferred, where300

U′ ⊂ U. This reasoning can be extended to multiple families YV, for a given set

of variables Y. That is, the size of the family XU can introduce enough model

complexity so that we can reduce the size of other families YV as well, and still

obtain a better scoring DAG. This is formalized in the following theorem.

Theorem 6. Suppose we are given a dataset with N examples over variables

X, and a DAG G with (1) a family XU and (2) a set of variables Y ⊆ X \X

with families YV for each Y ∈ Y. Suppose further that

Hmax(X) +
∑
Y ∈Y

Hmax(Y ) ≤ 1

2
c ·K(X|U)

where c = 1
2 log2N . If we construct a new DAG G′ from G where we:305

1. replace the parents U of variable X with some proper subset U′ ⊂ U,

2. for each Y ∈ Y, replace the parents V of variable Y with some subset

V′ ⊆ V.

then any such DAG G′ satisfies MDL(G′|D) ≤ MDL(G|D).

By reasoning about the additional families of variables Y, we can identify

many more DAGs that are better than a given DAG G. In particular, when

the conditions of Theorem 6 are met, then any sub-DAG G′ of G has an MDL

score that is at least as good, after we reduce the sizes of the families XU and

15



YV. More specifically, for the family XU, there are 2|U| − 1 proper subsets of

U. For each family YV, there are 2|V| subsets of V. We can pick any sub-DAG

by taking any combination of these families, hence there are

(2|U| − 1) ·
∏
YV
Y ∈Y

2|V|

possible sub-DAGs G′ whose scores are at least as good as G. This is in contrast310

to Theorem 5 which considers a single family XU, and consequently, it identifies

only 2|U|−1 better DAGs. Based on this analysis, we obtain the following upper

bound on the number of parents that a variable needs to have.

Corollary 2. Suppose we are given a dataset with N examples over variables

X, and a DAG G with (1) a family XU and (2) a set of variables Y ⊆ X \X

with families YV for each Y ∈ Y. Suppose that log2 |Y | ≤ α · (|X| − 1) for all

Y ∈ Y, for some constant α. Let

d(Y) =
⌊

log2

(2N

c
· α · (|Y|+ 1)

)⌋
.

where c = 1
2 log2N . There exists a set of k-best DAGs under the MDL score

where families XU have parents where |U| ≤ d(Y) when

k ≤ (2d(Y)+1 − 1) ·
∏
YV
Y ∈Y

2|V|.

If the conditions of Corollary 2 are met, then the conditions of Theorem 6

are met as well (as shown in the Appendix). Hence, in this case, we can find a315

set of k-best DAGs where X has at most d(Y) parents.

Note that the bound d(Y) depends on the size of the dataset N , the num-

ber of variables Y, and the cardinalities |Y | of variables Y ∈ Y. Suppose all

variables are binary, and hence we can assume α = 1; in general, we can set

α = maxY ∈Y
log2 |Y |
|X|−1 . If Y is empty, then d(Y) = blog2

2N
c c, which corresponds320

to the bound of Corollary 1. Remember that Corollary 1 provides a bound d on

the number of parents when the number k of DAGs that we want to enumerate

satisfies k ≤ 2d+1 − 1. If k is larger, then Corollary 2 can provide a tighter

16



bound by reasoning about other families YV. In particular, if we include larger

families YV, then we can accommodate larger values of k. We also want to325

minimize the number of variables Y to include in Y, as this also loosens the

bound d(Y). We discuss how to optimize this set Y, next.

3.2.1. A Special Case: A Fixed Topological Ordering

Let π denote a topological ordering 〈X1, . . . , Xn〉 of the n variables X, and

let π1:i (and πi:n) denote the set of the first i (and last n− i+1) variables in the

order. Consider the optimal DAG G? that contains the family XU, but also

respects the given ordering π:

G? = argmin
G∼π
XU∈G

MDL(G|D)

= MDL(XU|D) +
∑

i∈{1,...,n}
Xi 6=X

min
Ui⊆π1:i−1

MDL(XiUi|D).

Since the DAG must respect the given ordering (which we denote by G ∼ π), the

optimal DAG G can find the optimal families independently (apart from XU,330

which we keep fixed). This corresponds to the K2 structure learning algorithm

(Cooper & Herskovits, 1992). For networks of the scale that we are interested in,

these local sub-problems minU MDL(XU|D) are tractable in practice. Hence,

we can also compute such a DAG G?.

Next, we want to identify an upper bound on the number of parents U that335

a variable X needs to have, without eliminating the k-best DAGs for a given

topological ordering π. For a given family XU, we can find the best DAG G?

with family XU respecting π, as described above. Using Theorem 5, we can

determine if there are k better families smaller than XU. Using Theorem 6, we

can determine if there are k better DAGs than G?, which can lead to a tighter340

bound on the number of parents U that we need to consider, by reasoning about

the other families YV in G?. In particular, we want to find a large enough set

Y ⊆ X \ X, such that the DAG G? meets the conditions of Theorem 6 (and

Corollary 2). That is, we need to find a large enough set of variables Y so that

we can guarantee that there are k better DAGs than G?.345
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Although the bound is easy to evaluate given a particular set Y, there are

exponentially many subsets Y. Thus, we first propose a simple greedy method

for the case where the topological ordering π is fixed (we shall relax this assump-

tion later). In particular, after first initializing Y to the empty set, we propose

to add variables one-by-one to Y in the reverse order of π, until the conditions350

of Corollary 2 are met (i.e., we can enumerate at least k better DAGs). Since

finding larger families will help us enumerate more sub-DAGs, we propose to

add variables to Y by reverse topological order, since variables at the end of

the order can have larger families. In contrast, variables at the start of the

order must have smaller families (given a topological order, a variable may only355

have parents that appear earlier in the order). This procedure is summarized in

Algorithm 1, which returns an upper bound on number of parents that we need

to consider when enumerating the k-best DAGs, given a topological ordering π.

For example, suppose all variables are binary, and hence we can assume

α = 1. Further, suppose that N = 28 and that we want to enumerate k = 1, 000360

DAGs. First, if Y = ∅, then Corollary 2 (and Corollary 1) tells us that d(∅) = 7

but we can only guarantee that 27+1 − 1 = 255 of the best DAGs are included.

Suppose we add the last variable Yn of the topological ordering π to our set

Y. Further, say that Yn has 2 parents in G?. In this case, d(Y) = 8 and

(28+1 − 1) · 22 = 2, 044 of the best DAGs are included. Hence, this bound is365

sufficient for k = 1, 000, and we know that we only need to consider families

XU where parent sets U have size at most 8, given the topological ordering π.6

3.2.2. The General Case

Our final goal is to determine an upper bound on the number of parents that

a given variable can have in the k-best DAGs. We have just identified an upper370

bound for the special case where all k-best DAGs respect a given topological

ordering. If we find such a bound for all n! orderings, then the loosest of these

6Using Corollary 1, we could also inflate the bound until it includes enough DAGs. For

k = 1, 000 DAGs, this leads to a bound of d = 9, which is a looser bound in this case.

18



Algorithm 1: BoundParents(D,π,X,k)

Data: dataset D over variables X; topological ordering π; variable X;

count k to enumerate.

Result: upper bound on |U| for X.

(Y, s)← ({}, 1)

for i← |X| to 1 do

Xi ← πi:i

if Xi 6= X then

U∗i ← argminUi⊆π1:i−1
MDL(XiUi|D)

(Y, s)← (Y ∪Xi, s · 2|U
∗
i |)

if k ≤ s · (2d(Y)+1 − 1) then

return d(Y)

bounds will give us an upper bound for the general case that we seek.

Here, we propose to navigate the permutation tree of all n! orderings, where

each (partial) path on the permutation tree corresponds to a (partial) ordering375

of the variables; see Figure 3. The key observation here is that walking down a

path on the permutation tree can be viewed as an instance of Algorithm 1 using

the corresponding order. That is, Algorithm 1 incrementally adds variables one-

by-one from the end of the ordering π. However, once Algorithm 1 finds a large

enough set Y satisfying Corollary 2, then it returns an upper bound of d(Y).380

Note that if it constructs a set Y = πi:n, then the bound obtained from Y

would be the same as the one that would be obtained for any other topological

ordering with the same suffix (i.e., each run of the different orderings would

perform precisely the same steps in Algorithm 1). Hence, a run of Algorithm 1

that returns early can be viewed as obtaining bounds for (exponentially) many385

permutations at once. We can backtrack to the next unexplored branch of the

permutation tree, and continue running Algorithm 1 at that point. By repeating

19



Algorithm 2: BoundParents(D,X,k)

Data: dataset D over variables X; variable X; count k to enumerate.

Result: upper bound on |U| for X.

Q← queue initialized with tuple (X, {}, 1)

Ymax ← {}

while Q is not empty do

extract the first item (Z,Y, s) from Q

if |Ymax| < |Y| then Ymax ← Y

foreach Z ∈ Z do

Z′ ← Z \ Z

if Z 6= X then

U∗ ← argminU⊆Z′ MDL(ZU|D)

(Y′, s′)← (Y ∪ Z, s · 2|U∗|)

else (Y′, s′)← (Y, s)

if k > s′ · (2d(Y′)+1 − 1) then

insert (Z′, Y ′, s′) into Q

return d(Ymax)

this process, we can perform an exhaustive search of the permutation tree over

n! orderings, where we prune a downward path when Algorithm 1 terminates

early. The loosest bound that we observe during this exhaustive search gives us390

an upper bound on the number of parents that a given variable can have in the k-

best DAGs. This procedure is described in Algorithm 2, where the permutation

tree is implicitly navigated using a queue, which is used to enumerate all of the

needed suffixes.

We finally remark that while the search space over permutations is large,395

depending on the number k of DAGs that we want to enumerate, we may only

need to traverse the permutation tree up to a shallow depth. We shall illustrate
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X1 X2 X3

{}

X2 X3 X4 X1 X2 X4

X4X3 X4X2 X3X2 X4X1 X2X1

X4

X4 X3 X4 X2 X3 X2 X4 X1 X2 X1

Figure 3: A (pruned) permutation tree over 4 variables: each path from the root to a node

corresponds to a (partial) ordering π. The permutation spaces below the (partial) orderings

〈X2〉, 〈X3, X1〉, and 〈X4〉 have been pruned here.

this in our experiments next.

4. Experiments

In the section, we evaluate our proposed method for pruning the search400

space of Bayesian network structures, for the problem of enumerating the k-best

DAGs (more specifically, we evaluate Algorithm 2). We shall first evaluate the

effectiveness of our approach in reducing the space of DAGs. We next evaluate

the impact that this has on the state-of-the-art system for enumerating the k-

best network structures, which is due to (Chen et al., 2015). Our experiments405

were performed on a 2.67GHz Intel Xeon X5650 CPU with a memory limit

of 64 GB. We use real-world datasets from the UCI ML Repository (Bache &

Lichman, 2013).7 All timing results are averages over 10 runs.

First, we obtain an upper bound p on the maximum number of parents

that any variable needs to have. In particular, we apply Algorithm 2 on every410

variable. Table 1 highlights the results. First, we note that the bound p ranges

7The datasets used were discretized, and are available at http://urlearning.org/
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benchmark 10-best 100-best 1, 000-best

name n N S p s p s p s

hepatitis 20 126 0.16 6 0.01 6 0.01 7 0.03

imports 22 205 0.69 6 0.03 6 0.03 7 0.07

parkinsons 23 195 1.44 6 0.04 6 0.04 8 0.10

sensors 25 5456 6.25 10 1.69 10 1.69 10 1.69

autos 26 159 13.00 6 0.10 6 0.10 8 1.46

horse 28 300 56.00 7 0.53 7 0.53 8 0.70

flag 29 194 116.00 6 0.22 6 0.22 7 0.73

Table 1: Full vs. pruned score lists for enumerating the k-best DAGs. For each benchmark

we report: the number of variables n in the dataset, the size of the dataset N , the sizes of the

full (S) and pruned (s) score lists in GBs, and the bound p on the number of parents.

from 24% (with flag) and 40% (with sensors) of the total number of variables.

Next, we compare the memory required to represent the full list of scores of all

families XU versus the pruned list. We assume a neutral representation (data

structure) of a score list, where we use 64-bits to represent the parents (as a bit415

set), and another 64-bits to represent the score itself (using floating-point).89

Table 1 shows that the pruned score lists use a much smaller amount of memory,

compared to full score lists. While the pruned score lists always use less than

2GB of memory, it would not be possible to store the full score list in memory

for a dataset like flag (given our 64GB limit). For dataset flag, the pruned list420

is a 158× savings in space. Finally, we note that for the datasets considered in

Table 1, the upper bounds p are computed in less than 5 minutes.

We now use our pruned score list to learn the k-best DAGs using the state-

8We assume that for each variable X, the scores score(XU|D) are stored in the same data

structure, and then indexed by the parents U (which is represented as a bit set).
9For a dataset over n variables, there are n ·2n−1 total families XU. For a bound p on the

number of parents, there are n ·
∑p

i=0

(n−1
i

)
unpruned families. Hence, a full score list uses

128 · n · 2n−1 bits, and a pruned score list uses 128 · n ·
∑p

i=0

(n−1
i

)
bits, which is reported in

Table 1.
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benchmark 10-best 100-best 1, 000-best

name n Eh Th TA∗ Eh Th TA∗ Eh Th TA∗

hepatitis 20 155 1.71 0.17 2188 3.32 0.80 6427 5.13 14.23

imports 22 111 63.26 0.16 232 73.83 0.20 1041 134.97 0.72

parkinsons 23 110 666.23 1.23 741 973.44 1.71 4313 3143.19 10.61

sensors 25 354 10219.25 3.65 482 13991.11 4.76 1342 23237.06 10.49

autos 26 1199 2098.97 6.46 2909 3242.36 8.96 9185 4062.17 13.78

horse 28 1095 2045.58 8.96 11653 2449.30 21.92 48069 5908.90 55.98

flag 29 1248 4454.21 19.79 26766 11093.91 45.22 110272 21959.47 257.27

Table 2: Enumerating the k-best DAGs using a pruned score list. For each benchmark we

report: the number of variables n in the dataset, the number Eh of black-box invocations,

and the times to compute the heuristic function (Th) and to navigate the BN graph with A*

search (TA∗), in seconds. See (Chen et al., 2015) for details.

of-the-art system of (Chen et al., 2015), which previously scaled to datasets

over 23 variables, using full score lists. Table 2 highlights the results, showing425

that the 1, 000-best structures can be enumerated for datasets with as many

as 29 variables. Note that the improvement from 23 variables to 29 variables

is quite significant, considering the relative sizes of these search spaces (from

Footnote 1).

Table 2 reports some of the relevant statistics of the system of (Chen et al.,430

2015). Basically, this system is performing A* search in a search space called the

BN graph, which is a search space over all possible DAGs. A* search is typically

used to find a single best solution, but continuing A* search can yield the k-

best solutions as well (Dechter et al., 2012). While the BN graph is normally

too large of a search space for methods such as A* search, (Chen et al., 2015)435

proposed to use an oracle that learns a single optimal DAG, as a heuristic for

enumerating the k-best DAGs using A* search.

In Table 2, Eh is the number of times this black-box oracle was invoked, Th

is the total time to evaluate the heuristic function (i.e., the oracle), and TA∗ is

the total time spent in A* search. As expected, the majority of time (Th) is440
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spent evaluating the structure learning oracle (Chen et al., 2015). We remark

that the oracle only finds a single best solution, and hence uses the classical

MDL bounds (i.e., when k = 1). However, A* search in the BN graph benefited

significantly from the more general bounds proposed in this paper (primarily in

terms of pruning the BN graph).445

5. Conclusion

In this paper, we proposed new techniques for pruning the search space of

DAGs, for the purposes of enumerating the k-best Bayesian networks. These

techniques identify an upper bound on the number of parents that a node can

have, among the k-best DAGs. These bounds exploit properties of the MDL450

score, and generalize widely-used bounds for the case of finding a single optimal

DAG. In our experiments, our techniques allowed a state-of-the-art system for

enumerating the k-best DAGs to scale from datasets over 23 variables to larger

datasets over 29 variables.
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Appendix A. Proofs

The proof of Theorem 3 is given in the text. The proof of Theorem 4 is

immediate.

Lemma 1. For parent sets U and U′ where U′ ⊂ U:

1

2
c ·K(X|U) ≤ c ·K(X|U)− c ·K(X|U′).

Proof From the definition of K(X|U),

K(X|U) = K(X|U′) ·
∏

U∈U\U′
|U | ≥ K(X|U′) · 2.

We obtain the Lemma after rearranging.510
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Theorem 7 (Tian, 2000). For parent sets U and U′ where U′ ⊂ U, if

Hmax(X) ≤ c ·K(X|U)− c ·K(X|U′),

then U and any of its supersets U′′ satisfies

MDL(XU′ | D) ≤ MDL(XU′′ | D).

Proof of Theorem 5 If Hmax(X) ≤ 1
2c ·K(X | U) and U′ ⊂ U then

Hmax(X) ≤ c ·K(X|U)− c ·K(X|U′)

by Lemma 1. By Theorem 7, we have MDL(XU′|D) ≤ MDL(XU|D).

Proof of Corollary 1 Using Theorem 5, it suffices to show that

Hmax(X) ≤ 1

2
c ·K(X|U)

for any |U| ≥ d + 1. In this case, any U′ ⊂ U will have at least as good of a

score, i.e., when |U′| ≤ d. We have

Hmax(X) = N log2 |X|

≤ N · (|X| − 1) by log2 x ≤ x− 1 for x ≥ 2

≤ 1

2
c · (|X| − 1) · 2d+1 by d ≤ log2

2N
c ≤ d+ 1

≤ 1

2
c · (|X| − 1) ·

∏
U∈U

|U | by |U | ≥ 2 and |U| ≥ d+ 1

=
1

2
c ·K(X | U) by definition of K(X|U)

as desired.

Proof of Theorem 6 Consider a DAG G with variables X and Y. We shall

denote these variables by Xi for 1 ≤ i ≤ m, where m = |Y| + 1 and where

X = X1 and Y = {X2, . . . , Xm}. Let Ui denote the parents of variable Xi. Let

G′ denote a sub-DAG of G where X1 has parents U′1 ⊂ U1 and where Xi has
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parents U′i ⊆ Ui for 2 ≤ i ≤ m. We then have

MDL(G′)

= MDL(G) +
∑

1≤i≤m
[
H(Xi|U′i) + c ·K(Xi|U′i)−H(Xi|Ui)− c ·K(Xi|Ui)

]
≤ MDL(G) +

∑
1≤i≤mHmax(Xi) +

∑
1≤i≤m

[
c ·K(Xi|U′i)− c ·K(Xi|Ui)

]
by H(Xi|U′i) ≤ Hmax(Xi) and H(Xi|Ui) ≥ 0

≤ MDL(G) + 1
2c ·K(X1 | U1) +

∑
1≤i≤m

[
c ·K(Xi|U′i)− c ·K(Xi|Ui)

]
by assumption

≤ MDL(G) +
∑

2≤i≤m
[
c ·K(Xi|U′i)− c ·K(Xi|Ui)

]
by Lemma 1

≤ MDL(G)

since K(Xi|Ui) ≥ K(Xi|U′i).

Proof of Corollary 2 Using Theorem 6, it suffices to show that

Hmax(X) +
∑
Y ∈Y

Hmax(Y ) ≤ 1

2
c ·K(X|U)

for any |U| ≥ d(Y) + 1. In this case, any U′ ⊂ U and any V′ ⊆ V will have at

least as good of a score, i.e., when |U′| ≤ d(Y). First, by assumption:

d(Y) ≤ log2

(2N

c
· α · (|Y|+ 1)

)
≤ d(Y) + 1

and thus

αN · (|Y|+ 1) ≤ 1

2
c · 2d(Y)+1. (A.1)
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Next,

Hmax(X) +
∑
Y ∈Y

Hmax(Y )

= N log2 |X|+
∑
Y ∈Y

N log2 |Y |

≤ N · (|X| − 1) +
∑
Y ∈Y

N log2 |Y | by log2 x ≤ x− 1 for x ≥ 2

≤ N · (|X| − 1) +
∑
Y ∈Y

αN · (|X| − 1) by assumption

≤ αN · (|X| − 1) +
∑
Y ∈Y

αN · (|X| − 1) by α ≥ 1

= αN · (|Y|+ 1) · (|X| − 1)

≤ 1

2
c · (|X| − 1) · 2d(Y)+1 by Equation A.1

≤ 1

2
c · (|X| − 1) ·

∏
U∈U

|U | by |U | ≥ 2 and |U| ≥ d(Y) + 1

=
1

2
c ·K(X|U)

as desired.
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