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Abstract
We propose an approach for explaining Bayesian
network classifiers, which is based on compiling
such classifiers into decision functions that have
a tractable and symbolic form. We introduce two
types of explanations for why a classifier may have
classified an instance positively or negatively and
suggest algorithms for computing these explana-
tions. The first type of explanation identifies a min-
imal set of the currently active features that is re-
sponsible for the current classification, while the
second type of explanation identifies a minimal set
of features whose current state (active or not) is suf-
ficient for the classification. We consider in par-
ticular the compilation of Naive and Latent-Tree
Bayesian network classifiers into Ordered Decision
Diagrams (ODDs), providing a context for evaluat-
ing our proposal using case studies and experiments
based on classifiers from the literature.

1 Introduction
Recent progress in artificial intelligence and the increased de-
ployment of AI systems have led to highlighting the need for
explaining the decisions made by such systems, particularly
classifiers; see, e.g., [Ribeiro et al., 2016b; Elenberg et al.,
2017; Lundberg and Lee, 2017; Ribeiro et al., 2018].1 For
example, one may want to explain why a classifier decided
to turn down a loan application, or rejected an applicant for
an academic program, or recommended surgery for a patient.
Answering such why? questions is particularly central to as-
signing blame and responsibility, which lies at the heart of
legal systems and may be required in certain contexts.2

In this paper, we propose a symbolic approach to explain-
ing Bayesian network classifiers, which is based on the fol-
lowing observation. Consider a classifier that labels a given
instance either positively or negatively based on a number

1It is now recognized that opacity, or lack of explainability is
“one of the biggest obstacles to widespread adoption of artificial in-
telligence” (The Wall Street Journal, August 10, 2017).

2See, for example, the EU general data protection reg-
ulation, which has a provision relating to explainability,
https://www.privacy-regulation.eu/en/r71.htm.

of discrete features. Regardless of how this classifier is im-
plemented, e.g., using a Bayesian network, it does specify
a symbolic function that maps features into a yes/no deci-
sion (yes for a positive instance). We refer to this function
as the classifier’s decision function since it unambiguously
describes the classifier’s behavior, independently of how the
classifier is implemented. Our goal is then to obtain a sym-
bolic and tractable representation of this decision function,
to enable symbolic and efficient reasoning about its behav-
ior, including the generation of explanations for its decisions.
In fact, [Chan and Darwiche, 2003] showed how to com-
pile the decision functions of naive Bayes classifiers into a
specific symbolic and tractable representation, known as Or-
dered Decision Diagrams (ODDs). This representation ex-
tends Ordered Binary Decision Diagrams (OBDDs) to use
multi-valued variables (discrete features), while maintain-
ing the tractability and properties of OBDD [Bryant, 1986;
Meinel and Theobald, 1998; Wegener, 2000].

We show in this paper how compiling decision functions
into ODDs can facilitate the efficient explanation of classi-
fiers and propose two types of explanations for this purpose.

The first class of explanations we consider are minimum-
cardinality explanations. To motivate these explanations,
consider a classifier that has diagnosed a patient with some
disease based on some observed test results, some of which
were positive and others negative. Some of the positive test
results may not be necessary for the classifier’s decision: the
decision would remain intact if these test results were nega-
tive. A minimum-cardinality explanation then tells us which
of the positive test results are the culprits for the classifier’s
decision, i.e., a minimal subset of the positive test results that
is sufficient for the current decision.

The second class of explanations we consider are prime-
implicant explanations. These explanations answer the fol-
lowing question: what is the smallest subset of features that
renders the remaining features irrelevant to the current de-
cision? In other words, which subset of features—when
fixed—would allow us to arbitrarily toggle the values of other
features, while maintaining the classifier’s decision?

This paper is structured as follows. In Section 2, we review
the compilation of naive Bayes classifiers into ODDs, and
propose a new algorithm for compiling latent-tree classifiers
into ODDs. In Section 3, we introduce minimum-cardinality
explanations, propose an algorithm for computing them, and
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Figure 1: A naive Bayes classifier, specified using the class prior,
in addition to the false positive (fp) and false negative (fn) rates of
features. The class variable and features are all binary.
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Figure 2: An OBDD (decision function) of the classifier in Figure 1.

provide a case study on a real-world classifier. In Section 4,
we do the same for prime-implicant explanations. In Sec-
tion 5, we discuss the relationship between the two types of
explanations and show that they coincide for monotone clas-
sifiers. We then follow by a discussion of related work in
Section 6 and finally close in Section 7.

2 Compiling Bayesian Network Classifiers
Consider Figure 1 which depicts a naive Bayes classifier for
detecting pregnancy. Given results for the three tests, if the
probability of pregnancy passes a given threshold (say 90%),
we would then obtain a “yes” decision on pregnancy.

Figure 2 depicts the decision function of this classifier, in
the form of an Ordered Binary Decision Diagram (OBDD).
Given some test results, we make a corresponding decision
on pregnancy by simply navigating the OBDD. We start at the
root, which is labeled with the Urine (U) test. Depending on
the outcome of this test, we follow the edge labeled positive,
or the edge labeled negative. We repeat for the test labeled at
the next node. Eventually, we reach a leaf node labeled “yes”
or “no,” which provides the resulting classification.

The decisions rendered by this OBDD are guaranteed to
match those obtained from the naive Bayes classifier. We
have thus converted a probabilistic classifier into an equiva-
lent classifier that is symbolic and tractable. We will later see
how this facilitates the efficient generation of explanations.

We will later discuss compiling Bayesian network classi-
fiers into ODDs, after formally treating classifiers and ODDs.

2.1 Bayesian Network Classifiers

A Bayesian network classifier is a Bayesian network con-
taining a special set of variables: a single class variable C
and n feature variables X = {X1, . . . , Xn}. The class C is
usually a root in the network and the features X are usually
leaves. In this paper, we assume that the class variable is bi-
nary, with two values c and c̄ that correspond to positive and
negative classes, respectively (i.e., “yes” and “no” decisions).
An instantiation of variables X is denoted x and called an
instance. A Bayesian network classifier specifying probabil-
ity distribution Pr(.) will classify an instance x positively iff
Pr(c | x) ≥ T , where T is called the classification threshold.

Definition 1 (Decision Function) Suppose that we have a
Bayesian network classifier with features X, class variable
C and a threshold T . Let f(X) be a function that maps in-
stances x into {0, 1}. We say that f(X) is the classifier’s
decision function iff

f(x) =

{
1 if Pr(c | x) ≥ T
0 otherwise.

Instance x is positive if f(x) = 1 and negative if f(x) = 0.

The naive Bayes classifier is a special type of a Bayesian
network classifier, where edges extend from the class to fea-
tures (no other nodes or edges). Figure 1 depicted a naive
Bayes classifier. A latent-tree classifier is a tree-structured
Bayesian network, whose root is the class variable and whose
leaves are the features.

2.2 Monotone Classifiers

The class of monotone classifiers is relevant to our discussion,
particularly when relating the two types of explanations we
shall propose. We will define these classifiers next, while as-
suming binary features to simplify the treatment. Intuitively,
a monotone classifier satisfies the following. A positive in-
stance remains positive if we flip some of its features from 0
to 1. Moreover, a negative instance remains negative if we
flip some of its features from 1 to 0.

More formally, consider two instances x? and x. We write
x? ⊆1 x to mean: the features set to 1 in x? is a subset
of those set to 1 in x. Monotone classifiers are then charac-
terized by the following property of their decision functions,
which is well-known in the literature on Boolean functions.

Definition 2 A decision function f(X) is monotone iff

x? ⊆1 x only if f(x?) ≤ f(x).

One way to read the above formal definition is as follows. If
the positive features in instance x contain those in instance
x?, then instance x must be positive if instance x? is positive.

It is generally difficult to decide whether a Bayesian net-
work classifier is monotone; see, e.g., [van der Gaag et al.,
2004]. However, if the decision function of the classifier is an
OBDD, then monotonicity can be decided in time quadratic
in the OBDD size [Horiyama and Ibaraki, 2002].



2.3 Ordered Decision Diagrams
An Ordered Binary Decision Diagram (OBDD) is based on
an ordered set of binary variables X = X1, . . . , Xn. It is a
rooted, directed acyclic graph, with two sinks called the 1-
sink and 0-sink. Every node (except the sinks) in the OBDD
is labeled with a variable Xi with two outgoing edges, one
labeled 1 and the other labeled 0. If there is an edge from
a node labeled Xi to a node labeled Xj , then i < j. An
OBDD is defined over binary variables, but can be extended
to discrete variables with arbitrary values. This is called an
ODD: a node labeled with variable Xi has one outgoing edge
for each value of variable Xi. Hence, an OBDD/ODD can be
viewed as representing a function f(X) that maps instances x
into {0, 1}. Figure 2 depicted an OBDD. Note: in this paper,
we use positive/yes/1 and negative/no/0 interchangeably.

An OBDD is a tractable representation of a function f(X)
as it can be used to efficiently answer many queries about
the function. For example, one can in linear time count the
number of positive instances x (i.e., f(x) = 1), called the
models of f . One can also conjoin, disjoin and comple-
ment OBDDs efficiently. This tractability, which carries over
to ODDs, will be critical for efficiently generating explana-
tions. For more on OBDDs, see [Meinel and Theobald, 1998;
Wegener, 2000].

2.4 Compiling Decision Functions
[Chan and Darwiche, 2003] proposed an algorithm for com-
piling a naive Bayes classifier into an ODD, while guaran-
teeing an upper bound on the time of compilation and the
size of the resulting ODD. In particular, for a classifier with
n features, the compiled ODD has a number of nodes that
is bounded by O(b

n
2 ) and can be obtained in time O(nb

n
2 ).

Here, b is the maximum number of values that a variable may
have. The actual time and space complexity can be much
less, depending on the classifier’s parameters and variable or-
der used for the ODD (as observed experimentally).

The algorithm is based on the following insights. Let X
be all features. Observing features Y ⊂ X leads to another
naive Bayes classifier, with features X \ Y and an adjusted
class prior. Consider now a decision tree over features X and
a node in the tree that was reached by a partial instantiation y.
We annotate this node with the corresponding naive Bayes
classifier Ny found by observing y, and then merge nodes
with equivalent classifiers—those having equivalent decision
functions—as described by [Chan and Darwiche, 2003]. Im-
plementing this idea carefully leads to an ordered decision
diagram (ODD) with the corresponding bounds.3

Algorithm 1 is a simpler variation on the algorithm of
[Chan and Darwiche, 2003]; it has the same complexity
bounds, but may be less efficient in practice. It uses proce-
dure expand-then-merge(., D,X), which expands the
partial decision graph D by a feature X , then merges nodes
that correspond to equivalent classifiers.

Using this procedure, we propose Algorithm 2 for compil-
ing a latent-tree classifier into an ODD. Here’s the key in-
sight. Let R be a node in a latent-tree classifier where all

3[Chan and Darwiche, 2003] uses a sophisticated, but conceptu-
ally simple, technique for identifying equivalent classifiers.

Algorithm 1 compile-naive-bayes(N )

input: A naive Bayes classifier N
output: An ODD for the decision function of N
main:

1: D ← empty decision graph
2: for each feature X of classifier N do
3: D ← expand-then-merge(N,D,X)
4: return ODD D

Algorithm 2 compile-latent-tree(N )

input: A latent-tree classifier N
output: An ODD for the decision function of N
main:

1: D ← empty decision graph
2: R← root of tree N
3: while R has unprocessed children do
4: if R has a single internal and unprocessed child C

then
5: R← C
6: else
7: C ← child of R with smallest number of leaves
8: for each leaf X under C do
9: D ← expand-then-merge(N,D,X)

10: mark C as processed
11: return ODD D

features outside R have been observed, and let C be a child
of R. Observing all features under C leads to a new latent-
tree classifier without the subtree rooted at C and an adjusted
class prior. Algorithm 2 uses this observation by iteratively
choosing a node C and then shrinking the classifier size by
instantiating the features under C, allowing us to compile an
ODD in a fashion similar to [Chan and Darwiche, 2003]. The
specific choice of internal nodes C by Algorithm 2 leads to
the following complexity.

Theorem 1 Given a latent-tree classifierN with n variables,
each with at most b values, the ODD computed by Algorithm 2
has size O(b

3n
4 ) and can be obtained in time O(nb

3n
4 ).

If one makes further assumptions about the structure of the
latent tree (e.g., if the root has k children, and each child of
the root has O(n

k ) features), then one obtains the size bound
of O(b

n
2 ) and time bound of O(nb

n
2 ) for naive Bayes classi-

fiers. We do not expect a significantly better upper bound on
the time complexity due to the following result.

Theorem 2 Given a naive Bayes classifier N , compiling an
ODD representing its decision function is NP-hard.

3 Minimum Cardinality Explanations
We now consider the first type of explanations for why a clas-
sifier makes a certain decision. These are called minimum-
cardinality explanations or MC-explanations. We will first
assume that the features are binary and then generalize later.



Consider two instances x? and x. As we did earlier, we
write x? ⊆1 x to mean: the features set to 1 in x? are a
subset of those set to 1 in x. We define x? ⊆0 x analogously.
Moreover, we write x ≤1 x? to mean: the count of 1-features
in x is no greater than their count in x?. We define x ≤0 x?

analogously.

Definition 3 (MC-Explanation) Let f(X) be a given deci-
sion function. An MC-explanation of a positive instance x

is another positive instance x? such that x? ⊆1 x and there
is no other positive instance x′ ⊆1 x where x′ <1 x?. An
MC-explanation of a negative instance x is another negative
instance x? such that x? ⊆0 x and there is no other negative
instance x′ ⊆0 x where x′ <0 x?.

Intuitively, an MC-explanation of a positive decision f(x) =
1 answers the question: which positive features of instance
x are responsible for this decision? Similarly for the MC-
explanation of a negative decision f(x) = 0: which nega-
tive features of instance x are responsible for this decision?
MC-explanations are not necessarily unique as we shall see
later. However, MC-explanations of positive decisions must
all have the same number of 1-features, and those for negative
decisions must all have the same number of 0-features.

MC-explanations are perhaps best illustrated using a
monotone classifier. As a running example, consider a
(monotone) classifier for deciding whether a student will be
admitted to a university. The class variable is admit (A) and
the features of an applicant are:

• work-experience (W ): has prior work experience.

• first-time-applicant (F ): did not apply before.

• entrance-exam (E): passed the entrance exam.

• gpa (G): has met the university’s expected GPA.

All variables are either positive (+) or negative (-).
Consider a naive Bayes classifier with the following false

positive and false negative rates:

feature fp fn
W 0.10 0.04
F 0.20 0.30
E 0.15 0.60
G 0.11 0.03

To completely specify the naive Bayes classifier, we also need
the prior probability of admission, which we assume to be
Pr(A=+) = 0.30. Moreover, we use a decision threshold
of 0.50, admitting an applicant x if Pr(A=+ | x) ≥ .50.
Note that with the above false positive and false negative
rates, a positively observed feature will increase the proba-
bility of a positive classification, while a negatively observed
feature will increase the probability of a negative classifica-
tion (hence, the classifier is monotone).

Table 1 depicts the decision function f for this naive Bayes
classifier, with MC-explanations for all 16 instances.

Consider, for example, a student (+ + + +) who was ad-
mitted by this decision function. There is a single MC-
explanation for this decision, (+ - - +), with cardinality 2. Ac-
cording to this explanation, work experience and a good GPA
were the reasons for admission. That is, the student would

W F E G Pr(A=+|x) f(x) MC-explanations

- - - - 0.0002 - (- - + +) (- + - +) (- + + -)
(+ - + -) (+ + - -)

- - - + 0.0426 - (- - + +) (- + - +)
- - + - 0.0006 - (- - + +) (- + + -) (+ - + -)
- - + + 0.1438 - (- - + +)
- + - - 0.0016 - (- + - +) (- + + -) (+ + - -)
- + - + 0.2933 - (- + - +)
- + + - 0.0060 - (- + + -)
- + + + 0.6105 + (- + + +)
+ - - - 0.0354 - (+ + - -) (+ - + -)
+ - - + 0.9057 + (+ - - +)
+ - + - 0.1218 - (+ - + -)
+ - + + 0.9732 + (+ - - +)
+ + - - 0.2552 - (+ + - -)
+ + - + 0.9890 + (+ - - +)
+ + + - 0.5642 + (+ + + -)
+ + + + 0.9971 + (+ - - +)

Table 1: A decision function with MC-explanations.

still have been admitted even if they have applied before and
did not pass the entrance exam.

For another example, consider a student (- - - +) who was
rejected. There are two MC-explanations for this decision.
The first, (- - + +), says that the student would not have been
admitted, even if they passed the entrance exam. The second
explanation, (- + - +), says that the student would not have
been admitted, even if they were a first-time applicant.

Finally, we remark that while MC-explanations are more
intuitive for monotone classifiers, they also apply to classi-
fiers that are not monotone, as we shall see in Section 3.2.

3.1 Computing MC-Explanations
We will now present an efficient algorithm for computing the
MC-explanations of a decision, assuming that the decision
function has a specific form. Our treatment assumes that the
decision function is represented as an OBDD, but it actually
applies to a broader class of representations which includes
OBDDs as a special case. More on this later.

Our algorithm uses a key operation on decision functions.

Definition 4 (Cardinality Minimization) For i ∈ {0, 1},
the i-minimization of decision function f(X) is another de-
cision function f i(X) defined as follows: f i(x) = 1 iff
(a) f(x) = 1 and (b) x ≤i x? for every f(x?) = 1.

The 1-minimization of decision function f renders positive
decisions only on the positive instances of f having a minimal
number of 1-features. Similarly, the 0-minimization of deci-
sion function f renders positive decisions only on the positive
instances of f having a minimal number of 0-features. Car-
dinality minimization was discussed and employed for other
purposes in [Darwiche, 2001; Choi et al., 2013].

Algorithm 3 computes the MC-explanations of a decision
f(x). The set of computed explanations is encoded by an-
other decision function g(X). In particular, g(x?) = 1 iff x?

is an MC-explanation of decision f(x).
Suppose we want to compute the MC-explanations of a

positive decision f(x) = 1. The algorithm will first find the
portion α of instance x with variables set to 0. It will then



Algorithm 3 find-mc-explanation(f(X),x)

input: An OBDD f(X) and instance x.
output: An OBDD g(X) where g(x?) = 1 iff x? is an MC-
explanation of decision f(x).
main:

1: i← f(x)
2: α← the subset of x with variables set to 1− i
3: complement function f if i = 0
4: return i-minimize(conjoin(f, α))

conjoin4 f with α and 1-minimize the result. The obtained
decision function encodes the MC-explanations in this case.

An OBDD can be complemented and conjoined with a
variable instantiation in linear time. It can also be minimized
in linear time. This leads to the following complexity for gen-
erating MC-explanations based on OBDDs.

Theorem 3 When the decision function f(X) is represented
as an OBDD, the time and space complexity of Algorithm 3
is linear in the size of f , while guaranteeing that the output
function g(X) is also an OBDD.

Given OBDD properties, one can count MC-explanations in
linear time, and enumerate each in linear time.5

3.2 Case Study: Votes Classifier
We now consider the Congressional Voting Records (votes)
from the UCI machine learning repository [Bache and Lich-
man, 2013]. This dataset consists of 16 key votes by Con-
gressmen of the U.S. House of Representatives. The class
label is the party of the Congressman (positive if Republican
and negative if Democrat). A naive Bayes classifier trained
on this dataset obtains 91.0% accuracy. We compiled this
classifier into an OBDD, which has a size of 630 nodes.

The following Congressman from the dataset voted on all
16 issues and was classified correctly as a Republican:

(0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1)

This decision has five MC-explanations of cardinality 3, e.g.:

(0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0)

The MC-explanation tells us that this Congressmen could
have reversed four of their yes-votes, and the classifier would
still predict that this Congressman was a Republican.

4Conjoining f with α leads to a function h such that h(x) = 1
iff f(x) = 1 and x is compatible with α.

5Minimization, conjoin, and model enumeration are all linear
time operations on DNNFs, which is a superset of OBDDs [Dar-
wiche, 2001; Darwiche and Marquis, 2002]. Moreover,

OBDD ⊂ SDD ⊂ d-DNNF ⊂ DNNF

where we read ⊂ as “is-a-subclass-of”. Hence, DNNFs, d-DNNFs
and SDDs could have been used for supporting MC-explanations,
except that we would need a different algorithm for compiling clas-
sifiers. Moreover, beyond OBDDs, only SDDs support complemen-
tation in linear time. Hence, efficiently computing MC-explanations
of negative decision requires that we efficiently complement the de-
cision functions represented by DNNFs or d-DNNFs.

W F E G Pr(A=+|x) f(x) PI-explanations
- - - - 0.0002 - (w̄f̄ ) (w̄ē) (w̄ḡ) (f̄ ḡ) (ēḡ)
- - - + 0.0426 - (w̄f̄ ) (w̄ē)
- - + - 0.0006 - (w̄f̄ ) (w̄ḡ) (f̄ ḡ)
- - + + 0.1438 - (w̄f̄ )
- + - - 0.0016 - (w̄ē) (w̄ḡ) (ēḡ)
- + - + 0.2933 - (w̄ē)
- + + - 0.0060 - (w̄ḡ)
- + + + 0.6105 + (feg)
+ - - - 0.0354 - (f̄ ḡ) (ēḡ)
+ - - + 0.9057 + (wg)
+ - + - 0.1218 - (f̄ ḡ)
+ - + + 0.9732 + (wg)
+ + - - 0.2552 - (ēḡ)
+ + - + 0.9890 + (wg)
+ + + - 0.5642 + (wfe)
+ + + + 0.9971 + (wg) (wfe) (feg)

Table 2: A decision function with PI-explanations.

For a problem of this size, we can enumerate all instances
of the classifier. We computed the MC-explanations for each
of the 32, 256 positive instances, out of a possible number
of 216 = 65, 536 instances. Among these MC-explanations,
the one that appeared the most frequently was the MC-
explanation from the above example. This explanation cor-
responded to yes-votes on three issues: physician-fee-freeze,
el-salvador-aid, and crime. Further examination of the dataset
revealed that these issues were the three with the fewest Re-
publican no-votes.

4 Prime Implicant Explanations
We now consider the second type of explanations, called
prime-implicant explanations or PI-explanations for short.

Let y and z be instantiations of some features and call them
partial instances. We will write y ⊇ z to mean that y extends
z, that is, it includes z but may set some additional features.

Definition 5 (PI-Explanation) Let f(X) be a given decision
function. A PI-explanation of a decision f(x) is a partial
instance z such that

(a) z ⊆ x,

(b) f(x) = f(x?) for every x? ⊇ z, and

(c) no other partial instance y ⊂ z satisfies (a) and (b).

Intuitively, a PI-explanation of decision f(x) is a minimal
subset z of instance x that makes features outside z irrele-
vant to the decision. That is, we can toggle any feature that
does not appear in z while maintaining the current decision.
The number of features appearing in a PI-explanation will be
called the length of the explanation. As we shall see later, PI-
explanations of the same decision may have different lengths.

Table 2 depicts the decision function f for the admissions
classifier, with PI-explanations for all 16 instances. We write
(wg) for W =+, G=+ and (ēḡ) for E=−, G=−.

Consider a student (+ + - -) who was not admitted by this
decision function. There is a single PI-explanation (ēḡ) for
this decision. According to this explanation, it is sufficient to
have a poor entrance exam and a poor GPA to be rejected—it



Algorithm 4 pi-cover(f, π)

input: OBDD f and variable ordering π
output: ODD g encoding prime implicants of f
main:

1: if π is empty return f
2: remove first variable X from order π
3: g∗ ← pi-cover(fx̄ ∧ fx, π)
4: gx̄ ← pi-cover(fx̄, π), gx ← pi-cover(fx, π)
5: gx̄ ← gx̄ ∧ ¬g∗, gx ← gx ∧ ¬g∗
6: return ODD with branches gx̄, gx, g∗

does not matter whether they have work experience or if they
are a first-time applicant. That is, we can set these features to
any value, and the applicant would still be rejected.

Consider now a student (+ + + +) who was admitted. There
are three PI-explanations for this decision, (wg) (wfe) (feg),
with different lengths. These explanations can be visualized
as (+ * * +), (+ + + *) and (* + + +). This is in contrast to the
single MC-explanation (+ - - +) obtained previously.

4.1 Computing Prime Implicant Explanations
Algorithms exist for converting an OBDD for function f into
an ODD that encodes the prime implicants of f [Coudert and
Madre, 1993; Coudert et al., 1993; Minato, 1993].6 The re-
sulting ODD has three values for each variable: 0, 1 and ∗
(don’t care). The ODD encodes partial instances, which cor-
respond to the PI-explanations of positive instances (to get
the PI-explanations of negative instances, we complement the
OBDD f ). These algorithms recurse on the structure of the
input OBDD, computing prime implicants of sub-OBDDs.
If X is the variable labeling the root of OBDD f , then fx̄
denotes its 0-child and fx denotes its 1-child. Algorithm 4
computes prime implicants by recursively computing prime
implicants for fx̄, fx and fx̄∧fx [Coudert and Madre, 1993].

As we are interested in explaining a specific instance x,
we only need the prime implicants compatible with x (a
function may have exponentially many prime implicants, but
those compatible with an instance may be small). We ex-
ploit this observation in Algorithm 5, which computes the
PI-explanations of a given positive instance x by avoiding
certain recursive calls. Empirically, we have observed that
Algorithm 5 can be twice as fast as Algorithm 4 (comput-
ing PIs first, then conjoining with a given instance to obtain
PI-explanations). It can also generate ODDs that are an order-
of-magnitude smaller. The following table highlights this dif-
ference in size and running time, per instance, between Algo-
rithms 4 (cover) & 5 (inst). Relative improvements are de-
noted by impr; n denotes the number of features. We report
averages over 50 instances.

time (s) ODD size
dataset n cover inst impr cover inst impr
votes 16 0.04 0.02 1.99 2,144 139 15.42
spect 22 0.06 0.02 2.27 3,130 437 7.14

msnbc 16 0.07 0.02 2.56 5,086 446 11.39
nltcs 15 0.03 0.02 1.39 432 111 3.89

6These algorithms compute prime-implicant covers.

Algorithm 5 pi-inst(f, π,x)

input: OBDD f , variable ordering π, and instance x

output: ODD g for primes implicant compatible with x

main:
1: if π is empty return f
2: remove first variable X from order π
3: g∗ ← pi-inst(fx̄ ∧ fx, π,x)
4: if x sets X to x̄ then
5: gx̄ ← pi-inst(fx̄, π,x), gx ← ⊥
6: else
7: gx̄ ← ⊥, gx ← pi-inst(fx, π,x)
8: gx̄ ← gx̄ ∧ ¬g∗, gx ← gx ∧ ¬g∗
9: return ODD with branches gx̄, gx, g∗

4.2 Case Study: Votes Classifier
Consider again the voting record of the Republican Congress-
man that we considered earlier in Section 3.2:

(0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1)

There are 30 PI-explanations of this decision. There are 2
shortest explanations of 9 features:

( 0 1 1 0 0 0 1 1 0 )
( 0 1 1 1 0 0 1 1 0 )

The first corresponds to yes votes on:

physician-fee-freeze, el-salvador-aid,
superfund-right-to-sue, crime,

and no votes on

adoption-of-the-budget-resolution, anti-satellite-test-ban,
aid-to-nicaraguan-contras, mx-missile, duty-free-exports.

These 9 votes necessitate the classification of a Republican;
no other vote changes this decision. Finally, there are 506
PI-explanations for all decisions made by this classifier:

length of explanation 9 10 11 12 13 total
number of explanations 35 308 143 19 1 506

5 More On Monotone Classifiers
We now discuss a specific relationship between MC and PI
explanations for monotone classifiers.

An MC-explanation sets all features, while a PI-
explanation sets only a subset of the features. For a pos-
itive instance, we will say that MC-explanation x and PI-
explanation z match iff x can be obtained from z by setting
all missing features negatively. For a negative instance, MC-
explanation x and PI-explanation z match iff x can be ob-
tained from z by setting all missing features positively.

Theorem 4 For a decision f(x) of a monotone decision
function f :

1. Each MC-explanation matches some shortest PI-
explanation.

2. Each shortest PI-explanation matches some MC-
explanation.



Hence, for monotone decision functions, MC-explanations
coincide with shortest PI-explanations.

The admissions classifier we considered earlier is mono-
tone, which can be verified by inspecting its decision func-
tion (in contrast, the votes classifier is not monotone). Here,
all MC-explanations matched PI-explanations. For example,
the MC-explanation (+ - - +) for instance (+ + - +) matches the
PI-explanation (wg). However, the PI-explanation (wfe) for
instance (+ + + +) does not match the single MC-explanation
(+ - - +). One can verify though, by examining Tables 1 and 2,
that shortest PI-explanations coincide with MC-explanations.

MC-explanations are no longer than PI-explanations and
their count is no larger than the count of PI-explanations.
Moreover, MC-explanations can be computed in linear time,
given that the decision function is represented as an OBDD.
This is not guaranteed for PI-explanations.

PI-explanations can be directly extended to classifiers with
multi-valued features. They are also meaningful for arbitrary
classifiers, not just monotone ones. While our definition of
MC-explanations was directed towards monotone classifiers
with binary features, it can be generalized so it remains useful
for arbitrary classifiers with multi-valued features. In particu-
lar, let us partition the values of each feature into two sets: on-
values and off-values. Let us also partition the set of features
X into Y and Z. Consider now the following question about a
decision f(x), where x = yz. Keeping y fixed, find a culprit
of on-features in z that maintains the current decision. Defi-
nition 3 is a special case of this more general definition, and
Algorithm 3 can be easily extended to compute these more
general MC-explanations using the same complexity (that is,
linear in the size of ODD for the decision function).

6 Related Work
There has been significant interest recently in providing ex-
planations for classifiers; see, e.g., [Ribeiro et al., 2016b;
Elenberg et al., 2017; Lundberg and Lee, 2017; Ribeiro et al.,
2016a; 2018]. In particular, model-agnostic explainers were
sought [Ribeiro et al., 2016b], which can explain the behav-
ior of (most) any classifier, by treating it as a black box. Take
for example, LIME, which locally explains the classification
of a given instance. Roughly, LIME samples new instances
that are “close” to a given instance, and then learns a simpler,
interpretable model from the sampled data. For example, sup-
pose a classifier rejects a loan to an applicant; one could learn
a decision tree for other instances similar to the applicant, to
understand why the original decision was made.

More related to our work is the notion of an “anchor” in-
troduced in [Ribeiro et al., 2016a; 2018]. An anchor for
an instance is a subset of the instance that is highly likely
to be classified with the same label, no matter how the
missing features are filled in (according to some distribu-
tion). An anchor can be viewed as a probabilistic exten-
sion of a PI-explanation. Anchors can also be understood us-
ing the Same-Decision Probability (SDP) [Choi et al., 2012;
Chen et al., 2014; Choi et al., 2017], proposed in [Darwiche
and Choi, 2010]. In this context, the SDP asks, “Given that
I have already observed x, what is the probability that I will
make the same classification if I observe the remaining fea-

tures?” In this case, we expect an anchor x to have a high
SDP, but a PI-explanation x will always have an SDP of 1.0.

7 Conclusion
We proposed an algorithm for compiling latent-tree Bayesian
network classifiers into decision functions in the form of
ODDs. We also proposed two approaches for explaining
the decision that a Bayesian network classifier makes on a
given instance, which apply more generally to any decision
function in symbolic form. One approach is based on MC-
explanations, which minimize the number of positive features
in an instance, while maintaining its classification. The other
approach is based on PI-explanations, which identify a small-
est set of features in an instance that renders the remaining
features irrelevant to a classification. We proposed algorithms
for computing these explanations when the decision func-
tion has a symbolic and tractable form. We also discussed
monotone classifiers and showed that MC-explanations and
PI-explanations coincide for this class of classifiers.
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A Proofs
Proof of Theorem 1 Our proof is based on analyzing Algo-
rithm 2 on an arbitrary latent-tree classifier with n variables
and b values, and bounding the size of the decision graph D
after each call to expand-then-merge. For any iteration
of the while-loop, let D be the initial decision graph and let
D′ be the decision graph generated after the expanding phase
of expand-then-merge(., D, .). Furthermore, let S(D)
denote the number of leaf nodes of D (similarly for D′).
We will show the following loop invariant: S(D′) ≤ b

3n
4 .

For any iteration, S(D) is bounded by min(bi, bn−i), where
i denotes the depth of D. There are n − i variables re-
maining, and the choice of C in the algorithm guarantees
that the number of variables under C is at most n−i

2 . Thus,

S(D′) is bounded by b
n−i
2 S(D) = min(b

n+i
2 , b

3(n−i)
2 ). If

i ≤ n
2 , then S(D′) ≤ b

n+n/2
2 = b

3n
4 . Otherwise if i > n

2

then S(D′) ≤ b
3(n−n/2)

2 = b
3n
4 . Thus, after every call to

expand-then-merge, the decision graph D′ has at most
b

3n
4 leaf nodes and the merging phase cannot increase the

number of nodes, giving us a total size bound of O(nb
3n
4 ).

To obtain the size bound of O(b
3n
4 ), observe that S(D′) is at

least half of the number of newly expanded nodes for each
call, and at most one such call can have S(D′) > b

2n
3 nodes.

Finally, merging a node in D′ takes time logarithmic in the
size of D′, so the time complexity is O(nb

3n
4 ). �

Proof of Theorem 2 Our proof is based on [Chen et al.,
2014], which showed that computing the same-decision prob-
ability (SDP) is NP-hard in naive Bayes networks. Say we
have an instance of the number partitioning problem, where
we have positive integers a1, . . . , an and we ask if there exists



a set I ⊆ {1, . . . , n} such that
∑

i∈I ai =
∑

i/∈I ai. Suppose
we have a naive Bayes classifier with features Xi where:

log
Pr(xi | c)
Pr(xi | c̄)

= ai and log
Pr(x̄i | c)
Pr(x̄i | c̄)

= −ai

and where we have a uniform prior Pr(C). Let xI be the
instance where Xi is set to true if i ∈ I and Xi is set to false
if i /∈ I . Consider the log-odds logO(c | xI) = log Pr(c|xI)

Pr(c̄|xI) :

logO(c | xI) =
∑
i∈I

log
Pr(xi | c)
Pr(xi | c̄)

+
∑
i/∈I

log
Pr(x̄i | c)
Pr(x̄i | c̄)

=

(∑
i∈I

ai

)
−

(∑
i/∈I

ai

)
If I is a number partitioning solution, then logO(c | xI) = 0.
Otherwise logO(c | xI) = − logO(c | xJ) 6= 0 where
J = {1, . . . , n} \ I . Hence, if there is no solution I , then half
of the instances x have log-odds strictly greater than zero,
and the other half have log-odds strictly less than zero. Thus,
there exists a solution iff the number of positive instances in
the decision function of N is strictly less than 1

2 · 2
n given a

(strict) threshold of 1
2 . Finally, if we can compile the decision

function of N to an OBDD in polytime, then we can per-
form model counting in time linear in the size of the OBDD,
and hence solve number partitioning, which is NP-complete.
Thus, compiling the decision function is NP-hard. �

Proof of Theorem 3 An OBDD f can be complemented by
simply switching its 0-sink and 1-sink. Since α is a conjunc-
tion of literals, we can conjoin f with α by manipulating the
OBDD structure directly: if X appears in α positively (nega-
tively), we redirect the 0-edge (1-edge) of each OBDD node
labeled by X to the 0-sink. Clearly, this operation takes time
linear in the size of f . The operation of i-minimization can
also be performed in time linear in the size of f using the
technique given in [Darwiche, 2001] for DNNFs. The mini-
mization procedure performs two passes. The first pass per-
forms an addition or minimization at each node. The second
pass redirects some edges depending on simple tests. �

Proof of Theorem 4 Suppose, without loss of generality,
that we are explaining a positive instance x? of a mono-
tone decision function f (the negative case is symmetric).
The proof uses the following observation: A shortest PI-
explanation z must have all its features set positively (oth-
erwise, due to monotonicity, we can just drop the negative
features in z to obtain a shorter PI-explanation).

1. Suppose that x is an MC-explanation. Let z be the por-
tion of x containing all features that are set positively.
Due to monotonicity, we can toggle features of x that
are outside Z without changing the decision. Moreover,
no subset of z will have this property; otherwise, x can-
not be an MC-explanation. Hence, z is a PI-explanation
that matches x. Suppose now that z is not a shortest
PI-explanation and let z′ be a shortest PI-explanation.
Then we can augment z′ by setting all missing fea-
tures negatively, giving us a positive instance with a 1-
cardinality less than that of x. Hence, x cannot be an
MC-explanation.

2. Suppose that z is a shortest PI-explanation. Then all
features in z must be set positively. Now let x be the
result of augmenting z by setting all missing features
negatively. Then x is a positive instance since z is
a PI-explanation. Suppose now that x is not an MC-
explanation, and let x′ be an MC-explanation. Then let
z′ be the portion of x′ containing all features that are
set positively. By monotonicity, z cannot be a shortest
PI-explanation since z′ is shorter than z yet all of its
completions would be positive instances.
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