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Abstract
A new approach was recently proposed for explaining the decisions made by Bayesian network
classifiers. This approach is based on first compiling a given classifier (i.e., its decision function)
into a tractable representation called an Ordered Decision Diagram (ODD). Given an ODD repre-
sentation of the decision function, we get the ability to provide reasons for why a classifier labels a
given instance positively or negatively. We show in this paper that this approach also gives us the
ability to verify the behavior of classifiers. We also provide case studies in explaining and verifying
classifiers for some real-world domains, such as in medical diagnosis and educational assessment.

1. Introduction

Recent progress in artificial intelligence and the increased deployment of AI systems have led to
highlighting the need for explaining the decisions made by such systems, particularly classifiers;
see, e.g., (Ribeiro et al., 2016; Elenberg et al., 2017; Lundberg and Lee, 2017; Ribeiro et al., 2018).1

For example, one may want to explain why a classifier decided to turn down a loan application, or
rejected an applicant for an academic program, or recommended surgery for a patient. Answering
such why? questions is particularly central to assigning blame and responsibility, which lies at the
heart of legal systems and may be required in certain contexts.2

To address such challenges, we recently proposed an approach for explaining the decisions
of Bayesian network classifiers (Shih et al., 2018). In this paper, we further consider the formal
verification of such classifiers; that is, mathematically analyze and validate the behavior of a given
classifier. For example, we may want to verify that the classifier’s behavior is consistent with the
knowledge of a domain expert (a doctor may assert that if testsX and Y are observed positively, then
the classifier should make a positive diagnosis, independent of the results of any other test). We may
also want to verify whether a classifier respects certain properties, such as monotonicity (a student
whose correct answers include those of another cannot be assessed less positively). Moreover,
whenever we conclude that a classifier is not behaving as intended, we want to extract a simple
example demonstrating that behavior (enabling the interactive design of a classifier, via debugging).

We pursue a symbolic approach to explaining and verifying Bayesian network classifiers based
on the following insight. Consider a classifier that classifies instances as 1 or 0 based on its observed,
discrete features. Any such classifier (Bayesian network or otherwise) specifies a symbolic function
that maps features into a binary decision (1 or 0) (Chan and Darwiche, 2003). This is called the

1. It is now recognized that opacity, or lack of explainability is “one of the biggest obstacles to widespread adoption of
artificial intelligence” (The Wall Street Journal, August 10, 2017).

2. See, for example, the EU general data protection regulation, which has a provision relating to explainability, https:
//www.privacy-regulation.eu/en/r71.htm.
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Figure 1: A naive Bayes classifier and its corresponding decision function as an OBDD. The clas-
sifier is specified using the class prior (87%), threshold (90%), in addition to the false
positive (fp) and false negative (fn) rates of features. The class variable and features
are all binary. In Figure 1(b), an edge labeled 1/0 corresponds to a positive/negative test
result and a sink labeled 1/0 corresponds to a yes/no prediction.

classifier’s decision function and unambiguously characterizes its behavior. The approach is to
represent this decision function using a symbolic and tractable representation, which is then used
to symbolically reason about the classifier’s behavior. Recent results showed how to compile the
decision function of a Bayesian network classifier into an Ordered Decision Diagram (ODD) and
use the ODD to explain the decisions made by the classifier (Shih et al., 2018).3 We pursue this
approach further by showing how it can be used to formally verify the classifier’s behavior as well.
We illustrate our approach through case studies from real-world Bayesian networks developed in
the domains of educational assessment and medical diagnosis.

Our approach follows a recent trend in analyzing machine learning models using symbolic ap-
proaches; see, e.g., (Katz et al., 2017; Leofante et al., 2018; Narodytska et al., 2018; Shih et al.,
2018). While machine learning and statistical methods are key for learning classifiers, it is evident
that symbolic and logical approaches, which are independent of any of the models parameters, are
key for analyzing and reasoning about them, as we shall demonstrate later.

This paper is organized as follows. In Section 2, we cover technical preliminaries and discuss
recent advances in compiling Bayesian network classifiers into ODDs. In Section 3, we highlight
how to formally verify classifiers when their decision functions are represented as ODDs. In Sec-
tion 4, we provide two case studies, illustrating the utility of ODDs for explaining and verifying
classifiers. We finally conclude in Section 5.

2. Compiling Bayesian Network Classifiers

Consider Figure 1(a) which depicts a naive Bayes classifier for detecting pregnancy. Given results
for the three tests, if the probability of pregnancy passes the given threshold (90%), we would then
obtain a “yes” decision on pregnancy.

Figure 1(b) depicts the decision function of this classifier, in the form of an Ordered Binary De-
cision Diagram (OBDD). Given some test results, we make a corresponding decision on pregnancy

3. ODDs extends Ordered Binary Decision Diagrams (OBDDs) to use multi-valued variables (discrete features), while
maintaining the tractability and properties of OBDDs (Bryant, 1986; Meinel and Theobald, 1998; Wegener, 2000).
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by simply navigating the OBDD. We start at the root, which is labeled with the Urine (U) test. De-
pending on the outcome of this test, we follow the edge labeled 1 (positive), or the edge labeled 0
(negative). We repeat for the test labeled at the next node. Eventually, we reach a leaf node labeled
“1” or “0,” which provides the resulting classification.

The decisions rendered by this OBDD are guaranteed to match those obtained from the naive
Bayes classifier. We have thus converted a probabilistic classifier into an equivalent classifier that
is symbolic and tractable. This technique was employed recently to explain the decisions made by
Bayesian network classifiers (Shih et al., 2018). We show in this paper that it can also be used to
formally verify the classifier’s behavior, while making additional contributions to explanation. We
need to first settle some technical preliminaries in the rest of this section.

For the rest of the paper, upper case letters (e.g., X) will be used to denote variables. For a
Boolean variable X , we use x to denote its positive literal and x̄ to denote its negative literal. Bold
upper case letters (e.g., X) will be used to denote sets of variables and bold lower case letters to
denote their instantiations (e.g., x).

2.1 Bayesian Network Classifiers

A Bayesian network classifier is a Bayesian network containing a special set of variables: a single
class variable C and n feature variables X = {X1, . . . , Xn}. The class C is usually a root in the
network and the features X are usually leaves. In this paper, we assume that the class variable
is binary, with two values c and c̄ that correspond to positive and negative classes, respectively
(i.e., “1” and “0” decisions). An instantiation of variables X is denoted x and called an instance.
A Bayesian network classifier specifying probability distribution Pr(.) will classify an instance x
positively iff Pr(c | x) ≥ T , where T is called the classification threshold.

Definition 1 (Decision Function) Suppose that we have a Bayesian network classifier with features
X, class variable C and a threshold T . Let f(X) be a function that maps instances x into {0, 1}.
We say that f(X) is the classifier’s decision function iff

f(x) =

{
1 if Pr(c | x) ≥ T
0 otherwise.

Instance x is positive if f(x) = 1 and negative if f(x) = 0.

The naive Bayes classifier is a special type of a Bayesian network classifier, where edges extend
from the class to features (no other nodes or edges). Figure 1(a) depicts a naive Bayes classifier.

2.2 Ordered Decision Diagrams

An Ordered Binary Decision Diagram (OBDD) is a rooted, directed acyclic graph with two sinks
called the 1-sink and 0-sink. An OBDD is a graphical representation of a Boolean function on
variables X = X1, . . . , Xn. Every node (except the sinks) in the OBDD is labeled with a variable
Xi and has two labeled outgoing edges: the 1-edge and the 0-edge. The labeling of the OBDD
nodes respects some global ordering of the variables X: if there is an edge from a node labeled Xi

to a node labeled Xj , then Xi must come before Xj in the global ordering. To evaluate the OBDD
on an instance x, start at the root node of the OBDD and let xi be the label of the current node.
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Repeatedly follow the xi-edge of the current node, until a sink node is reached. Reaching the 1-sink
means x is evaluated to 1 and reaching the 0-sink means x is evaluated to 0 by the OBDD.

An OBDD is defined over binary variables, but can be extended to discrete variables with arbi-
trary values. This is called an ODD: a node labeled with variableXi has one outgoing edge for each
value of variable Xi. Hence, an OBDD/ODD can be viewed as representing a function f(X) that
maps instances x into {0, 1}. Figure 1(b) depicted an OBDD. Note: in this paper, we use positive/1
and negative/0 interchangeably.

An OBDD is a tractable representation of a function f(X) as it can be used to efficiently
answer many queries about the function. For example, one can in linear time count the number
of positive instances x (i.e., f(x) = 1), called the models of f . One can also conjoin, disjoin
and complement OBDDs efficiently. This tractability, which carries over to ODDs, was critical
for efficiently generating explanations (Shih et al., 2018). It will also be critical to our formal
verification approach. For more on OBDDs, see Meinel and Theobald (1998); Wegener (2000).

2.3 Compiling Decision Functions

Chan and Darwiche (2003) proposed an algorithm for compiling a naive Bayes classifier into an
ODD, while guaranteeing an upper bound on the time of compilation and the size of the resulting
ODD. In particular, for a classifier with n features, the compiled ODD has a number of nodes that is
bounded by O(b

n
2 ) and can be obtained in time O(nb

n
2 ). Here, b is the maximum number of values

that a variable may have. The actual time and space complexity can be much less, depending on the
classifier’s parameters and variable order used for the ODD (as observed experimentally). In gen-
eral, we do not expect a significantly better upper bound on the time complexity as the compilation
process into ODDs is NP-hard (Shih et al., 2018). More recently, algorithms were developed that
can compile the decision function of a general Bayesian network classifier into an ODD (Shih et al.,
2018; Anonymous, 2018). We shall employ these algorithms in our case studies.

3. Verifying and Explaining Classifiers using ODDs

Consider a decision function f over variables X and let Y ⊆ X. The conditioning of f on instan-
tiation y, written f |y, is a sub-function over variables X \Y that results from setting variables Y
to their values in y. Furthermore, decision function f entails another decision function g, denoted
by f |= g, iff every positive instance of f is also a positive instance of g (i.e., f(x) = 1 implies
g(x) = 1). Lastly, we write f̄ to denote the negation of f .

We will next propose a number of formal verification queries and show how to compute them
efficiently. We will also contribute an additional explanation query, beyond (Shih et al., 2018), and
show how to compute it efficiently as well.

3.1 Verifying Monotonicity

We will first consider monotonicity queries while assuming binary features to simplify the treatment.
Intuitively, a monotone classifier satisfies the following. A positive instance remains positive if we
flip some of its features from 0 to 1. Moreover, a negative instance remains negative if we flip
some of its features from 1 to 0. In certain domains, one expects or desires a Bayesian network
classifier learned from data to be monotone (van der Gaag et al., 2004). For example, in the context
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of educational assessment, we expect a student to be assessed positively if their correct answers are
a superset of those of another student who has been assessed positively.

More formally, consider two instances x? and x. We write x? ⊆1 x to mean: the features set to
1 in x? is a subset of those set to 1 in x. Monotone classifiers are then characterized by the following
property of their decision functions, which is well-known in the literature on Boolean functions.

Definition 2 A decision function f(X) is monotone iff

x? ⊆1 x only if f(x?) ≤ f(x).

One way to read the above formal definition is as follows. If the positive features in instance x
contain those in instance x?, then instance x must be positive if instance x? is positive.

In general, it is difficult to decide whether a Bayesian network classifier is monotone (van der
Gaag et al., 2004). However, if the decision function of the classifier is represented as an ODD, then
monotonicity can be decided in time quadratic in the ODD size (Horiyama and Ibaraki, 2002). A
simpler but less efficient approach is based on the following observation: a decision function f is
monotone iff f |x̄ |= f |x for all variables X . Given an ODD f , we can perform conditioning (f |x̄,
f |x) and test entailment (f |x̄ |= f |x) in time polynomial in the size of input ODDs.

Finally, we consider unateness, a mild generalization of monotonicity, which can also be verified
efficiently given a decision function represented by an ODD.

Definition 3 A decision function f(X) is unate iff for all X

f |x̄ |= f |x or f |x |= f |x̄.

Any monotone decision function is also unate. Intuitively, in a unate function, for each variable
X there exists a polarity x or x̄ where flipping variable X to that polarity will cause a positive
instance to remain positive. In other words, it behaves like a monotone function when we interpret
the appropriate polarity of each variable as if it were positive. As with monotone functions, we can
efficiently test if a given decision function is unate given an ODD representation of that function.
Moreover, if a decision function is monotone or unate, then certain explanations become more
efficient to compute, such as prime-implicant explanations, as shown by Shih et al. (2018).

3.2 Finding Irrelevant Features

Some features may be more pertinent to a class variable than others. At the extreme, there may exist
a subset of features that render the remaining features irrelevant. This particularly comes up with
Bayesian networks that have multiple class variables, as only a subset of features may turn out to
be relevant to a particular class variable. In this case, we would like to detect and then drop these
irrelevant features, to obtain a simpler and more computationally efficient classifier.

Definition 4 A decision function f(X) essentially depends on variable X iff f |x 6= f |x̄.

If the decision function does not essentially depend on variable X , we say that variable X is
irrelevant to the decision. In an ODD, conditioning takes time that is linear in the size of the ODD.
Moreover, equivalence testing can be done in constant time (assuming an appropriate implementa-
tion). Hence, determining if a variable is irrelevant can be done efficiently.4

4. In fact, if an ODD is reduced (all redundant nodes are removed/merged), then it suffices to scan the ODD to see if
any ODD node is labeled by variable X .
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3.3 Verifying Classification Robustness

Consider a classifier and one of its positive instances x. In certain domains, we would like to know
whether such a classification is robust to perturbations in the input; see, e.g., Narodytska et al.
(2018) which uses SAT solvers to test the robustness of neural networks. As an example, in the
domain of educational assessment, we may want to be aware whether a passing student was only a
few test questions away from failing a test, or whether they would have still passed it, even if they
had gotten many more questions wrong. As another example, in the context of image classification
and self-driving cars, we may want to be aware if an image is only a few pixels away from being
classified as containing a stop sign versus not.

Given the decision function f of a classifier, we define the robustness of an instance x as the
minimum number of features that we need to flip (from positive to negative, or negative to positive),
before we flip the instance x from positive to negative (or negative to positive).

Definition 5 Given a non-trivial5 decision function f and an instance x, we define the robustness
of the classification of x as:

robustnessf (x) = min
x′:f(x′) 6=f(x)

d(x′,x)

where d(x′,x) denotes the Hamming distance between x′ and x, i.e., the number of variables on
which x and x′ differ.

The following theorem implies an efficient algorithm for computing robustness.

Theorem 6 Consider a decision function f(Y,X). The robustness of a positive instance y,x satis-
fies:

robustnessf (y,x) = min{robustnessf |y(x), 1 + robustnessf |ȳ(x)}

where robustnessf (x) = 0 if f = ⊥ (i.e., false) and robustnessf (x) =∞ if f = > (i.e., true).

Due to this theorem, it takes time linear in the size of an ODD to compute the robustness of a
given instance (by caching intermediate results, each node of an ODD is evaluated at most once).
Robustness can be viewed as an explanation query as it pertains to a particular instance and decision,
in contrast to validating an instance-independent property of the classifier.

3.4 Verifying If-Then Rules and Decision Independence

Our next verification queries require the definitions of partial instance and an implicant.

Definition 7 Given a decision function f(X), let Z ⊆ X and Y = X\Z. An instantiation z will be
called a partial instance of function f . Moreover, the partial instance z is an implicant of function
f iff f(zy) = 1 for all instantiations y.

Consider a medical domain where we have learned a classifier from patient data, with a corre-
sponding decision function f . One way of verifying the behavior of such a classifier is to compare it
with the “if-then” rules of a domain expert, such as a doctor. For example, a doctor may pre-define

5. A trivial decision function maps all instances to 1, denoted >, or maps all instances to 0, denoted ⊥.
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network class # features width ODD size compilation time (s)
adaptive-testing HV1 20 8 1,164 40
adaptive-testing HV2 20 8 1,924 31
adaptive-testing MT 20 8 1,437 21

mammography RegOutcome 15 4 156 7
math-skills S6 46 4 3,693,629 61,088

Table 1: Compilations of Bayesian network classifiers.

certain types of behaviors that we would expect a reliable classifier would respect: “if tests A, B,
andC are positive, then the patient should always be diagnosed positively.” Such a constraint can be
verified by testing whether the corresponding partial instance z = a, b, c is an implicant of the deci-
sion function f . By verifying that a classifier and a domain expert agree on many such constraints,
one can improve the trust that one has in a classifier learned from data.

This query can be computed efficiently since a partial instance z is an implicant of f iff f |z = >.
Given the set of tractable operations on ODDs, we can test whether z is an implicant of ODD f in
time polynomial in the size of the ODD: we simply set each variable in z to its specified value, and
test whether the resulting ODD is true.

Consider now a partial instance z which is either an implicant of f or an implicant of f̄ . In such
a partial instance, no setting of the remaining features will change the decision of the classifier (re-
gardless of what the decision is). That is, the decision is now independent of the remaining features,
given the partial instance z so no further observations are necessary. This decision independence
is weaker than probabilistic independence—additional observations may change the posterior of a
class, but the decision may not, for a given threshold.

In some domains, we may also be interested in the shortest partial instances that yield decision
independence. This is related to computing the shortest prime implicants (Marques-Silva, 1997;
Coudert and Madre, 1993; Coudert et al., 1993; Minato, 1993; Shih et al., 2018). Consider the
domain of adaptive testing, where we are trying to assess the knowledge of a student who is taking a
test. Typically, we select the questions to ask the student in an adaptive way, to minimize the number
of questions asked while also minimizing our uncertainty about the student’s knowledge. When this
adaptive process is guided by a classifier, the above query will tell us the minimum number of test
questions that, if answered in a certain way, will render the assessment independent of the remaining
questions.

4. Explanation and Verification: Case Studies

In this section, we illustrate our ability to explain and verify a Bayesian network classifier using
real-world networks from two domains: educational assessment and medical diagnosis. We also
provide evidence on the scalability of techniques utilized, particularly the compilation into ODDs.
We first consider a network used for adaptive testing in (Vomlel, 2002a,b). Here, each input in-
stance x represents a student whose math skills we want to assess. Next, we consider a network
used for diagnosing breast cancer (Gimenez et al., 2014). Here, each input instance represents the
mammography report of a female patient that we want to diagnose.

We compile these networks into ODDs, using the compilation algorithm reported in Anonymous
(2018), which generalizes the algorithm of Shih et al. (2018) for compiling latent tree Bayesian
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networks to more general Bayesian network classifiers. Our experiments were performed on a
system using a single Intel(R) Xeon(R) CPU E5-2670 processor with access to 200 GB of memory.

Table 1 provides some statistics on the Bayesian network classifiers that we considered. For
a given network, we picked class variables from the root variables, and considered every leaf
variable as a feature. We evaluate network adaptive-testing in our case study on educa-
tional assessment, and we evaluate network mammography in our case study on medical diagno-
sis. We also report the compilation results of a much larger network for educational assessment,
math-skills (Plajner and Vomlel, 2015). We use the reported classification threshold of 0.02
for the mammography network (Gimenez et al., 2014) and a classification threshold of 1

2 for the
adaptive-testing and math-skills networks, which had no reported classification thresh-
old. In Table 1, column class reports the class node, column # features reports the number of fea-
tures, column width reports the network’s (tree)-width, as approximated using the minfill heuristic.

Columns ODD size and compilation time report the size of the compiled ODD and the time
taken to compile it. The variable ordering is decided by the ordering heuristic provided in the com-
pilation algorithm of Anonymous (2018), which roughly tries to minimize the size of the resulting
ODD. We observe that networks adaptive-testing and mammography yield relatively suc-
cinct ODD representations for the number of features considered; in contrast, a complete decision
tree would have a corresponding size of O(2n) for n binary features. We also successfully com-
piled the network math-skills, which has significantly more features and is outside the scope
of brute-force enumeration.

4.1 Educational Assessment: Adaptive Testing

We consider first an educational assessment network that evaluates a student’s ability to solve math-
ematical problems involving fractions (Vomlel, 2002a,b). This network was used for adaptive test-
ing, where a student is dynamically evaluated, and test questions are selected adaptively for each
student. This network has three root nodes: node HV1 judges addition and subtraction operations,
node HV2 judges advanced addition and subtraction problems, and node MT judges multiplication
of fractions. In total, there are 21 nodes representing skills and misconceptions. In addition, 20 leaf
nodes (features) represent student responses to test questions, whose outcomes depend on different
skills and misconceptions.

We first examine the classifier using root node HV2 as the class variable, using a threshold of 1
2 .

We start by verifying whether the network is monotonic or not. Each observed feature represents the
student’s answer to a given math problem (true/1 or false/0); hence, we would expect the network to
be unate. That is, providing the correct answer (which may be 1 or 0) should not flip a positive as-
sessment to a negative one. Using the test that we described in Section 3.1, we find that the network
is not unate. We can pinpoint a specific counterexample that demonstrates the non-monotonicity of
the classifier.6

Consider the following ordering π of features (which was used to compile the ODD), and the
corresponding four instances α, α′, β and β′.

π = [X11, X10, X13, X16, X15, X17, X14, X9, X8, X18, X19, X20, X12, X4, X3, X2, X1, X5, X7, X6]

α = [0, 0, 0,0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1] β = [0, 0, 0,0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1]

α′ = [0, 0, 0,1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1] β′ = [0, 0, 0,1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1]

6. First, we find a variable X where f |x̄ |= f |x does not hold. We can then enumerate models of f |x̄ · f̄ |x which
corresponds to positive instances where flipping X from negative to positive causes the instance to flip to negative.
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In this case, a positive instance α becomes a negative instance α′ by flipping feature X16 from
negative (0) to positive (1); hence the classifier is not monotone. A negative instance β becomes
a positive instance β′ by flipping the same feature X16 from negative (0) to positive (1); hence the
classifier is also not unate.7 This suggests that the following scenario is possible. A student com-
pletes the math test, and while getting some questions wrong, they are predicted by the network to
have a satisfactory level of mathematical aptitude. The student then corrects one of the incorrect
responses, but is now predicted to have an unsatisfactory level of mathematical aptitude. If mono-
tonicity or unateness is indeed a desired property of the classifier, then we can try to “debug” the
classifier, starting with the example instances that we identified above as witnesses to the classifier’s
non-monotonicity.

Next, we test for irrelevant variables, as described in Section 3.2. By inspecting the compiled
OBDD, we find that none of the features of the classifier are irrelevant. Hence, each question on the
math test can be considered essential to every class variable: for each question, there exists a partial
instance whose predicted label can be flipped by flipping the response of that question.

We next consider the robustness, as described in Section 3.3, of the students κ and γ with the
following feature vectors:

κ = [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1]

γ = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Student κ answered 11 questions as true (1), and 9 questions as false (0), and is assessed by the
classifier positively. This particular instance has a robustness of 1: the student is one response away
from being assessed negatively. In particular, if this student changes their response to question
X9, the classifier’s prediction would flip. Student γ answered all 20 questions as false (0), and is
assessed by the classifier negatively. This instance has a high robustness value of 5—the student
cannot change the classifier’s decision even by correcting up to 4 responses on the math test.

Finally, we consider the implicants of a classifier’s decision function, as described in Section 3.4.
In particular, the following partial instance κ? is a minimal implicant of the decision function that
is compatible with student κ we considered earlier:

κ? = [−,−,−, 0, 0, 0,−, 1,−, 1, 1, 1, 0,−, 1,−, 1,−,−,−]

where “–” denotes an irrelevant value. If we consider vector κ to be the answers that a student
would provide to all test questions, then vector κ? is a minimal subset of questions that we could
ask, that would render the decision independent of the remaining features. Hence, there is no need
to ask further test questions, as our assessment would not change. Further, there is no smaller
selection of test questions for this student, that would allow us to stop asking questions earlier, since
this implicant is minimal (also called a “prime implicant”).

4.2 Medical Diagnosis: Breast Cancer
We next consider a Bayesian network classifier for detecting whether a female patient has breast
cancer based on her mammography report (Gimenez et al., 2014). The classifier has 12 features
and one root node RegOutcome representing the diagnosis of breast cancer, which has two states:
Benign and Malignant. For simplicity, we represent each multi-valued feature with k states using
dlog2(k)e binary variables. This transformation results in a classifier with 15 binary features. The

7. The classifier is not unate when using a threshold of 1
2

. Using a different threshold may result in a unate or even
monotonic classifier.
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Figure 2: Mammography OBDD. Nodes at each level of the OBDD are labeled with the corre-
sponding variable in the used variable ordering (i.e., nodes at the first level are labeled
with AsymmetricDensity and nodes at the last level are labeled with FamilyHistory1).

threshold of this classifier is 0.02, which is the threshold for suspicious abnormality in the BI-RADS
assessment scale (Gimenez et al., 2014). We used the following variable ordering to compile the
classifier into an ODD, which is illustrated in Figure 2.

π =[AsymmetricDensity,MassSize, LymphNode,AxillaryAdenopathy,SkinLesion,NippleRetraction,

MassShape1,MassShape0,PersonalHistory,TrabecularThickening,SkinRetraction,

BreastDensity1,BreastDensity0,FamilyHistory0,FamilyHistory1]

Note that this ODD is relatively small (156 nodes) compared to the number of features (15); in
contrast, the corresponding decision tree would have O(215) nodes.

Next, we verify whether the classifier is monotonic or not, as described in Section 3.1. Consider
the following instances (corresponding to patients):

α = [0, 0, 0, 0, 0, 0, 0, 0,0, 1, 1, 0, 0, 1, 0] β = [0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 1, 0, 0, 0]

α′ = [0, 0, 0, 0, 0, 0, 0, 0,1, 1, 1, 0, 0, 1, 0] β′ = [0, 0, 0, 0, 0, 0, 0, 0,1, 0, 0, 1, 0, 0, 0]

In this case, a positive instanceα becomes a negative instanceα′ by flipping feature PersonalHistory
from negative (0) to positive (1); hence the classifier is not monotone. A negative instance β be-
comes a positive instance β′ by flipping the same feature PersonalHistory from negative (0) to
positive (1); hence the classifier is also not unate. This classifier suggests that it is possible for two
patients to share the same mammography report except for their personal history, and the patient
with past history of breast cancer will be predicted as having malignant findings compared to the
patient with no past history of breast cancer. Even though the network is not monotonic, there
are variables that individually behave monotonically. Consider the variable MassSize, for example:
flipping it from large to small will never flip the classification decision from Benign to Malignant.

Next, we test for the presence of irrelevant variables, as in Section 3.2, of which we found none.
This can be confirmed by inspection of Figure 2, where we can find every variable appearing in a
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(non-vacuous) node in the OBDD. Hence, we cannot prune any feature appearing as a field in the
mammography report, as some partial instance will depend on that feature.

As in Section 3.3, we now examine the robustness of the following instance κ.

κ = [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

This instance represents a mammography report with all features observed as 0 except for MassSize
and LymphNode (observed as 1). The classifier predicts this instance as Benign. Furthermore, the
robustness of this instance is 2: we must flip at least two features in this instance in order to have it
be classified as Malignant. The following instance κ′ is one such example of a Malignant instance
that is two flips away from κ.

κ′ = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

By analyzing the original network, we find that observing MassSize and LymphNode to be 1 is
very suggestive of a Benign prediction. Finally, consider the following partial instance:

κ? = [−, 0, 0,−,−,−, 0, 0,−, 0,−, 0, 0,−,−]

which is compatible with patient κ′ that is classified as Malignant. This κ? is an implicant of the
classifier’s decision function, as discussed in Section 3.4. This implicant sets 7 of the features to 0.
Interestingly, MassSize and LymphNode are two of the variables in the implicant: observing them
and five other variables to 0 is strong enough to guarantee a classification of Malignant, independent
of the remaining features. This is consistent with the robustness query in that the variables MassSize
and LymphNode are strong predictors of the classification decision.

5. Conclusion

We explored the formal verification and explanation of Bayesian network classifiers. Using recently
developed algorithms for compiling Bayesian network classifiers into Ordered Decision Diagrams
(ODDs), we obtain an unambiguous and tractable representation of a classifier’s decision function,
which we exploit to verify and explain the behavior of the classifier. In particular, we proposed a
few verification queries and how to compute them in polynomial time. We also proposed a new
explanation query relating to decision robustness and provided a corresponding polynomial-time
algorithm as well. We demonstrated the utility of these methods by generating insights into real-
world networks from the domains of educational assessment and medical diagnosis.
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