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Abstract

A neural network computes a function. A central property of neural networks is that they are
“universal approximators:” for a given continuous function, there exists a neural network that can
approximate it arbitrarily well, given enough neurons (and some additional assumptions). In con-
trast, a Bayesian network is a model, but each of its queries can be viewed as computing a function.
In this paper, we identify some key distinctions between the functions computed by neural net-
works and those by Bayesian network queries, showing that the former are more expressive than
the latter. Moreover, we propose a simple augmentation to Bayesian networks (a testing operator),
which enables their queries to become “universal approximators” as well.
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1. Introduction

The field of artificial intelligence (AI) has seen two major milestones throughout its history. Shortly
after the field was born in the 1950s, the focus turned to symbolic, model-based approaches, which
were premised on the need to represent and reason with domain knowledge, and exemplified by
the use of logic to represent such knowledge (McCarthy, 1959). In the 1980s, the focus turned
to probabilistic, model-based approaches, as exemplified by Bayesian networks and probabilistic
graphical models more generally (first major milestone) (Pearl, 1988). Starting in the 1990s, and as
data became abundant, these probabilistic models provided the foundation for much of the research
in machine learning, where models where learned either generatively or discriminatively from data.
Recently, the field shifted its focus to numeric, function-based approaches, as exemplified by neural
networks, which are trained discriminatively using labeled data (deep learning, second major mile-
stone) (Goodfellow et al., 2016; Hinton et al., 2006; Rosenblatt, 1958; McCulloch and Pitts, 1943).
Perhaps the biggest surprise with the second milestone is the extent to which certain tasks, associ-
ated with perception or limited forms of cognition, can be approximated using functions (i.e., neural
networks) learned purely from labeled data, without the need for modeling (Darwiche, 2018).

While this evolution of the field has increased our abilities, the emerging techniques have been
pursued by somewhat independent research communities. The price has been a lack of enough
integration/fusion of the various methods, which are limiting us in realizing their collective power.
Logic provides a rich framework for representing knowledge in the form of domain constraints and
comes with profound reasoning mechanisms. Probabilistic graphical models excel at capturing
uncertainty, causal knowledge, and independence information. Both of these frameworks provide a
foundation for capturing domain knowledge of various types. Neural networks, as a most general
class of functions, revealed the promise of capturing certain tasks through the conceptually-simple
approach of function fitting (or “curve fitting”). Using data in the form of input-output pairs, we
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managed to capture certain tasks that defied modeling for a long time, by simply fitting a complex
function (deep neural network) to this data (e.g., identifying and localizing objects in images).

Each of these frameworks has its shortcomings, which triggered the corresponding milestone.
Symbolic models are too coarse for capturing certain phenomena and, in their pure form, miss out
on exploiting data and the wealth of information it may contain. Probabilistic graphical models,
in their generative and discriminative forms, have been recently outperformed by function-based
approaches which are optimized for specific/narrow tasks. Moreover, we are now starting to realize
the limits of function-based approaches: they are sometimes unable to generalize beyond the given
data, can be quite brittle, and are not interpretable. Ironically, it is these shortcomings that models,
whether symbolic or probabilistic, can help alleviate. Hence, a key challenge/opportunity for AI
today lies in integrating and fusing these approaches to realize their collective benefits.

We make a distinction here between integration and fusion. Integration may refer to an intelli-
gent agent architecture in which the components may be based on different approaches, but work
together in a harmonious way to complement each other. Fusion may refer to a model-based ap-
proach that is empowered by functions, or a function-based approach that is empowered by models.
Our focus in this paper is on fusion, particularly the empowerment of function-based approaches
with domain knowledge in the form of models. While our ultimate goal is to consider models that
integrate both logic and probability (e.g., (Kisa et al., 2014; Poole, 2003; Halpern, 1990; Nilsson,
1986)), we focus in this paper on probabilistic models in the form of Bayesian networks, while
tackling a specific and fundamental question that is highlighted by recent developments in AI.

In particular, our contribution is based on the following observations, which are known in the
literature but together lead to a dilemma. First, a query posed to a Bayesian network model can be
viewed as inducing (and evaluating) a function, which can be represented using an Arithmetic Cir-
cuits (AC) (Darwiche, 2002, 2003). Second, Bayesian networks (and, hence, ACs) can be trained
discriminatively using labeled data, leading to an approach that is very similar to neural networks—
except that a neural network represents only one function, while a Bayesian network represents
many functions (one for each query). Third, neural networks appear to outperform Bayesian net-
works, even when the latter are trained discriminatively, which begs an explanation.

We shed some light on this question by first observing that the class of functions induced by
Bayesian and neural networks have different expressiveness. It is known that neural networks are
universal approximators, which means that they can approximate any functions to an arbitrary small
error. However, we show that the functions induced by Bayesian network queries are polynomials
(in fact, multi-linear functions); an observation that is well known but never discussed in this con-
text. To address this expressiveness gap, we propose a simple extension to Bayesian networks,
showing that it leads to inducing functions that are also universal approximators. When the newly
induced functions are represented by circuits, and trained using labeled data, we obtain a function-
based approach that is empowered by models. That is, not only can we now induce and train
functions that are as expressive as neural networks, but we can also integrate domain knowledge.

This paper is structured as follows. We review in Section 2 the class of functions induced by
neural and Bayesian networks, while identifying the corresponding gap in expressiveness. We then
propose a new class of Bayesian networks in Section 3, called Testing Bayesian Networks (TBN),
whose queries induce functions in the form of Testing ACs (TAC). We then show in Section 4 that
these functions are universal approximators. We further show in Section 5 that TBNs can efficiently
simulate neural networks with step activation functions, and use this observation to develop a TBN
for classifying digits with performance that matches neural networks. We finally close in Section 6.
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Figure 1: A neural network, a neuron, and two activation functions. A sigmoid σ(x) = 1
1+exp{−x}

acts as a soft threshold which tends to 0 as x goes to −∞ and tends to 1 as x goes to∞.
A ReLU σ(x) = max(0, x) is equal to 0 if x < 0 and is equal to x otherwise.

2. Technical Background

We will now review the class of functions represented by neural networks. We will also highlight
results from the literature, which allow us to view Bayesian network queries as inducing, and eval-
uating, functions. The main goal is to pinpoint an expressiveness gap between the two classes of
functions, which we address in the following section.

2.1 Neural Networks as Functions

A (feedforward) neural network is a directed acyclic graph (DAG); see Figure 1(a). The roots of the
DAG are the neural network inputs, call them X1, . . . , Xn. The leaves of the DAG are the neural
network outputs, call them Y1, . . . , Ym. Each node in the DAG is called a neuron and contains an
activation function σ; see Figure 1(b). Each edge I in the DAG has a weight w attached to it. The
weights of a neural network are its parameters, which are learned from data. Consider a neuron with
activation function σ, inputs Ii and corresponding weights wi. The output of this neuron is simply
σ(
∑

iwi · Ii). Thus, one can compute the output Yj of a neural network by simply evaluating
neurons, parents before children, which can be done in time linear in the neural network size.

To simplify the discussion, we will assume that a neural network has a single output Y . Hence,
a neural network represents a function Y = f(X1, . . . , Xn). The question now is what class of
functions can be represented by a neural network? If one does not restrict the type of activation
functions, then any function can be represented. In practice, one uses specific types of activation
functions, such as the sigmoid; see Figure 1(c). A neural network with a single hidden layer and only
sigmoid activation functions can approximate any continuous function to within an arbitrary error
ε. Such neural networks are called universal approximators of continuous functions (Hornik et al.,
1989; Cybenko, 1989; Leshno et al., 1993). A shallow network (single hidden layer) is sufficient
for universal approximation, but may require exponentially many neurons. A deep neural network
may be more succinct for this purpose though.
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(b) function for query O = Pr(y|x,w).
Here, α = Pr(y, x, w) and β = Pr(ȳ, x, w)

Figure 2: The function uses adders (+), multipliers (∗), inverters (◦), 1−θ units (•), and normalizing
units (Σ = 1). Excluding the Σ unit (division), we get an Arithmetic Circuit (AC) by
emulating ◦ and • units using adders. The function implicitly integrates the Bayesian
network’s 0/1 parameters. Moreover, θ1, . . . , θ4 are Bayesian network parameters.

Most of the recent neural networks are based on the ReLU activation function, which is simpler
than the sigmoid; see Figure 1(c). Interestingly enough, networks with ReLUs are also universal
approximators of continuous functions (Leshno et al., 1993).

2.2 Bayesian Network Queries as Functions

Consider now a Bayesian network, some evidence e on variables E (e.g., symptoms), and let Y
be a query variable (e.g., a disease). The probability Pr(y, e) can be viewed as the output of a
function f(E) that maps evidence e into a number in [0, 1]. The function inputs are discrete values
of variables E, but can be continuous values in [0, 1] if one uses soft evidence (Chan and Darwiche,
2005) (universal approximation results for neural networks assume that inputs/outputs are in [0, 1]).

It is known that the function f(E) can be represented by an Arithmetic Circuit (AC) contain-
ing only multipliers and adders; see Figure 2. It is also known that classical inference algorithms
for Bayesian networks can be interpreted as constructing this circuit on the fly (Darwiche, 2009,
Chapter 12), while some other approaches construct this circuit explicitly through a compilation
process (Darwiche, 2003, 2009). There are two key points here. First, each Bayesian network query
Pr(α) is the result of evaluating a function. Second, such functions are polynomials; in fact, multi-
linear functions to be more specific (Darwiche, 2003, 2009).1 That is, the class of functions induced
by Bayesian networks are less expressive than the ones represented by neural networks. Hence,
Bayesian networks are limited in the kind of relationships they can capture between evidence (in-
put) and beliefs (output), as compared to the kind of relationships that can be captured by a neural
network. This potentially explains why a Bayesian network that is trained discriminatively using
labeled data may not outperform a neural network that is trained for the same query.

Here is our major insight for addressing this expressiveness gap, which comes down to a very
simple but consequential observation. It is known that if each activation function σ of a neural net-
work is a polynomial, then the neural network can only represent polynomials. Hence, one needs
non-polynomial activation functions to yield a universal approximator (Leshno et al., 1993). Con-
sider now the ReLU activation function σ(x) = max(0, x), which leads to a universal approximator.

1. The conditional probability Pr(y|e) is the quotient of two multi-linear functions.
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This function equals 0 if x < 0 and equals x otherwise; see Figure 1(c). Hence, it is a linear func-
tion augmented with a simple test, x < 0. What this tells us is that one can turn ACs into universal
approximators by only integrating testing units (in addition to multiplier and adders). We show this
in the next section, leading to Testing ACs (TAC). In fact, the notion of testing can be integrated
directly into Bayesian networks, leading to Testing Bayesian Networks (TBN). A TAC will then be
the result of compiling a TBN query, just like an AC can be compiled for a Bayesian network query.

3. Testing Bayesian Networks

X1 X2 X3

H

Y

(a)

A

B C

D

(b)

Figure 3: TBNs (testing nodes are shaded).

The concept of a Testing Bayesian Network (TBN)
is relatively simple. Consider a node X in the net-
work with parents U and suppose we are specify-
ing the conditional probability table (CPT) for node
X . Instead of having a fixed parameter θx|u for
the conditional probability Pr(x|u), node X will
choose this parameter depending on a test of the
form Pr(u|eX) ≥ TX|u. Here, TX|u is a thresh-
old that is specific to node X and its parents state
u, and eX is the evidence pertaining to the ances-
tors of node X . That is, the CPT for node X is
determined dynamically, based on the distributions
Pr(u|eX) and thresholds TX|u. We will now give two illustrative examples of TBNs.

Consider Figure 3(a), while ignoring variable Y for now. Variables X1, X2, X3, H are the basis
of a noisy-or classifier as in (Vomlel, 2006). That is, we classify an instance x1, x2, x3 positively
iff Pr(h|x1, x2, x3) ≥ T , where T is the classification threshold. We can implement this classifier
using a TBN, by adding the single testing node Y having the following testing CPT:

θy|h =

{
1 if Pr(h | x1, x2, x3) ≥ T
0 otherwise

θy|h =

{
1 if Pr(h | x1, x2, x3) ≤ 1− T
0 otherwise

(1)

That is, Pr(y|x1, x2, x3) = 1 iff instance x1, x2, x3 is positive, and Pr(y|x1, x2, x3) = 0 otherwise.
More generally, we may have multiple testing nodes in a TBN. Figure 3(b) depicts an example

where all variables are binary and nodes B and D are both testing. In a classical Bayesian network
(BN), we need 9 independent parameters to fully specify the network (1 for A, 2 for each of B,C
and 4 for D). For the TBN, we need 15 independent parameters (2 additional parameters for B and
4 additional parameters for D). We also need 2 thresholds for B and 4 thresholds for D.

3.1 TBN Syntax

Formally, a TBN is a directed acyclic graph (DAG) with two types of nodes: regular and testing.
The CPT of a regular node is defined as in BNs and its parameters are said to be static. Root nodes
of a TBN are always regular. A testing node X with parents U has the following testing CPT:

θx|u =

{
θ+
x|u if Pr(u | eX) ≥ TX|u
θ−x|u otherwise

Here, θ+
x|u and θ−x|u are called dynamic parameters, TX|u are called thresholds, and eX is the evi-

dence pertaining to the ancestors of node X . A testing CPT corresponds to a set of classical CPTs,
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one of which is selected based on the evidence eX . If a testing node has m states, and its parents
have n states, its testing CPT will have m thresholds and 2 ·m ·n dynamic parameters, while a clas-
sical CPT will have m ·n static parameters. As we shall discuss later, the thresholds and parameters
of a TBN can be learned discriminatively from labeled data (as in deep learning).

3.2 TBN Semantics

A BN represents a single distribution. However, a TBN represents a set of distributions, one of
which is selected based on the given evidence. In particular, once each testing node has selected its
classical CPT based on the given evidence, the TBN transforms into a BN that has the same DAG
as the TBN and that specifies the selected distribution.

Definition 1 The selected distribution P (.) of a TBN given evidence e is defined inductively:

– For a root node X , the distribution over X is defined as P (x) = θx.

– For nodeX with parents U, let P (A) be the selected distribution over its ancestors A, let eX
be the evidence on the ancestors of node X , and let u be the parent instantiation compatible
with an ancestor instantiation a. The selected distribution over XA is defined as follows:

If X is a regular node, then P (x,a) = θx|u · P (a).

If X is a testing node, then P (x,a) =

{
θ+
x|u · P (a) if P (u|eX) ≥ TX|u
θ−x|u · P (a) otherwise.

With no testing nodes, Definition 1 reduces to the classical one for Bayesian network semantics.2

Definition 2 For a TBN, query variables Q and evidence variables E, the selected probability of q
given e is defined as q‖e = P (q|e), where P (.) is the selected distribution given evidence e.

That is, we first select a distribution based on evidence e and then use it to compute the conditional
probability of q given e. Hence, the probabilities q‖e1 and q‖e2 may be computed based on distinct
distributions, if e1 6= e2. This is also why we prefer the notation q‖e in contrast to Pr(q|e).

3.3 Compiling TBN Queries into TACs

A Testing Arithmetic Circuit (TAC) is an Arithmetic Circuit (AC) that includes testing units. Such
units have a single input (X), a single output Y = f(X) and three parameters T, θ+, θ−:

f(x) =

{
θ+ if x ≥ T
θ− otherwise

A testing unit with θ+ = 1 and θ− = 0 corresponds to the step activation function used in neural
networks. Figure 5(b) depicts a TAC with five such testing units. Moreover, a testing unit f(x) with
T = 0, θ+ = 1 and θ− = 0 can emulate a ReLU g(x) as follows: g(x) = x · f(x) = max(0, x).

A BN query can be compiled into an AC; see Figure 2. Similarly, a TBN query can be compiled
into a TAC. A BN query can be compiled into an AC by inducing a symbolic trace from a variable

2. One can generalize Definition 1 so eX is the evidence on non-descendants of node X , assuming evidence e does not
include descendants of any testing node. That is, Definition 1 will lead to a unique selected distribution in this case.
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Figure 4: Two functions and their approximations.

elimination or jointree algorithm, as described in (Darwiche, 2009, Chapter 12). We next sketch a
similar, albeit inefficient, approach for compiling a TBN query into a TAC.

Consider a TBN over variables X1, . . . , Xn that are topologically sorted. Consider also a corre-
sponding jointree C1—C2—. . .—Cn where cluster Ci contains variable Xi and its parents (among
other variables). Let Xj be our query variable. If we pass messages towards cluster Cj , the follow-
ing is guaranteed. For a testing node Xi with parents Ui, the message passed from cluster Ci−1 to
cluster Ci will contain the marginals Pr(u|eXi) needed to perform the tests for node Xi. Hence,
node Xi can pick its classical CPT, and then pass an appropriate message to cluster Ci+1. One can
extract an AC from this message passing process (Park and Darwiche, 2003; Darwiche, 2009), and
perform local modifications to incorporate the needed testing units, leading to a TAC for the TBN.

3.4 Discussion

There is perhaps much work needed to fully analyze and understand the properties of TBNs, but we
already know of a few desirable properties. For example, inference on a TBN can be tractable even
when it is intractable on a BN with the same structure; see Section 5. Moreover, the distributions
represented by a TBN all respect the independence properties captured by the TBN structure, and
all satisfy the constraints imposed by the TBN known parameters. In fact, the values of any known
parameters will be integrated into TACs that are induced by TBN queries. In Figure 2, for example,
we already know the values of some parameters due to domain knowledge in the form of logical
constraints. Any TAC (or AC) that is induced from this network will satisfy these constraints.
Hence, we can now synthesize functions and train their unknown parameters (θ1, . . . , θ4 in this
case), while providing some guarantees on the function properties based on the inducing model.

4. Universal Approximation

We now show that any continuous, monotonic function f(x) from [0, 1] to [0, 1] can be approxi-
mated by a TBN query. We later generalize our result to multivariate, non-monotonic functions.

4.1 Monotonic and Univariate Functions

Our proof is constructive and based on Jones (1990), and uses the TBN and TAC in Figure 5. The
TBN has regular nodes X,Y and I , which are discrete. Nodes X and Y are binary with states x, x̄
and y, ȳ. Node I is called a selector with values 1, . . . , N , with better approximations for larger
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Figure 5: The first layer of the TAC has testing units labeled with their testing threshold.

N . The TBN has testing nodes Y = Y1, . . . , YN , which are binary with states yi, ȳi. The TAC
computes the query Prλ(Y =y): the probability of y given soft evidence on x that is quantified by
λ ∈ [0, 1], i.e., λ is the posterior on x once soft evidence is asserted (Chan and Darwiche, 2005).3

Nodes X and I have uniform priors. Node Y has the following CPT:

Pr(Y =y | y, I= i) =

{
1 if y sets variable Yi to value y
0 otherwise

That is, Y is equivalent to node Yi when selector I is set to index i. The testing CPT for node Yi is:4

θyi|x =

{
1 if Prλ(x) ≥ f−1( i

N )
0 otherwise

θyi|x̄ =

{
1 if Prλ(x̄) ≤ 1− f−1( i

N )
0 otherwise

We now have the following result.

Theorem 3 For a continuous and monotonic function f(x) from [0, 1] to [0, 1], and error ε, we
have |f(x)− Prλ(y)| ≤ ε if the TBN in Figure 5(a) uses N = d1

εe.

Proof The CPT of each node Yi depends on the posterior distribution on X given soft evidence λ
(the posterior probability of X=x and X= x̄ is just λ and 1 − λ in this case). Once each testing
node Yi selects its CPT, our network simplifies to the structure depicted in Figure 5(c). This is now
a classical Bayesian network; denote its distribution by Prλ. We now have

Prλ(y) =
∑
y

N∑
i=1

Prλ(y | I= i,y)Prλ(I= i,y)

=
∑
y

N∑
i=1

Prλ(y | I= i,y) · θI=i ·
N∏
i=1

θyi =

N∑
i=1

θI=i · θyi .

3. The symbol x is overloaded. In the TBN, x is a value of binary variable X . In function f(x), it is a value in [0, 1].
4. We assume, without loss of generality, that f(0) = 0 and f(1) = 1.
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Since θI=i = 1
N , we Prλ(y) = 1

N

∑N
i=1 θyi . Intuitively, each test for node Yi is either activating

or de-activating that node. If it is activated, then θyi = 1; otherwise it is de-activated and θyi = 0.
Hence, the probability Prλ(y) equals the proportion of activated nodes. By construction (of the test-
ing CPTs), as the value of λ increases, the more nodes Yi get activated. In fact, exactly bN · f(x)c
will be activated, leading to Prλ(y) = 1

N bN · f(x)c and |f(x)− Prλ(y)| ≤ ε.

4.2 Non-Monotonic and Multivariate Functions

Ya Yb Yc

Figure 6: A chain of TBNs.

Figure 4(b) depicts a non-monotonic function f(x)
from [0, 1] to [0, 1]. To approximate f(x) with a test-
ing BN, we first split our function into monotonic
pieces. In Figure 4(b), we have used vertical dotted
lines to mark the points where the sign of the first
derivative df

dx changes.

We can use the testing BN for approximating
monotonic functions, as a building block for approx-
imating non-monotonic functions. Consider the test-
ing BN of Figure 6 that approximates the function f(x) of Figure 4(b). For clarity, we do not draw
the edges starting from X , and instead draw incoming edges without the tail node X . Here, each
of the three sub-networks enclosed in a box approximates each of the three monotonic components
of our function f(x). Let a, b and c denote the three components, and let Tab and Tbc denote the
values of x at the two borders. We have a chain of nodes Ya → Yb → Yc on the bottom of our
network. Node Ya simply copies the value of its parent (its CPT is an equivalence constraint). Node
Yb will either copy the value of Ya or the value of its component b, depending on whether the input
x is below or above the threshold Tab. Node Yc will either copy the value of Yb or the value of its
component c, depending on whether the input x is below are above the threshold Tbc. This sequence
of threshold tests will, given an input x, select the approximation of f(x) from the appropriate com-
ponent, which is finally obtained as the probability of Yc. Again, the error of our approximation
depends on the size of N used to approximate each component. The size of the construction is also
linear in the number of times that the sign of the first derivative changes.

The generalization to multivariate functions is analogous to the approximation of functions us-
ing ridge and bump functions (Jones, 1990; Lapedes and Farber, 1987). First, we use our construc-
tion for approximating a univariate function via a testing BN as a building block to approximate
a function f(x1, x2) over two variables. In particular, we construct a testing BN for N univariate
functions fx2(x1) = f(x1, x2) for N values of x2 from 0 to 1. As we did previously for approxi-
mating non-monotonic univariate functions by pieces, we construct a chain of these N testing BNs
and copy the output of the appropriate component based on the input value of x2. To approximate
a function f(x1, . . . , xn) over n variables, we construct N testing BNs that approximate functions
fn(x1, . . . , xn−1) over n− 1 variables, and then perform a similar construction.

The error in the approximation can be improved arbitrarily by increasing N (under some as-
sumptions, i.e., the change in f is bounded for small changes in the input). Moreover, this construc-
tion is exponential in the number of input variables n. Related constructions for showing neural
networks (with one or two hidden layers) are “universal approximators” are also exponential in the
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Figure 7: A TBN that simulates a layer of a neural network.

dimension of the function. However, the expectation is that deeper networks, with more hidden
layers, are able to approximate increasingly broader classes of functions succinctly.

5. Simulating Neural Networks

We will discuss three results in this section. First, we will show that a neural network with step
activation functions can be simulated by a query on a TBN of the same size (within a constant
factor). Second, we will show that this simulation is efficient in the sense that the TBN query can be
evaluated in time linear in the TBN size—even though the TBN structure is connected to the point
where it is not tractable when quantified by classical CPTs. Third, we will utilize our construction
to simulate a neural network for classifying digits by a TBN, and show a matching performance.

The simulation result is based on (1) the observation we made in Section 3 about using TBNs
for representing noisy-or classifiers, and (2) a result by Vomlel (2006), showing that a neuron with
a step activation function can be simulated by a noisy-or classifier.

Consider a neuron f with a step activation function. Let x be the neuron’s input vector, xi
the i-th input, wi the i-th weight, and T ? the threshold. Then f(x) = 1 if

∑
iwixi ≥ T ? and

f(x) = 0 otherwise (we assume x is a binary vector). We can simulate this neuron using the
TBN in Figure 3(a), having testing node Y and the testing CPT in (1). We can determine the TBN
parameters from the weights wi, and the TBN threshold T from both the weights wi and threshold
T ? (Vomlel, 2006), giving us f(x) = 1 iff y‖x = 1.5 Now that we can simulate the neuron using a
TBN, we simply cascade these TBNs to simulate a neural network; see Figure 7(a).

We applied this reduction to a neural network for the MNIST digit classification task, a standard
benchmark in the neural networks literature (http://yann.lecun.com/exdb/mnist). The
MNIST dataset is composed of 28× 28 grayscale images of handwritten digits, which we binarized
using a threshold of 0.5 (out of a range from 0.0 to 1.0). Hence, each example of the dataset is a
vector of 28 × 28 = 784 zeroes and ones. Each example is labeled with its corresponding digit
(from 0 to 9) and our goal is to learn a classifier that can predict the digit of a given 28× 28 image.
MNIST contains 60, 000 training examples and 10, 000 testing examples.

Training neural networks with step functions can be challenging. A step function is not differen-
tiable at the threshold, and has a zero derivative everywhere else. Hence, classical gradient methods
do not directly apply. In practice, one can train with sigmoid or ReLU functions, using gradient

5. More specifically, we get f(x) = 1 iff Pr(h | x) =
∏
i

exp{wixi}
1+exp{wi} ≥ exp{T ?}

∏
i(1 + exp{wi})−1 = T .
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methods. At test time, however, we can use step functions, as we did in our experiment. We used
TensorFlow to train a neural network with sigmoid activation functions and the architecture depicted
in Figure 7(b).6 We used the resulting weights and thresholds to parameterize our TBN, leading to
95.22% test set accuracy. The neural network with sigmoid activations obtained a 95.21% accuracy.

We now get to our last result, which pertains to the complexity of inference on TBNs. The
TBN we constructed in the above experiment is very connected, with a treewidth that cannot be
handled by classical Bayesian network algorithms. However, inference on this TBN is efficient for
the following reason. Consider a testing node Y with parents U in a TBN. It is possible that the
CPT selected by node Y is such that the distributions Pr(Y |u) are all the same for any u. This
means that node Y will no longer depend on its parents u, once the tests by node Y are concluded.
In fact, this property holds for the TBN that simulates a neural network, and also for the TBN we
used to prove Theorem 3. If a testing node has this property, we can disconnect it from its parents
after the test is conducted, making it a root node with prior Pr(Y |u) (for any u); see Figure 5(c).
As a result, a TBN that is very connected may end up being very sparse once testing is done. This is
why we can efficiently evaluate the TBN that simulates a neural network (as in the MNIST TBN).

Since we now know that TBNs are as powerful as neural networks as far as approximating
functions, our next step is to (1) consider more general methods for compiling a TAC from a TBN
and a given query, and (2) learn the TAC parameters and thresholds directly from labeled data. We
can think of the compiled TAC as a neural network, but one that we can provide guarantees on.
In particular, the TAC will satisfy certain properties that hold regardless of which parameters are
learned (by virtue of the TBN properties). Moreover, the TAC will be more interpretable as its
structure is synthesized from a model, instead of being either engineered or chosen arbitrarily.

6. Conclusion

We considered the relative expressiveness of Bayesian and neural networks. Neural networks are
“universal approximators” of continuous functions, whereas Bayesian networks can only represent
multi-linear functions for marginal probability queries, and a quotient of multi-linear functions for
conditional probability queries. We proposed Testing Bayesian Networks (TBN) whose queries
are also “universal approximators,” and Testing Arithmetic Circuits (TAC) for representing these
queries. Moreover, we showed how to simulate neural networks with step activation functions
using queries on TBNs, whose TACs can subsequently be learned from labeled data using gradient
methods (as in deep learning). We finally argued that TBNs and TACs move us a step forward
towards fusing model-based and function-based approaches to AI.
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6. Our network had 784 input nodes, two hidden layers of 256 and 64 nodes each with sigmoid activations, and an
output layer of 10 nodes with linear activations, leading to a neural network and testing BN with (784 + 1) · 256 +
(256 + 1) · 64 + (64 + 1) · 10 = 218, 058 parameters. We used the Adam optimizer with default settings, for 1,000
steps and a batch size of 512. The predicted digit is taken from the output of maximum value.
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