
Structured Bayesian Networks: From Inference to Learning with Routes

Yujia Shen and Anchal Goyanka and Adnan Darwiche and Arthur Choi
Computer Science Department

University of California, Los Angeles
{yujias,anchal,darwiche,aychoi}@cs.ucla.edu

Abstract

Structured Bayesian networks (SBNs) are a recently proposed
class of probabilistic graphical models which integrate back-
ground knowledge in two forms: conditional independence
constraints and Boolean domain constraints. In this paper, we
propose the first exact inference algorithm for SBNs, based
on compiling a given SBN to a Probabilistic Sentential De-
cision Diagram (PSDD). We further identify a tractable sub-
class of SBNs, which have PSDDs of polynomial size. These
SBNs yield a tractable model of route distributions, whose
structure can be learned from GPS data, using a simple algo-
rithm that we propose. Empirically, we demonstrate the utility
of our inference algorithm, showing that it can be an order-of-
magnitude more efficient than more traditional approaches to
exact inference. We demonstrate the utility of our learning al-
gorithm, showing that it can learn more accurate models and
classifiers from GPS data.

1 Introduction
Structured Bayesian Networks (SBNs) were recently pro-
posed by (Shen, Choi, and Darwiche 2018) for representing
and learning distributions over highly complex spaces, such
as routes on a map. Like a Bayesian network (BN), an SBN
is defined by a directed acyclic graph (DAG) and a set of
conditional distributions. In contrast to a BN, each node of
an SBN represents a cluster of variables (not just a single
variable). This cluster DAG specifies conditional indepen-
dencies between sets of variables, but makes no claims about
the independencies between variables in the same cluster.
Also in contrast to a BN, which uses tabular CPTs to rep-
resent conditional distributions, an SBN uses a conditional
Probabilistic Sentential Decision Diagram, or conditional
PSDD, to compactly represent the distribution over a cluster,
conditioned on its parent clusters (Shen, Choi, and Darwiche
2018). SBNs can hence accommodate background knowl-
edge in the form of conditional independence constraints
(via the cluster DAG), as well as knowledge in the form of
Boolean domain constraints (via the conditional PSDD).

Initially, (Shen, Choi, and Darwiche 2018) proposed an
efficient, closed-form algorithm for estimating the parame-
ters of an SBN from complete data. However, they left open
the problem of performing inference in an SBN, once it has

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been learned from data. In this paper, we propose the first
exact inference algorithm for SBNs, which is based on com-
piling them to a Probabilistic Sentential Decision Diagram
(PSDD) (Kisa et al. 2014). Our algorithm is based on the
compilation algorithm of (Shen, Choi, and Darwiche 2016),
for compiling Bayesian networks into PSDDs.

In general, compiling an SBN to a PSDD is not al-
ways tractable. However, we identify a new sub-class of
SBNs that is guaranteed to have PSDDs of polynomial size.
These SBNs have applications in modeling distributions
over routes (Zheng 2015; Choi, Shen, and Darwiche 2017).
Next, we propose a new structure learning algorithm for this
tractable class of SBNs. On the inference side, we show our
algorithm can be an order-of-magnitude more efficient than
more traditional approaches to exact inference. On the learn-
ing side, we show that we can learn more effective models
for the tasks of route prediction and route classification.

This paper is structured as follows. In Section 2, we re-
view SBNs and PSDDs. Next, in Section 3, we propose
our algorithm for compiling SBNs to PSDDs. We identify
a tractable sub-class of SBNs in Section 4, whose PSDDs
have polynomial size. We propose our learning algorithm in
Section 5. Finally, we provide an empirical analysis in Sec-
tion 6 and conclude in Section 7.

2 Structured Bayesian Networks
The Structured Bayesian network (SBN) is a recently pro-
posed class of probabilistic graphical model which is capa-
ble of integrating background knowledge in the form of both
conditional independence constraints and Boolean domain
constraints (Shen, Choi, and Darwiche 2018).

To specify an SBN, one first defines a cluster DAG. As a
Bayesian network’s structure is defined by a DAG, a Struc-
tured Bayesian network’s structure is defined by its cluster
DAG, where each node represents a set of random variables
(a cluster). The cluster DAG represents conditional indepen-
dencies between these sets of variables: a cluster is indepen-
dent of its non-descendant clusters given its parent clusters.
Importantly, nothing is said in terms of independence be-
tween variables of the same cluster, which is less commit-
ting than the DAG of a Bayesian network. In a cluster DAG,
we refer to a cluster X and its parents P as a family X | P.

To specify an SBN, one next annotates the cluster DAG
with conditional distributions, typically using a conditional



A B C Pr
0 0 0 0.2
0 0 1 0.2
0 1 0 0.0
0 1 1 0.1
1 0 0 0.0
1 0 1 0.3
1 1 0 0.1
1 1 1 0.1

(a) Distribution
A B ¬A¬B A ¬B¬A B

1 14

C ¬C

C

3

(b) An SDD

A B ¬A¬B A ¬B¬A B

1

.33 .67

1

.75 .25

4

C ¬C
.5 .5

C

3

.6 .4

(c) A PSDD

A B 

C 

3 

1 

0 2 

4 

(d) A vtree

Figure 1: A probability distribution and its SDD/PSDD rep-
resentation. The numbers annotating or-gates in (b) & (c)
correspond to vtree node IDs in (d). Moreover, while the cir-
cuit appears to be a tree, the input variables are shared and
hence the circuit is not a tree.

PSDD, which defines the conditional distribution of a cluster
given its parent clusters. The conditional PSDD is composed
of two components: (1) the logical constraints that define
the feasible states of a cluster given the states of its parent
clusters, and (2) the parameters that are learned from data.
We review PSDDs and conditional PSDDs next.

Probabilistic Sentential Decision Diagrams
PSDDs were motivated by the need to represent probabil-
ity distributions Pr(X) with many instantiations x attaining
zero probability, Pr(x) = 0 (Kisa et al. 2014). Consider the
distribution Pr(X) in Figure 1a for an example. The first
step in constructing a PSDD for this distribution is to con-
struct a special Boolean circuit that captures its zero entries;
see Figure 1b, which was compiled automatically from the
logical constraints (the zeros). The Boolean circuit captures
zero entries in the following sense. For each instantiation x,
the circuit evaluates to 0 at instantiation x iff Pr(x) = 0.
The second and final step of constructing a PSDD amounts
to parameterizing this Boolean circuit (e.g., by learning from
data), which adds a local distribution on the inputs of each
or-gate; see Figure 1c.

This annotated circuit induces a distribution Pr(X) as
follows. First, the probability of a complete instantiation x
is obtained by performing a bottom-up pass, evaluating each

p1 s1 p2 s2

· · ·

pn sn

· · ·α1

α2

αn

Figure 2: SDD fragment

gate from the inputs to the output. An input evaluates to 1 or
0 depending on its value set by x. The value of an and-gate
is the product of the values of its inputs. The value of an
or-gate is the weighted sum of its inputs (using the weights
annotating the inputs). Finally,

∑
x Pr(x) = 1. For more on

the semantics of PSDDs, see (Kisa et al. 2014).
The Boolean circuit underlying a PSDD is known as a

Sentential Decision Diagram (SDD) (Darwiche 2011). An
SDD circuit is constructed from the fragment in Figure 2,
where or-gates can have any number of inputs, and and-gates
have two inputs each. Each pi is called a prime and each
si is called a sub. Each SDD circuit conforms to a tree of
variables called a vtree, which is a binary tree whose leaves
are the circuit variables; see Figure 1d. The conformity is
roughly as follows. For each SDD fragment with primes pi
and subs si, there exists a vtree node v where the variables
of SDD pi are those of the left child of v and the variables
of SDD si are those of the right child of v. For the SDD
in Figure 1b, each or-gate has been labeled with the ID of
the vtree node it conforms to. For example, the top fragment
conforms to the vtree root (ID=3), with its primes having
variables {A,B} and its subs having variables {C}. Finally,
when the circuit is evaluated under any input, precisely one
prime pi of each fragment will be 1. Hence, the fragment
output will simply be the value of the corresponding sub si.1
A PSDD can now be obtained by annotating a distribution
α1, . . . , αn on the inputs of each or-gate, where

∑
i αi = 1.

A conditional PSDD represents a set of distributions over
variables X, which are conditioned on the same set of vari-
ables P. A conditional PSDD is motivated by the need to
represent the conditional distributions Pr(X | P) of a clus-
ter, in a cluster DAG, where X are the variables of the clus-
ter and P are the variables of its parent clusters (Shen, Choi,
and Darwiche 2018). A conditional PSDD can be viewed
as having two components: a PSDD component that repre-
sents each conditional distribution Pr(X | p), and an SDD
component that serves to index these distributions based on
the parent instantiation p. A conditional PSDD can also ag-
gregate common conditional distributions, particularly when
there is significant context-specific independence (Boutilier
et al. 1996). For example, consider the conditional PSDD
in Figure 3, where α and β denote two PSDDs highlighted
in red, with the SDD component highlighted in blue. The
PSDD for α is shared among all parent instantiations where

1This means that an or-gate will have at most one 1-input. Note
that an SDD circuit may yield a 1-output for all possible inputs.
Such circuits arise when representing strictly positive distributions.



A

B

X

θ1 1-θ1

θ2 1-θ2 θ4 1-θ4

θ3 1-θ3

!"

¬A

¬B

B ¬B

¬X Y X ¬Y ¬X

¬YY¬YY

Figure 3: Conditional PSDD

.

A .

B *

X Y

.

. *

A B X Y

Figure 4: Conditional Vtrees

A or B is true. The PSDD for β is obtained by a single par-
ent instantiation, where A and B are both false. For more on
conditional PSDDs, see (Shen, Choi, and Darwiche 2018).

Vtrees
In the compilation algorithm that we propose next, the con-
ditional vtree and the decision vtree will be central. First,
for an internal vtree node v, we refer to vl and vr as the left
and right children of v. We call an internal vtree node v a
Shannon node iff its left child is a leaf node. Consider the
following definition of a decision vtree, originally proposed
by (Oztok, Choi, and Darwiche 2016).

Definition 1 (Decision Vtree) A family X | P is compat-
ible with an internal vtree node v iff the family has some
variables mentioned in vl and some variables mentioned in
vr. A vtree for an SBNN is said to be a decision vtree forN
iff every family inN is compatible with only Shannon nodes.

Next, we consider conditional vtrees. Any conditional
PSDD must conform to a conditional vtree.
Definition 2 (Conditional Vtrees) Let v be a vtree for vari-
ables X ∪ P which has a node u that contains precisely
the variables X. If node u can be reached from node v

by only following right children, then v is said to be a
conditional vtree for X | P and u is said to be its X-node.

Figure 4 depicts two examples of conditional vtrees for
X = {X,Y } and P = {A,B}. The X-nodes are starred.
The vtree under the X-node determines the circuit struc-
ture of the probabilistic (PSDD) component of a conditional
PSDD. In turn, the vtree outside of the X-node determines
the circuit structure of the logical (SDD) component.

Finally, we say that two vtrees, one over variables X and
the other over variables Y, are compatible iff they can be ob-
tained by projecting some other common vtree on variables
X and Y, respectively.

Definition 3 (Vtree Projection) Let v be a vtree over vari-
ables Z. The projection of v on variables X ⊆ Z is obtained
as follows. Successively remove every maximal subtree v0
whose variables are outside X, while replacing the parent
of v0 with its sibling.

3 Exact Inference by Compilation to PSDDs
In this section, we propose the first exact inference algorithm
for Structured Bayesian networks (SBNs). Our approach is
based on the approach proposed by (Shen, Choi, and Dar-
wiche 2016), for compiling Bayesian networks into PSDDs,
which we summarize below:

1. pick a decision vtree v for the given Bayesian network N ,
using min-fill for example;

2. compile each CPT of network N into a PSDD using the
vtree v projected onto the CPT’s variables;

3. using the PSDD multiply operator, multiply all CPTs.

The result is a single PSDD representing the joint distribu-
tion of the given BN; we shall refer to this PSDD as the
joint PSDD. Once we obtain the joint PSDD, we can per-
form exact inference efficiently: we can compute marginals
or MPEs, for example, in time linear in the size of the PSDD
(Kisa et al. 2014). Moreover, one can bound the size of the
joint PSDD of a BN by its treewidth, by using an appropriate
vtree (Shen, Choi, and Darwiche 2016).

To perform exact inference in SBNs, we also perform
three similar steps, with Step (3) being the same for SBNs
as it is for BNs: each conditional PSDD can be treated as
a PSDD, which we can multiply together. Step (1) is also
similar for SBNs, but we will need another method for pick-
ing a special type of vtrees for SBNs, which we discuss
later. Step (2) is the main difference. In order to multiply
two PSDDs together using the PSDD multiply operator, the
vtrees of the two PSDDs must be compatible, i.e., they are
the projections of the same vtree (Shen, Choi, and Darwiche
2016).2 This is easy to ensure in a BN, as we simply con-
vert each CPT to a PSDD using the vtree from Step (1). This
is not easy to ensure in an SBN, since their conditional dis-
tributions must be specified as a conditional PSDD already,
whose conditional vtrees may not be compatible.3 Hence,

2Given two PSDDs with compatible vtrees, of sizes s1 and s2,
the complexity of multiplication is O(s1s2).

3In a classical BN, a tabular CPT is learned from data, which
is then easy to convert into a PSDD for the purposes of inference.



Algorithm 1 ConstructDecisionCtree(cluster DAG B, topo-
logical ordering π)
1: if B is a single cluster X then return a leaf ctree for cluster X
2: else if B is disconnected then
3: B1,B2 ← a disconnected partition of B
4: π1, π2 ← sub-orders over clusters in B1,B2 of the total

ordering π
5: else
6: X← first cluster of ordering π
7: B1,B2 ← root cluster X, and cluster DAG B with root

cluster X removed
8: π1, π2 ← ordering 〈X〉, and ordering π with the first ele-

ment X removed
9: vl ← ConstructDecisionCtree(B1, π1).

10: vr ← ConstructDecisionCtree(B2, π2).
11: return a ctree v with with left and right children vl and vr

for SBNs, in Step (1), we need to make sure we pick the
right vtree that will allow us to, in Step (2), enforce compat-
ibility. We discuss how to do this next.

Finding a Global Vtree
In this section, we consider analogues of vtrees (and their
variations) for SBNs, where leaves are labeled by clusters of
the SBN, rather than by variables; we refer to these cluster
trees as ctrees. A ctree can be viewed as a restricted type of
vtree: a ctree is a vtree where the variables X of a cluster
appear in the same sub-vtree, but where we represent this
sub-vtree with a single leaf ctree node. Note, however, that
we shall leave the sub-vtree over variables X implicit for
now, and first show how to pick a ctree.

Our goal is to identify a ctree for a given SBN that will ac-
commodate inference by PSDD multiplication. The first re-
quirement is that the ctrees of all conditional PSDDs must be
compatible with some common joint ctree. The second re-
quirement is that these ctrees must also be conditional ctrees.
The first requirement can be enforced by insisting that our
ctree be a decision ctree with respect to our SBN. The sec-
ond requirement can be enforced, in addition to using a deci-
sion ctree, by restricting the decision ctree to respect a topo-
logical ordering. In this case, the child cluster is guaranteed
to appear as the right-most leaf in the ctree (which guaran-
tees a conditional ctree). Algorithm 1 provides an algorithm
for finding such a ctree, given a cluster DAG and a topo-
logical ordering of its clusters. The following proposition
summarizes the result.
Proposition 1 The ctree v returned by Algorithm 1 is a de-
cision ctree with respect to the input cluster DAG. Moreover,
for each family X | P in the cluster DAG, the projection of
v onto family X | P is a conditional ctree for the family.
This ctree and its implied conditional ctrees can be used to
perform exact inference in an SBN via compilation. How-

In an SBN, conditional PSDDs represent complex conditional dis-
tributions that would otherwise have intractable representations as
tables; hence, a conditional PSDD must typically be learned from
data directly. In addition, when learning conditional PSDDs, we
will want to learn their conditional vtrees independently (to pro-
vide the best fit to the data).

A1A2A3

C1C2

B1B2

(a) Cluster DAG

A1

A2 A3

★

•

(b) Vtree for cluster A

B1 B2

★

(c) Vtree for cluster B

A1 A2

A3

•

• B1 B2

•

•

•

★

C1 C2

(d) Vtree for cluster C

Figure 5: A cluster DAG and three conditional vtrees for
clusters A = {A1, A2, A3}, B = {B1, B2}, and C =
{C1, C2}. X-nodes are labeled with a star.

ever, we must first show how to choose the sub-vtrees over
the variables X of a cluster, which we do next.

Finding Local Vtrees
Typically, when learning PSDDs from data, one must also
learn its vtree (Liang, Bekker, and Van den Broeck 2017;
Shen, Choi, and Darwiche 2017). In an SBN, it suffices to
learn the conditional PSDDs of its conditional distributions
(Shen, Choi, and Darwiche 2018). To provide the best fit,
we should learn the corresponding conditional vtrees in-
dependently. However, to perform inference, these condi-
tional vtrees must be compatible, as projections of a com-
mon global vtree. We show how to achieve this next.

Consider the cluster DAG of Figure 5, and its three con-
ditional vtrees. Here, the vtree for cluster A is not compat-
ible with the vtree for cluster C, as their projections onto
variables A are different vtrees. More generally, consider a
family X | P and its conditional vtree v. Let u denote the
X-node of v. Sub-vtree u dictates the probabilistic (PSDD)
component of a conditional PSDD, whereas the sub-vtree
outside of u, over P, dictates the logical (SDD) component.
That is, the distribution induced by a conditional PSDD de-
pends only on the sub-vtree u over X. The sub-vtree over P
impacts the size of the conditional PSDD but not its distribu-
tion. We thus propose to manipulate the conditional vtrees of
an SBN so that they become compatible, but for each family
X | P with conditional vtree v and X-node u, we leave the
sub-vtree u fixed in v. In this case, the probabilistic (PSDD)
components of each conditional PSDD will also be fixed,
leaving the conditional distributions invariant.

We propose the following two-step algorithm, that takes
as input an SBN whose conditional PSDDs have been
learned independently from data, and outputs an SBN with
an equivalent joint distribution, that further accommodates



exact inference via compilation. Our first step is to obtain a
target decision ctree v, where each conditional vtree will be
made compatible with v. We first run Algorithm 1 to obtain
a decision ctree c for our SBN. For each family X | P, we
then replace the leaf cluster X in ctree c with the X-node of
the family’s conditional vtree, yielding our target vtree v.

Our second step is to adjust all conditional vtrees so that
it is compatible with v. More specifically, for each fam-
ily X | P, we adjust the logical (SDD) component of
its conditional vtree/PSDD, through a process called re-
normalization.4 Tree rotation and swap operators were pre-
viously used to re-normalize an SDD to a new vtree (Choi
and Darwiche 2013), where an operation on the vtree im-
plied a corresponding re-factorization of the logical circuit
of the SDD.5 After re-normalization, the resulting condi-
tional PSDDs are now all compatible with each other.

4 A Tractable Class of SBNs
We identify a tractable sub-class of SBNs, which can be
compiled into joint PSDDs with only polynomial size—
namely those that correspond to binary hierarchical maps.
This class of SBNs are of practical interest, as they are in-
spired from an application of SBNs for modeling distribu-
tions over routes on a map, or equivalently, simple paths on
a graph (Zheng 2015; Choi, Shen, and Darwiche 2017).

Consider in Figure 6, a simplified graph of neighborhoods
in the Los Angeles Westside, where edges represent streets
and nodes represent intersections. The nodes of the LA
Westside have been partitioned into four sub-regions: Santa
Monica, Westwood, Venice and Culver City. Westwood is
further partitioned into two smaller sub-regions: UCLA and
Westwood Village. This partitioning is an example of a hier-
archical map, or more simply, an hmap. An hmap allows one
to abstract the notion of a route in a map: an abstract route
is a route between regions, which can be refined by recur-
sively planning the routes in each region. For example, if we
want to go from Venice to Westwood, we may first decide
to use edge e4 to go from Venice to Santa Monica, and then
use edge e1 to go from Santa Monica to Westwood. Next,
we find a route in Venice to edge e4, then a route through
Santa Monica from edge e4 to e1, and finally a route in West-
wood from e1 to the destination (we can then recursively find
routes between UCLA and Westwood Village).

An hmap induces a cluster DAG as follows; see Figure 6.
Each node of this cluster DAG represents a region, and each
edge of the cluster DAG indicates that the child is a sub-
region of the parent. Each node of the cluster DAG is as-
sociated with the map edges that are used at that level; for

4For a family X|P, let w be its conditional PSDD, and let v′

be the projection of decision vtree v onto X|P. First, we extract
the SDD circuit of a conditional PSDD. For both vtrees w and v′,
we replace the leaf cluster X with a dummy leaf vtree; we also
replace the corresponding PSDD nodes of the conditional PSDD
with dummy terminals. We then re-normalize the resulting (alge-
braic) SDD so that it conforms to v′ instead of w, and replace the
dummy terminals with the original PSDD nodes.

5To re-normalize an SDD, it also suffices to re-construct the
SDD bottom-up for the new vtree, using the SDD’s apply opera-
tor (Darwiche 2011), which we did in our experiments.

Venice

WestwoodSanta	Monica

Culver	City

e1

e2

e3 e4

e5
e6

UCLA

w1

v1
v2
v3

v4

u7

u1

u2 u3

u4

u5

u6

Westwood
Village

Venice

n1,...,n6 

Santa
Monica

s1,...,s8 

Culver
City

c1,...,c6 

UCLA

u1,...,u7 

Westside

e1,...,e6

Westwood
Village

v1,...,v4 

Westwood

w1

Figure 6: A hierarchical map and its cluster DAG.

an internal node, they are the edges that are used to cross
between the child sub-regions. Here, the root cluster repre-
sents the LA Westside and its variables represent the edges
e1, . . . , e6 that are used to cross between its four (imme-
diate) sub-regions. Finally, each leaf cluster represents the
edges that are strictly contained in that sub-region. Consider
the conditional independencies implied by a cluster DAG:
given the edges used to enter a region, the route that we take
inside of a region is independent of the route taken outside
the region. We make an additional assumption, due to (Choi,
Shen, and Darwiche 2017), which we also exploit: the route
taken inside of a region must also be a simple path.

In a binary hmap, regions are recursively split into two
sub-regions. Such maps have three key properties, that lead
to its tractability: (1) the simple-path constraints for interior
nodes are trivial to compile,6 (2) the number of parent in-
stantiations that we need to consider in a conditional PSDD
is quadratic in the number of edges crossing into the region,7
and (3) if the simple-path constraints of a leaf region are too

6A path consists of crossing from one region to another using a
single edge, or not at all, because of the simple path assumption (in
a simple path, we cannot visit the same region twice).

7Due to the simple-path constraint, a path cannot re-enter a re-
gion once it has exited it. Hence there are only a quadratic number
of way to enter and exit a region to consider (at most two incident



hard to compile, we can make the map deeper until they are
compilable. With a binary hmap, we obtain the following
polynomial bound on the size of its joint PSDD.
Theorem 1 Consider a binary hmap with t nodes, where k
is the maximum number of edges assigned to a cluster and
n is the maximum number of edges that cross into a region.
Letm denote the size of the largest PSDD of any leaf region.
The size of the joint PSDD is O(t · n2 · (m+ k)).

A proof is included in the Appendix.

5 Learning Binary Hierarchical Maps
In this section, we consider how to learn a binary hmap, and
hence, the structure of an SBN.

Random Binary Hmaps. Consider the following simple
algorithm for inducing a random binary hmap, based on re-
cursively decomposing a map into two regions. First, pick
two seed nodes a and b of a map, where a will belong to one
region and b will belong to the other. Each region alternates
between absorbing a neighboring node into their region (if
possible), until all nodes are absorbed. A deeper hmap can
then be produced by recursing on the sub-regions. We typ-
ically recurse until each leaf region is small enough to be
compilable to an SDD.

Learning Hmaps from Data. We next propose a heuris-
tic for learning a binary hierarchical map from a dataset con-
sisting of routes. Consider a popular road on a map which is
used by many routes in the data. A random partitioning of
the map may put one intersection (node) of the road in one
region, the next intersection in another region, and the third
intersection in the same region as the first. Hence, a route on
this road would exit the first region, enter the second, and
then re-enter the first. Such a route is not simple relative to
an hmap as it visits the same region twice. This assumption
was introduced by (Choi, Shen, and Darwiche 2017), and
is important for guaranteeing tractability as we discussed in
the previous section.

Hence, we propose a heuristic that tries to avoid situa-
tions like the above, for learning a binary hmap from data.
Our approach is bottom-up.8 Intuitively, we want to clus-
ter nodes together if they are commonly used by the same
route. First, we assign each node to its own region. Next, we
have an edge between regions if there is a street connecting
them, and we give that edge a weight based on the number of
routes in the data that crosses from one region to the other.
We then find a maximum weight matching9 and merge each
of the paired regions. We update the scores between regions
and repeat, until we obtain a single cluster. Next, from the
clustering, we want to extract an hmap whose leaf regions
are as large as possible, given an upper limit. Hence, to ob-
tain our final hmap, we navigate the clustering in depth-first
fashion until we find the first node under our limit which we
take as an hmap leaf. We then backtrack and continue until
we have picked all of our leaves.

edges can be used).
8Essentially, learning a binary hmap is a type of hierarchical

clustering. See, e.g., (Murphy 2012) which discusses both bottom-
up (agglomerative) and top-down (divisive) clustering.

9We used the networkx python module.

Figure 7: The road network of downtown SF.

6 Empirical Evaluation
We now evaluate the inference and learning algorithms we
proposed for SBNs. First, we compare inference using PS-
DDs with a baseline using jointree inference with sparse ta-
bles. Next, we evaluate the quality of SBNs learned using
our proposed heuristic, in a route prediction task. Finally, we
highlight the utility of SBN models for route classification.

Efficiency of Exact Inference. First, we compare the ef-
ficiency of our exact inference algorithm for SBNs, with
jointree message-passing using sparse tables (Larkin and
Dechter 2003).10 We evaluate these inference algorithms on
an SBN induced from a hmap, as done by (Choi, Shen, and
Darwiche 2017). We obtained public map data of San Fran-
cisco (SF) from openstreetmap.org, and selected 7 in-
creasingly larger regions of SF. We induced a random binary
hmap from each map, as described in Section 5. For each
map size, we generated 5× 5× 5 = 125 problem instances:
(1) 5 random hmaps, (2) 5 random parameterizations of the
SBN, and (3) 5 MPE queries (what is the most likely route
between randomly chosen source/destination pairs). In Ta-
ble 1, we report averages and standard deviations for the
times to (1) compile the joint PSDD (offline step), (2) eval-
uate the PSDD (online query step), and (3) run the jointree
algorithm. For each region, the graph size reported is the
number of edges (road segments) in the map, and depth is
the average depth of the binary hmap.

The largest map considered had 10, 500 edges; its graph
is highlighted in Figure 7. On average, the corresponding
SBN had 1.7M parameters and the joint PSDD was of size
8.9M (edges). Note that this map is over 26 times larger than
the map considered by (Choi, Shen, and Darwiche 2017),11

which highlights the scalability of our approach. Next, ob-
serve that as we increase the size of the map, evaluation time
of the joint PSDD is increasingly more efficient than the

10We first reduce our SBN to a flat factor graph, and induce
sparse factors from each conditional PSDD. We pick a jointree
structure that reflects the hmap that was used; this allows it to ex-
ploit the significant determinism in the CPTs. Otherwise, jointree
inference would be intractable for such models.

11For inference and learning, (Choi, Shen, and Darwiche 2017)
conjoined the SDDs of each region, and estimated parameters on
the joint SDD to obtain a PSDD, which is much less efficient (sta-
tistically) for learning (Shen, Choi, and Darwiche 2017).



Table 1: Compilation versus jointree inference by map size. Size is # of edges. Improvement is jointree over evaluation time.

map size depth compilation time (s) evaluation time (s) jointree time (s) improvement
910 6.2 47.422 ± 8.708 2.223 ± 0.572 7.374 ± 1.595 3.317 ×

2,103 7.4 290.919 ± 70.580 9.156 ± 3.298 27.044 ± 2.809 2.953 ×
3,241 8.6 785.877 ± 171.873 13.458 ± 3.905 55.011 ± 2.447 4.087 ×
5,202 9.6 2,003.242 ± 424.589 21.492 ± 2.783 135.941 ± 41.475 6.325 ×
7,621 10.6 3,938.633 ± 558.427 26.315 ± 5.111 249.658 ± 41.422 9.487 ×
9,290 10.8 8,508.526 ± 2,778.961 51.645 ± 17.204 519.567 ± 201.134 10.060 ×

10,500 11.2 12,333.635 ± 3,086.726 60.136 ± 14.517 607.294 ± 173.474 10.098 ×

jointree algorithm, and over one order-of-magnitude more
efficient in the largest graph evaluated. This is in part due
to the ability of PSDDs to exploit context-specific indepen-
dence as well as determinism, whereas sparse tables only
take advantage of determinism. While binary hmaps are
tractable, we expect the gap between compilation and join-
tree inference to grow for general SBNs. Finally, we note
that compilation time is non-trivial, although this is a one-
time cost that is spent offline. When many queries are per-
formed online, the time savings obtained by using joint PS-
DDs will be a considerable advantage.

Learning Hierarchical Maps. We now evaluate the algo-
rithm proposed in Section 5 for learning binary hmaps, using
a route prediction task that we describe next. We first took
the region of SF covering 910 edges from Table 1. We took
the cabspotting dataset of GPS traces collected from
taxicab routes in SF (Piorkowski, Sarafijanovoc-Djukic, and
Grossglauser 2009). Using the map-matching API of the
graphhopper package, we projected GPS traces onto
the map. We used 8,196 routes from this dataset to learn
the structure and parameters of our SBNs (using Laplace
smoothing).12 We learned a binary hmap for an SBN using
our proposed heuristic and also using a random binary hmap,
both described in Section 5. We used another 128 routes as
test routes to perform route prediction: given a source, des-
tination and a partial trip so far (half the trip), what is the
most likely completion? This is an MPE query on a PSDD,
which we computed using the inference algorithm based on
the PSDD multiply operator, proposed in Section 3.

For each route in the test set, we measure its similarity
with the route predicted from the PSDD, using three metrics:
(1) dissimilarity in segment number (DSN), which counts
the proportion of non-common road segments between the
true and predicted route, (2) Hausdorff distance (Groves,
Nunes, and Gini 2014), which matches all points in one
path with the closest point in the other path, and reports the
largest such match (normalized by the true trip length), and
(3) the difference between trip lengths (normalized by the

12To learn the parameters of an SBN, we independently learn the
parameters of its conditional PSDDs, which can be done in closed
form (Shen, Choi, and Darwiche 2018). A route dataset however
may have paths that are not simple, or paths that do not respect
the binary hmap (i.e., visits the same region twice). We can still
utilize such routes for training, which helped in our experiments.
First, we project each route in the training set onto each family of
the SBN—multiple paths through the same region becomes a set
of independent paths. A projected route may still not be simple; in
this case, we segment it further into sub-paths that are simple.

true trip length). Note that each metric has its own advan-
tages and disadvantages. Further, we expect better hmaps to
provide more accurate route predictions.13

We evaluate the quality of routes predicted by each of the
two SBNs in the following table:

hmap DSN Haus. trip length # bad routes
random 0.300 0.120 0.147 3,833 / 59

heuristic 0.250 0.089 0.076 2,791 / 41

Each entry is an average over 10 runs with randomly sam-
pled training and testing sets (of size 8,196 and 128) from
the 31,175 cabspotting routes inside the region. We see that
for all three metrics, our heuristic learns a binary hmap with
much higher predictive accuracy. For example, the predic-
tions from the heuristic hmap had half the error compared to
a random hmap, in terms of trip length. In the last column,
we consider how many simple routes become invalid in the
binary hmap, as discussed in Section 5. Invalid routes visit
the same region twice in the hmap—such routes have prob-
ability zero in the SBN. We separately report the number of
invalid routes in the training and testing sets. The random
binary hmap has 137% more invalid routes, indicating that
our heuristic is effective at lowering the number of invalid
routes that result in a hierarchical decomposition.

Route Classification. We report results on route classifi-
cation in Figure 8. We consider two classes of routes from
two datasets: (1) the cabspotting dataset (Taxi), and (2)
a simulated dataset collected by querying Google Maps Di-
rections API with source/destination pairs (Google).14 We
took 215 = 32, 768 and 212 = 4, 096 routes from each
dataset for training/testing. We took a map of size 5,374
edges and learned a binary hmap, as in Section 5; the SBN
had 737, 928 parameters. We trained two sets of SBN param-
eters (using Laplace smoothing), one for each dataset, yield-
ing a (structured) naive Bayes classifier (Choi, Tavabi, and
Darwiche 2016).15 The Taxi dataset was collected in 2008,

13Note that standard metrics based on test-set likelihood are dif-
ficult to apply. Our model assumes paths are simple across regions,
so routes violating this assumption have zero probability. Prior em-
pirical comparisons with SBNs considered, instead of likelihood,
domain-specific tasks such as next-turn prediction (Choi, Shen, and
Darwiche 2017; Krumm 2008).

14In particular, we initially took the map of size 5,202 from Ta-
ble 1, and from the cabspotting dataset, we took all 172,265
routes strictly contained in the map. For each route, we took the
source, destination, day-of-week and time-of-day, which we used
to request a corresponding route from Google Maps.

15If a train/test route is invalid (visits the same region twice),
then it has probability zero in the SBN. In this case, we segment the



100 101

batch size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
ac

cu
ra

cy

binary hierarchical map
logistic regression
naive bayes

Figure 8: Route classification.

which predates the proliferation of GPS navigators. Hence,
we view our Google vs. Taxi classifier as discriminating be-
tween drivers with/without GPS navigation, or alternatively,
Uber drivers (with) vs Taxi drivers (without). Figure 8 sum-
marizes our results, where we compare against (1) an (un-
structured) naive Bayes classifier (2) and a logistic regres-
sion classifier. Both uses each edge as a binary feature (each
edge is either present or absent). On the x-axis, we provide
each classifier with a batch of routes of increasing size, from
1 to 60. Each batch of size x is a set of x routes of the same
type—the idea is that the one can better distinguish a driver
as an Uber or a taxi driver, as more routes from the same
driver are provided. As we give each classifier more routes
from the same type of driver, we achieve higher accuracy
(as expected), converging to 100% accuracy. Clearly, our
SBN (using a binary hmap) is superior to logistic regression,
which in turn is superior to naive Bayes.

7 Conclusion
In this paper, we proposed the first exact inference algo-
rithm for structured Bayesian networks (SBNs), based on
compiling SBNs to PSDDs. We highlighted the importance
of vtrees for the purposes of inference and separately for
learning. Next, we identified a tractable sub-class of SBNs
based on binary hierarchical maps, for learning route distri-
butions. We also proposed an algorithm to learn the struc-
ture of binary hierarchical maps from data. Empirically, we
showed that inference based on compilation can be an order-
of-magnitude more efficient compared to jointree inference.
In our experiments, we demonstrated the practical utility of
our algorithms using route distributions learned from read-
world GPS data. We showed that our inference algorithm
can scale to much larger maps than those previously con-
sidered, and that our learning algorithm can learn struc-
tures with improved route-prediction performance. Finally,
we demonstrated the utility of binary hierarchical maps for
the purposes of route classification.

route into multiple valid routes, as in Footnote 6, for training. For
testing, we observe each route segment as a feature in the structured
naive Bayes classifier.

Acknowledgments We thank John Stucky and Yaacov
Tarko for comments and discussions on this paper. This
work has been partially supported by NSF grant #IIS-
1514253, ONR grant #N00014-18-1-2561 and DARPA XAI
grant #N66001-17-2-4032.

A Proof of Theorem 1
We provide a construction of the joint PSDD in this section.

For a given region, we refer to its external edges as those
edges that have one endpoint inside the region and the other
endpoint outside the region. External edges are the edges
that are used to enter and exit a region. Further, a path is
simple if it does not visit the same node twice. We say that
a path is hierarchically simple if it does not visit the same
region twice, in the hmap. In an SBN of a binary hmap, all
paths must be hierarchically simple; otherwise, they have
probability zero (Choi, Shen, and Darwiche 2017).

Consider a leaf node c in a binary hmap. We want the PS-
DDs representing routes inside this region. Under the hier-
archical simple-path assumption, at most two external edges
will be used—we cannot visit the same region twice. At the
most, we can enter and exit a region.

When exactly two external edges e1 and e2 are used,
we want a PSDD over all simple paths that connect to
both e1 and e2 in the region c. We refer to this PSDD as
non-terminalc(e1, e2), because all paths must pass through
the region c. When exactly one external edge e is used,
we want a PSDD over all simple paths that start at edge
e and then end inside region c. We refer to this PSDD as
terminalc(e), because all paths terminate in region c. Finally,
if no external edge is used, we want a PSDD over all sim-
ple paths strictly contained inside the region. We refer to
this PSDD as internalc. In PSDDs terminalc(e) and PSDDs
non-terminalc(e1, e2) that connect to the same endpoint in-
side the region, we allow for an empty path inside the region.
Further, we assume that all PSDDs non-terminalc(e1, e2),
terminalc(e), and internalc have a bounded size. This can
be ensured by using a binary hmap that is deep enough to
have small enough regions. In our experiments, we used
the GRAPHILLION package16 to compile regions into ZDDs,
which are then converted to SDDs.

Consider an internal node c in a binary hmap, which has
a left child region l and a right child region r. Each internal
node c is itself a binary hmap, rooted at c. It represents a map
consisting of all nodes and edges inside the corresponding
binary hmap. As we did previously, we will construct PS-
DDs non-terminalc(e1, e2), terminalc(e) and internalc over
the different types of routes implied by the selected external
edges. These PSDDs can be specified using the PSDDs of
its left and right child sub-regions.

Suppose we have external edges e1, . . . , en, and the edges
m1, . . . ,mk that cross between the left and right sub-
regions. Let emptyc denote the PSDD for c containing no
routes (all edges must be set to false). Consider the PSDD
internalc. An internal route is either (1) strictly contained
in the left region, (2) strictly contained in the right region,

16https://github.com/takemaru/graphillion



or (3) it crosses the two regions using exactly one edge mi.
Thus, the corresponding SDD has the elements:

internall, emptyr
emptyl, internalr
terminall(m1), terminalr(m1)

...
terminall(mk), terminalr(mk)

By the hierarchical simple-path assumption, the path be-
tween the left and right regions must consist of a single edge.

Consider the PSDDs terminalc(e). Suppose that e con-
nects to a node in the left child region (the case for the right
child is symmetric). There are two cases: (1) the path stays
in the left, or (2) the path crosses into the right using one
edge mi. This PSDD has an SDD with the elements:

terminall(e), emptyr
non-terminall(e,m1), terminalr(m1)

...
non-terminall(e,mk), terminalr(mk)

Consider the PSDDs non-terminalc(e1, e2). Suppose that e1
connects to the left child region and that e2 connects to the
right child region (the reverse case is symmetric). Here, the
path must cross from the left to the right using one edge mi.
This PSDD has an SDD with the elements:

non-terminall(e1,m1), non-terminalr(m1, e2)

...
non-terminall(e1,mk), non-terminalr(mk, e2)

If e1 and e2 both connect to the same region, say the left
one, then the path must stay inside the left region. We have
an SDD with a single element:

non-terminall(e1, e2), emptyr.

To count the total size of the joint PSDD, we count the num-
ber of PSDD nodes that we constructed, and also count the
size of each node (number of elements). Moreover, we do
not count elements with a false sub in our PSDD, which are
not needed to represent the distribution. First, for a leaf node
in the binary hmap, if n is the number of its external edges,
then we haveO(n2) distinct PSDDs, each having a bounded
size m. If there are t nodes in the binary hmap, then there
are O(t) leaf nodes. Hence, the total size of the leaf PSDDs
is O(t · n2 ·m). Second, for an internal node in the binary
hmap, if n is the number of its external edges, then we have
O(n2) PSDD nodes. If k is the number of edges that cross
between the left and right sub-regions, then the PSDD node
has O(k) elements. Thus, the number of PSDD nodes for
internal nodes in the binary hmap is O(t · n2) and their ag-
gregate size is O(t · n2 · k). Thus the total size of the joint
PSDD is O(t · n2 ·m+ t · n2 · k).

References
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D.
1996. Context-specific independence in Bayesian networks.

In Proceedings of the Twelfth Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI), 115–123.
Choi, A., and Darwiche, A. 2013. Dynamic minimization
of sentential decision diagrams. In Proceedings of the 27th
Conference on Artificial Intelligence (AAAI).
Choi, A.; Shen, Y.; and Darwiche, A. 2017. Tractability in
structured probability spaces. In NIPS, 3480–3488.
Choi, A.; Tavabi, N.; and Darwiche, A. 2016. Structured
features in naive Bayes classification. In Proceedings of the
30th AAAI Conference on Artificial Intelligence (AAAI).
Darwiche, A. 2011. SDD: A new canonical representation
of propositional knowledge bases. In Proceedings of IJCAI,
819–826.
Groves, W.; Nunes, E.; and Gini, M. L. 2014. A frame-
work for predicting trajectories using global and local in-
formation. In Proceedings of the 11th ACM Conference on
Computing Frontiers, 1–10.
Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014. Probabilistic sentential decision diagrams. In Pro-
ceedings of the 14th International Conference on Principles
of Knowledge Representation and Reasoning (KR).
Krumm, J. 2008. A Markov model for driver turn prediction.
Technical report, SAE Technical Paper.
Larkin, D., and Dechter, R. 2003. Bayesian inference in the
presence of determinism. In AISTATS.
Liang, Y.; Bekker, J.; and Van den Broeck, G. 2017. Learn-
ing the structure of probabilistic sentential decision dia-
grams. In Proceedings of the 33rd Conference on Uncer-
tainty in Artificial Intelligence (UAI).
Murphy, K. P. 2012. Machine Learning: A Probabilistic
Perspective. MIT Press.
Oztok, U.; Choi, A.; and Darwiche, A. 2016. Solv-
ing PPPP -complete problems using knowledge compila-
tion. In Proceedings of the 15th International Conference
on Principles of Knowledge Representation and Reasoning
(KR), 94–103.
Piorkowski, M.; Sarafijanovoc-Djukic, N.; and Gross-
glauser, M. 2009. A Parsimonious Model of Mobile Par-
titioned Networks with Clustering. In The First Interna-
tional Conference on COMmunication Systems and NET-
workS (COMSNETS).
Shen, Y.; Choi, A.; and Darwiche, A. 2016. Tractable
operations for arithmetic circuits of probabilistic models.
In Advances in Neural Information Processing Systems 29
(NIPS), 3936–3944.
Shen, Y.; Choi, A.; and Darwiche, A. 2017. A tractable
probabilistic model for subset selection. In Proceedings of
the 33rd Conference on Uncertainty in Artificial Intelligence
(UAI).
Shen, Y.; Choi, A.; and Darwiche, A. 2018. Conditional
PSDDs: Modeling and learning with modular knowledge.
In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI), 6433–6442.
Zheng, Y. 2015. Trajectory data mining: An overview. ACM
Transaction on Intelligent Systems and Technology.


