
Verifying Binarized Neural Networks
by Local Automaton Learning

Andy Shih and Adnan Darwiche and Arthur Choi
Computer Science Department

University of California, Los Angeles
{andyshih,darwiche,aychoi}@cs.ucla.edu

Abstract

We consider the problem of verifying the behavior of a Bina-
rized Neural Network (BNN) on some input region. We pro-
pose an algorithm that compiles the BNN on the given region
into an Ordered Binary Decision Diagram (OBDD), allow-
ing us to efficiently answer a range of verification queries on
the compiled OBDD. This includes counting and computing
the probability of counterexamples, in addition to identifying
the characteristics of counterexamples. Our compilation al-
gorithm is based on a classical algorithm for learning Deter-
ministic Finite Automaton (DFA) and some of its variations.
We also present some preliminary experimental results based
on BNNs for recognizing digits in images.

1 Introduction
Neural networks are used for a wide array of tasks, including
speech recognition, image classification, and language trans-
lation. They also power safety-critical applications, such as
autonomous driving, where humans need to understand and
formally verify the behavior of underlying neural networks.
While recent advancements have improved the performance
and scale of neural networks, there has been a lack of enough
methods for providing formal guarantees about their behav-
ior. In addition, the complex and intricate structure of neural
networks makes it impractical to reason about their behav-
ior manually. This has sparked a recent line of research that
aims to automatically verify neural network properties.

We propose in this paper an approach for verifying the
properties of neural networks, which is based on knowl-
edge compilation (Selman and Kautz, 1996; Cadoli and
Donini, 1997; Darwiche and Marquis, 2002; Darwiche,
2014). We focus on the class of Binarized Neural Networks
(BNN) (Hubara et al., 2016), which have binary weights and
activations at runtime, leading to space and computational
efficiencies. BNNs have also been shown to achieve com-
parable performance to traditional floating point precision
networks on some standard datasets (Hubara et al., 2016).

One particular property of BNNs that has been studied is
robustness (Leofante et al., 2018). Users of a BNN can pin-
point a particular input instance x and ask for guarantees on
the behavior of the BNN for other inputs in the neighbor-
hood of x, which we denote by Sx and call an input region.
This has practical applications, e.g., for image classification,

where users expect an image of, say, a dog to remain classi-
fied as a dog if only a few pixels are modified. Since the
number of ways to tweak an image is exponential in the
number of modified pixels, it is impractical to perform the
verification by enumeration.

A method was recently proposed for detecting counterex-
amples in an input region Sx (Narodytska et al., 2018). Our
proposed approach pushes this direction further by harness-
ing techniques from knowledge compilation, allowing one
to also reason about counterexamples. For example, we can
efficiently count the counterexamples in Sx, compute their
probability, enumerate a subset of them, and identify their
common characteristics. Another useful query supported by
our approach, the prime-implicant query, returns a subset of
inputs that, if fixed, will guarantee that the neural network
output will stick even if we vary the unfixed inputs (Shih,
Choi, and Darwiche, 2018a).

Using the example of image classification, our new tech-
niques allow us to perform reasoning on all images that are
some pixels away from some target image I , say, of a dog.
Whereas previous methods only tell us that it is possible to
classify an image in the neighborhood of I as, say, a cat, we
can determine how many neighborhood images are classi-
fied as cats and identify key characteristics that are shared
among all such images. The prime-implicant query even
identifies a way to fix a minimal set of pixels in the dog im-
age that guarantees a correct classification even if we modify
some of the unfixed pixels.

To reason about BNNs, we compile them into a tractable
representation and then apply verification queries to the
compiled representation. The compilation is done once per
input region and, if successful, allows one to efficiently an-
swer a range of queries that are generally NP-hard (Shih,
Choi, and Darwiche, 2018a).

We now give an overview of our compilation algorithm.
We compile BNNs into the tractable Ordered Binary De-
cision Diagrams (OBDDs), which are decision graphs with
an enforced variable ordering (Bryant, 1986; Meinel and
Theobald, 1998; Wegener, 2000). Let B be a BNN, and let
BS represent the function of B on S, an input region of in-
terest. To obtain BS in a tractable form, we provide a novel
algorithm for learning an OBDD representation ofBS , using
a variation of the automaton learning algorithm from (An-
gluin, 1987). This variation learns the OBDD using standard



membership and equivalence queries (Nakamura, 2005).
Our algorithm constructs a hypothesis OBDD and then it-
eratively calls equivalence queries, adding OBDD nodes un-
til its output agrees with BS . To answer equivalence queries
efficiently, we encode the BNN and the hypothesis OBDD
into CNF, and require that the region S can be encoded as
a CNF as well. When the algorithm terminates, it returns an
OBDD D such that D(x) = B(x) : ∀x ∈ S, a notion re-
lated to the Constrain operator on OBDDs (Meinel and
Theobald, 1998). We then verify properties of BNN B by
performing efficient verification queries on OBDD D.

Our algorithm can also be used as an incremental and any-
time compilation algorithm, by slowly increasing the region
of interest. The compiled OBDD of a smaller region can be
used as the hypothesis OBDD for the compilation task of a
larger region, without starting over. We can essentially save
our progress, and build on it at a later time if we decide the
initial region is too small.

This paper is structured as follows. Section 2 provides
an introduction to BNNs and OBDDs. Section 3 describes
the encodings of BNNs and OBDDs into CNF. Section 4
goes over the variation of the automaton learning algorithm,
which is used by our compilation algorithm in Section 5.
Preliminary experimental results relating to scalability are
then given in Section 6, followed by a case study in Sec-
tion 7. We finally discuss related work in Section 8 and con-
clude in Section 9.

2 Background
In this section, we describe Binarized Neural Networks and
Ordered Binary Decision Diagrams in more detail.

Binarized Neural Networks
A Binarized Neural Network is a feed-forward neural net-
work where the weights and activations are binarized using
{−1, 1}. A BNN is composed of internal blocks and one
output block. Internal blocks consist of three layers: a linear
transformation (LIN), batch normalization (BN), and bina-
rization (BIN).

• The LIN layer has parameters a (weights) and b (bias).
Given an input x, this layer returns 〈a,x〉+ b.

• The BN layer has parameters µ (mean), σ (standard de-
viation), α (weight), and γ (bias). Given an input y, this
layer returns α(y−µσ ) + γ.

• The BIN layer returns the sign (1 or −1) of its input.

The output block consists of a LIN layer and an ARGMAX
layer. The ARGMAX layer picks the output class with the
highest activation. More details regarding these blocks and
layers and their exact definitions can be found in (Narodyt-
ska et al., 2018). For convenience we consider a BNN with
two output classes 0 and 1.

Ordered Binary Decision Diagrams
An Ordered Binary Decision Diagram (OBDD) is a
tractable representation of a Boolean function over variables
X = X1, . . . , Xn (Bryant, 1986; Meinel and Theobald,
1998; Wegener, 2000). An OBDD is a rooted, directed
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(b) OBDD with sinks {0, 1}.

Figure 1: A BNN and its corresponding OBDD on four in-
puts. The two representations compute the same function.

acyclic graph with two sinks called the 1-sink and 0-sink.
Every node (except the sinks) in the OBDD is labeled with
a variable Xi and has two labeled outgoing edges: the 1-
edge and the 0-edge. The labeling of the OBDD nodes re-
spects some global ordering of the variables X: if there is an
edge from a node labeled Xi to a node labeled Xj , then Xi

must come before Xj in the global ordering. To evaluate the
OBDD on an instance x, start at the root node of the OBDD.
Let xi be the value of variable Xi of the current node. Re-
peatedly follow the xi-edge of the current node, until a sink
node is reached. Reaching the 1-sink means x is evaluated
to 1 and reaching the 0-sink means x is evaluated to 0 by the
OBDD. Hence, an OBDD can be viewed as representing a
function f(X) that maps instances x into {0, 1}.

Consider the BNN in Figure 1a, which classifies a movie
as a box-office success or not. It has four binary inputs: A
(Adapted Screenplay), G (Great Cinematography), F (Fa-
mous Cast), and M (Marketing). The parameters of the
BNN are not shown, but it computes the truth table as shown
in Table 1. The OBDD in Figure 1b also computes the truth
table in Table 1, so we can verify properties of the BNN
by performing verification on the OBDD. We can exam-
ine, for example, a movie that is an adapted screenplay, has
great cinematography, a famous cast, heavy marketing, and
is classified as being a box office success. This movie corre-
sponds to input {A=1,G=1,F=1,M=1} and a classification of
1. Using the OBDD in Figure 1b we can deduce, in time lin-
ear on the size of the OBDD, that the movie could have had
poor cinematography and low marketing, and would still be
classified as being a box office success. In fact, the partial
input {A=1,F=1} completely determines that the movie will
be classified as being successful, regardless of how the re-
maining input is set. This is an example of the many types of
efficient verification queries that can be done on an OBDD.

3 CNF Encodings

We next provide the encoding of BNNs and OBDDs into
CNF, which will serve an important role in our main compi-
lation algorithm.



A G F M f(x)
1 - - - - -
2 - - - + -
3 - - + - -
4 - - + + +
5 - + - - -
6 - + - + -
7 - + + - +
8 - + + + +

A G F M f(x)
9 + - - - -

10 + - - + -
11 + - + - +
12 + - + + +
13 + + - - -
14 + + - + -
15 + + + - +
16 + + + + +

Table 1: The Boolean function on the 16 possible inputs
computed by the BNN and OBDD in Figure 1.

BNN to CNF
We use the conversion from (Narodytska et al., 2018). An
internal block of a BNN consists of three layers: a linear
transformation (LIN), batch normalization (BN), and bina-
rization (BIN). The LIN layer has parameters a (weights)
and b (bias). The BN layer has parameters µ (mean), σ (std),
α (weight), and γ (bias). Put together, the three layers of
an internal block can be translated to the following function
h(x) on an input instance x (Narodytska et al., 2018).

h(x) = 1 ⇐⇒ 〈a,x〉 ≥ −σ
α
γ + µ− b

Since the weights a and input x are binarized as {−1, 1},
the above computation reduces to a cardinality constraint of
the form

∑m
i=1 li ≥ C, where li ∈ {0, 1} and C is a con-

stant. This cardinality constraint can be encoded as a CNF.
The output block has a LIN layer followed by an

ARGMAX layer, which can be encoded using a similar tech-
nique. First, we encode a cardinality constraint for all pairs
of classes, which tells us the class that has a higher activation
function in the pairing. Then, we use a final set of cardinality
constraints to determine the class that was the winner in all
of its pairings (Narodytska et al., 2018). Since we focus on
BNNs with binary output classes in this paper, a single CNF
variable is enough to represent the output of the BNN.

The space complexity of this conversion is O(NC2),
where N is the number of neurons in the BNN and C is
the constant from the above cardinality constraint.

OBDD to CNF
We convert an OBDD into a CNF using the well-known
Tseitin Transformation (Tseitin, 1968), which converts a
Boolean circuit into a CNF. Consider an OBDD node la-
belled by variable X . If the two children of this node com-
pute Boolean functions C0, C1, then the OBDD node com-
putes the Boolean function R = (C0∧¬X)∨ (C1∧X). We
can then represent the Boolean function of this node by the
following five clauses:

¬R ∨ C0 ∨X
¬R ∨ C1 ∨ ¬X
¬R ∨ C0 ∨ C1

R ∨ ¬C0 ∨X
R ∨ ¬C1 ∨ ¬X

Applying this conversion to all OBDD nodes leads to a
CNF representation of the Boolean function computed by
the OBDD. The number of CNF clauses produced by this
conversion is 5N , where N is the number of OBDD nodes.

The above encodings allow us to convert a BNN into a
CNF α and an OBDD into a CNF β. Let X be the CNF vari-
ables corresponding to the BNN inputs andO be the variable
corresponding to its output. Then α∧x∧O will be satisfiable
iff the BNN outputs 1 under input x. Similarly, α ∧ x ∧ ¬O
will be satisfiable iff the BNN outputs 0 under input x. Now
let X be the CNF variables corresponding to the OBDD vari-
ables and let R represent the variable we introduced for the
OBDD root. Then β∧x∧R will be satisfiable iff the OBDD
outputs 1 under input x and β ∧ x ∧ ¬R will be satisfiable
iff the OBDD outputs 0 under input x.

When the BNN and the OBDD share the same inputs x,
we can check for their inequivalence with the formula φ =
α ∧ β ∧ (O ∨ R) ∧ (¬O ∨ ¬R) (Narodytska et al., 2018).
Then, φ is satisfiable iff there is some instantiation of x such
that (O ∧¬R)∨ (¬O ∧R) (i.e. BNN and OBDD disagree).

4 Exact Learning of Finite Automaton
In this section we describe the automaton learning algo-
rithm (Angluin, 1987), which learns Deterministic Finite
Automata (DFA). The DFA learning algorithm has an adap-
tation for learning OBDDs (Nakamura, 2005), which serves
as the backbone for our BNN compilation algorithm. DFAs
and OBDDs are initimately related, since DFAs are almost
the same as Complete OBDDs, which are OBDDs that do
not skip variables (Wegener, 2000).

We roughly summarize the exposition on the topic of
learning DFAs from the textbook by (Kearns and Vazirani,
1994). The learning algorithm falls under the category of ac-
tive learning where the algorithm can learn through experi-
mentation, as opposed to passive learning where the algo-
rithm has no control over the sample of examples. To learn
the DFA for a function f , the learning process requires ac-
cess to oracles for two types of queries:
• Membership Queries: The learning process selects an in-

stance x and the oracle returns the value of f(x).
• Equivalence Queries: The learner submits a hypothesis

automaton h. The oracle tells the learner if h computes
the correct function (i.e. h = f ), otherwise the oracle re-
turns a counterexample x for which h(x) 6= f(x).
The main idea of the algorithm is as follows. Let S be

the set of states of a minimal DFA we want to learn. Recall
that each state represents a distinct equivalence class of in-
put strings. At all times we keep a hypothesis DFA whose
states S? represent a partition of S. We iteratively refine the
partition by splitting some partition element of S? into two,
so that |S?| increases. When |S?| = |S|, each element in the
partition contains exactly one equivalence class from S, so
our hypothesis DFA computes the target DFA.

Initially, we start with a one-node hypothesis DFA with
just one state, which partitions all the states in S into one
group. As long as our DFA is incorrect, we will receive
counterexamples from the equivalence query. Given a coun-
terexample e, we can simulate e on our hypothesis DFA
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Figure 2: Learning the finite automaton for the 3 mod 4
counter. Using the counterexample 1101, we modify the
hypothesis DFA into the updated DFA.

and identify the first state s? for which its following step in
the simulation is provably incorrect. This can be done effi-
ciently by maintaining a binary classification tree, the details
of which we omit. Then, we refine the partition by splitting
s? into two nodes. This process repeats until we have learned
all the states of S, at which point the equivalence query gives
no more counterexamples and our algorithm terminates.

Suppose we wish to learn a DFA on binary inputs for the 3
mod 4 counter f , and we currently have the hypothesis DFA
h in Figure 2a and its binary classification tree in Figure 2c.
Since h(1101) = 0 6= f(1101), we get the string 1101 as
a counterexample. Then using the binary classification tree
along with membership queries, the algorithm identifies the
state λ in h as faulty, and splits it into two. This generates
the updated DFA in Figure 2b, which computes f correctly.

The automaton learning algorithm was adapted into an
OBDD learning algorithm in (Nakamura, 2005). This vari-
ation requires n equivalence queries and 6n2 + n log(m)
membership queries, where n is the number of nodes in the
final OBDD and m is the number of variables in the OBDD.

5 BNN Compilation Algorithm
We now describe our main contribution: a compilation al-
gorithm from a BNN to an OBDD. Given a BNN B on n
binary inputs and one binary output, we wish to obtain an
OBDD D that computes the function of B on a region S
(i.e. D(x) = B(x) : ∀x ∈ S). We require region S to be
encoded as a CNF.

Algorithm 1 implements our proposal. The subroutines
BNNToCNF and OBDDToCNF perform the encodings de-
scribed in Section 3. We encode the BNN B as a CNF α
with output variable O. Then, we start the OBDD learn-
ing algorithm as described in Section 4 to learn the reduced
OBDD representation of B. The learning algorithm creates
a hypothesis OBDD D, which we encode as a CNF β with
variable R representing the OBDD output. We set φ on Line
4 such that φ has a satisfying assignment iff the current hy-
pothesis OBDD D does not compute the same function as

Algorithm 1 CompileBNN(B,X, S)

input: A Binarized Neural Network B with input variables
X, and a CNF S encoding an input region
output: An OBDD D computing the function of B on S
main:

1: α,O ← BNNToCNF(B,X)
2: D ← initial hypothesis OBDD
3: β,R← OBDDToCNF(D,X)
4: φ← α ∧ β ∧ (O ∨R) ∧ (¬O ∨ ¬R) ∧ S
5: while φ has a satisfying assignment s do
6: x← projection of s on X
7: D ← UpdateHypothesis(D,x)
8: β,R← OBDDToCNF(D,X)
9: φ← α ∧ β ∧ (O ∨R) ∧ (¬O ∨ ¬R) ∧ S

10: return D

BNN B on region S. While φ is satisfiable, we take the sat-
isfying assignment and keep only the variables correspond-
ing to the BNN/OBDD inputs as our counterexample x. The
subroutine UpdateHypothesis then edits our hypothe-
sis OBDD using counterexample x. Once we have an unsat-
isfiable φ, we return the OBDD D with the guarantee that it
computes the same function as BNNB on S. Note that there
are no guarantees on the output of OBDD D on instances
outside S. The number of iterations of the while loop is
N , where N is the number of nodes in the final output D.

Algorithm 2 r-RadiusDomain(x, r)

input: An input x = x1, . . . , xn and a radius r ≤ n

output: A CNF that encodes all instances x? such that h(x,x?) ≤
r, where h measures the Hamming distance
main:
1: d← a 2D array with dimensions [0, n]× [0, r]
2: for j ← 0 to r do
3: d0,j ← >
4: for i← 1 to n do
5: for j ← 0 to r do
6: h← di−1,j

7: l← di−1,j−1 if j > 0 else ⊥
8: di,j ← OBDD node: label Xi, xi-child h, ¬xi-child l
9: return OBDDToCNF(dn,r,X)

In Algorithm 2 we propose the construction of an input re-
gion that captures all instances in the neighborhood of some
instance x on n variables. More specifically, Algorithm 2
takes in an instance x, a radius r, and outputs a CNF S
on variables X1, . . . , Xn. An instance x? is a satisfying as-
signment for S iff the Hamming distance between x and
x? is no greater than r. In the algorithm, node di,j stores
the state with n − i variables processed and a current Ham-
ming distance of r− j. On Line 8, the child edge of di,j that
agrees with xi points to di−1,j . The other child edge points
to di−1,j−1 if j > 0, otherwise it points to ⊥. By using S
as an input for Algorithm 1, we can compile an OBDD that
exactly computes the function of a BNN for all instances
close to some instance of interest, measured by the number



of differing features. The time and space complexity of Al-
gorithm 2 is O(nr).

To extend our algorithm into an anytime compilation al-
gorithm, we start with a small region of interest and increase
its size over time. The compiled OBDD D will compute the
same function as B on this small region. To compile the
OBDD for a larger region, we can feed in D as the initial
hypothesis OBDD in Algorithm 1 on Line 2, without the
need to build D from scratch. Then, we can use the updated
OBDD to verify the properties of B on the enlarged region.
We can continue to enlarge this region until S = {0, 1}n, at
which point S = > and the compiled OBDD computes the
same function as B everywhere.

6 Experiments
In this section we present some preliminary experiments
as a proof of concept. We use the techniques described in
Section 5 to compile the OBDD of a BNN and verify its
properties. From the USPS digits dataset, we downsampled
and binarized the inputs into 8 × 8 black and white im-
ages (Hull, 1994). We then trained a BNN to distinguish
between digit ‘0’ images (true-class) and digit ‘8’ images
(false-class), which achieved 94% accuracy using the train-
ing algorithm from (Courbariaux et al., 2016). The BNN
has 64 input nodes, 5 hidden nodes, and 2 output nodes, and
was encoded into a CNF with 10, 664 variables and 41, 553
clauses. Using riss-coprocessor to preprocess auxil-
iary variables, we compressed the CNF to 3, 438 variables
and 23, 254 clauses (Kahlert et al., 2015). The original and
compressed CNFs are equivalent after existentially quantify-
ing out all variables except for the inputs and output, which
is enough for the correctness of our algorithm. Experiments
were done using a single Intel(R) Xeon(R) CPU E5-2670
processor.

Next, we identified an instance classified as digit ‘0’ (Fig-
ure 3a), and compiled the neighborhood around it using Al-
gorithms 1 and 2. We used the riss SAT solver for our
experiments (Kahlert et al., 2015). Table 2 shows the compi-
lation results for varying values of r. We did the same for an
instance that is classified as digit ‘8’ (Figure 3b), and show
the compilation results in Table 3. We also compiled around
the neighborhood of an image that we believe to be neither a
‘0’ nor an ‘8’ (Figure 3c), and show those results in Table 4.
For the experiments with small input space, we verified that
the produced OBDD is correct through manual enumeration.

The bottleneck in our experiments is the average time for
a SAT query, which is done once for each of the N equiv-
alence queries, where N is the size of the OBDD. We can
look more into preprocessing the CNF, since a large portion
of the formula is reused for each query. As the OBDD grows,
the membership queries become a bottleneck as well since
the number of membership queries is quadratic on N .

7 Case Study
In this section we perform verification queries on the setup
described in Section 6. We count the number of coun-
terexamples and run prime-implicant queries (PI queries for
short), which give us a subset of pixels that render the re-

(a) A digit 0, classified as ‘0’. (b) A digit 8, classified as ‘8’.

(c) A smile, which happens to be
classified as ‘8’.

Figure 3: Three images: digit 0, digit 8, and a smile. For each
image we compile around its r-neighborhood.

(a) 25 out of 64 pixels fixed
from Figure 3a

(b) 15 out of 64 pixels fixed
from Figure 3b

Figure 4: Prime implicant results for the instances shown in
Figure 3a and 3b, for r = 8. The grey striped region repre-
sents the ‘don’t care’ pixels. If we fix the black/white pixels
in Figure 4a, any completing image within a radius of 8 from
Figure 3a must be classified as ‘0’. If we fix the black/white
pixels in Figure 4b, any completing image within a radius of
8 from Figure 3b must be classified as ‘8’.

maining pixels irrelevant for the BNN classification (Shih,
Choi, and Darwiche, 2018b). Let x be the instance visual-
ized in Figure 3a, classified as a ‘0’ digit. For r = 5 in Ta-
ble 2, the reduced OBDD is just >. This means that flipping
any five pixels of x will still produce another image classi-
fied as digit ‘0.’ Recall that an image has 64 pixels in our
example, so this classification is robust against changes that
modify no more than 7.8% of the image.

For r = 8, we get a reduced OBDD of size 5, 602, indi-
cating the existence of counterexamples. Counting the satis-
fying assignments of an OBDD can be done in time linear
in the OBDD size. Utilizing a counting procedure, we found
that 227, 739, 414 out of the 5, 130, 659, 561 images (4.4%)
are classified incorrectly as the digit ‘8.’ Furthermore, using
the PI query, we identified a minimal set of pixels, shown in
Figure 4a, that guarantee a correct classification, regardless
of how the other pixels are set (within a radius of 8).



(a) 0 out of 64 pixels fixed
from Figure 3a

(b) 14 out of 64 pixels fixed
from Figure 3b

(c) 30 out of 64 pixels fixed
from Figure 3c

Figure 5: Prime implicant results for r = 5 for the instances
shown in Figure 3. The grey striped region represents the
‘don’t care’ pixels. If we fix the black/white pixels in Fig-
ure 5a, any completing image within a radius of 5 from Fig-
ure 3a must be classified as ‘0’. If we fix the black/white
pixels in Figure 5b, any completing image within a radius
of 5 from Figure 3b must be classified as ‘8’. If we fix
the black/white pixels in Figure 5c, any completing image
within a radius of 5 from Figure 3c must be classified as ‘8’.

Table 2: Compilation of a BNN on 64 variables around the
r-neighborhood of an image of a digit 0 (Figure 3a).

r input space OBDD size compile time (s)
5 8,303,633 0 (>) 2
6 83,278,001 509 403
7 704,494,193 2,202 2,166
8 5,130,659,561 5,602 24,003

Table 3: Compilation of a BNN on 64 variables around the
r-neighborhood of an image of a digit 8 (Figure 3b).

r input space OBDD size compile time (s)
4 679,121 0 (⊥) 2
5 8,303,633 243 111
6 83,278,001 765 584
7 704,494,193 2,431 3,168
8 5,130,659,561 4,058 11,797

Table 4: Compilation of a BNN on 64 variables around the
r-neighborhood of an image of a smile (Figure 3c).

r input space OBDD size compile time (s)
1 65 0 (⊥) 1
2 2,081 258 31
3 43,745 1,437 420
4 679,121 6,048 3,336
5 8,303,633 12,297 26,683

We can ask the same queries for the instance w visual-
ized in Figure 3b and classified as digit ‘8.’ For r = 4 in
Table 3, the OBDD is just ⊥, which means that flipping
any 4 pixels of w will still produce another image classified
correctly as digit ‘8.’ For r = 8, we get an OBDD of size
4, 058. Using this OBDD, we found that 87, 761, 650 out of
the 5, 130, 659, 561 images (1.7%) are classified incorrectly
as the digit ‘0.’ The PI query identified the minimal set of
pixels in Figure 4b which guarantee a correct classification
regardless of how the remaining pixels are set (within a ra-
dius of 8).

For the “smile” image in Figure 3c, the compiled OBDD
for the (r = 5)-neighborhood is larger than the correspond-
ing OBDDs of the first two images (see r = 5 in Ta-
bles 2, 3, 4). As well, for r = 5, the PI query for the “smile”
requires 30 out of the 64 pixels to be fixed in order to guar-
antee a classification, while the PI query for the digit ‘0’ and
digit ‘8’ only require 0 and 14 pixels respectively (Figure 5).
This suggests that the behavior of the BNN is less structured
in the region around the image of the “smile”, possibly be-
cause it is unclear how the image should be classified.

8 Related Work
The success of neural networks has led to a line of work
on understanding and verifying their behaviors (Katz et al.,
2017; Narodytska et al., 2018; Cheng et al., 2018; Pulina
and Tacchella, 2010). These works use, for example, solvers
for NP-complete problems such as Mixed-Integer Linear
Programming (MILP), satisfiability (SAT), or satisfiability
modulo theory (SMT). These systems seek to verify a par-
ticular property of a neural network, or otherwise provide a
counter-example. We push this line of work further by al-
lowing one to reason about the distribution or the character-
istics of counterexamples, which is enabled by learning the
OBDD of a given neural network. These richer queries allow
us to better understand the neural network behavior beyond
detecting the presence of counterexamples.

(Choi et al., 2019) also consider the compilation of neu-
ral networks into a tractable representation, and in particular,
into a Sentential Decision Diagram (SDD) (Darwiche, 2011;
Choi, Xue, and Darwiche, 2012).1 They focus on a different
class of neural networks and take the approach of reducing a
neural network to a Boolean circuit, and then compiling the
circuit into a tractable one using classical knowledge com-
pilation techniques. While this approach allows a larger set
of verification queries, it does not allow local/incremental
compilation so it may be less scalable, all else being equal.

Finally, there is also recent work on learning finite state
automata from recurrent neural networks (RNNs) (Weiss,
Goldberg, and Yahav, 2018; Koul, Fern, and Greydanus,
2019). Some of these works also use an Angluin-style
approach for learning the finite state automaton of an
RNN (Weiss, Goldberg, and Yahav, 2018). More specifi-
cally, their approach is based on learning the finite state au-
tomaton of an iteratively-refined abstraction of an RNN’s
state space, and hence the final automaton learned is not

1Note that SDDs are known to be exponentially more succinct
than OBDDs (Bova, 2016).



necessarily equivalent to the original RNN. (Koul, Fern, and
Greydanus, 2019) train an RNN and then quantize the state
space using an autoencoder. The result is a quantized net-
work, whose corresponding state machine can be readily
extracted. Angluin-style approaches, including ours, can be
viewed as instances of program synthesis, where a program
(a finite state automaton) is learned from a specification (a
neural network). For more on formal synthesis, which lies at
the increasingly important intersection of the fields of for-
mal verification and machine learning, see, e.g., (Jha et al.,
2017; Jha and Seshia, 2017).

9 Conclusion
We presented new techniques for verifying the behavior of
a Binarized Neural Network on some input region. We out-
lined an algorithm for compiling a BNN into an OBDD on
any input region that can be encoded efficiently as a CNF.
Our algorithm combines existing methods for CNF encod-
ings with a variation on the classical algorithm for learning
DFAs. The compiled OBDD gives us access to a range of
efficient verification queries and allows us to reason about
counterexamples, such as computing their probability and
identifying their common characteristics. In domains such
as image classification, our approach can let users pinpoint
a specific input image I , and then reason about images that
are some pixels away from I but classified differently from
I . We showed some preliminary results on a digits classifier,
performing verification queries and scaling to 64 inputs and
a region of size 5× 109.
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